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The bound-states in Quantum Field Theory :
review of some analytic problems raised
by the variational perturbation method

Etienne Frochaux, Département de Mathématiques,
Ecole Polytechnique Fédérale, CH-1015, Lausanne
(7.1.1993)

Abstract

In the framework of the weakly-coupled (¢), models we summarize some of the problems
raised by a new method for finding bound states, called the variational perturbation method. To
show first its interest, we present a result of this method, from which the existence of a bound
state follows simply by solving a Schrodinger equation, and which allows to find time-zero
eigenvectors at first perturbation orders. The main part of this paper is devoted to the review of
the problems encountered by the restriction to zero-time vectors (existence of zero-time vectors in
the domain of the Hamiltonian, asymptotic series of zero-time vectors approaching any vector,
and particularly those of the one-particle subspace). Lastly we present a new quantum and almost-
relativistic model for the two-particle system at low energy, deduced from the P(¢), models by
these considerations.

Introduction

The first construction of Quantum Field Theory models, the weakly-coupled P(¢), models, by
Glimm, Jaffe and Spencer [1] in 1973, was a capital step in the history of Physics, showing that
the concepts of Relativity and Quantum Physics are not mathematically incompatible.
Unfortunately the weakly-coupled (@), models describe a utopian world of massive, spinless,
chargeless and weakly-coupled particles in a two-dimensional space-time. Since then many efforts
have been made to find other models, more closely related to the observable world, in order to
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make comparisons with experimental measurements. Even though this goal has not yet been
reached, the models already constructed [1] are encouraging and make this subject, called the
Constructive Quantum Field Theory, an important branch of modern mathematical physics.

Meanwhile it would be an error to neglect the study of the P(¢), models only because they are
too simple. Their construction is indeed not trivial, so we must take advantage of their existence.
They can be used as a laboratory to test many ideas or questions about relativistic and quantum
system behavior. Some important problems have already been solved, such as the existence of
diffusion and bound states [1]. But many other questions have not been treated, at both
mathematical and physical level.

Here we are interested in the two-particle phenomena at low energy. In that domain, among
many others the following questions arise naturally :

Physical questions. What is the two-particle phenomenology at low energy ? Is it governed by
the Schrodinger equation at first approximation ? If it is the case, what is the "effective" potential ?
And what are the deviations to the Schridinger previsions ? Are they supported by some
underlying relativistic kinematical laws ?

Mathematical questions. We know that the representation of the state space by the fields acting
on the vacuum state is not injective, which sometimes causes difficulties. Can we find a dense
subspace with an injective parametrization, in which the dynamics of the two-particle system is
easily described, in a natural way ?

More generally, these two questions can be summarized as follows : does there exist a simpler
theory for the two-body system which gives the same predictions as the weakly-coupled P(¢),

models at low energy with a precise error estimate ?

This approach, which emphasizes the role of the vectors of the state space, is generally
neglected in Quantum Field Theory (Q.F.T.). We try to take a step in this direction and give a
tentative of answer to some of the above questions. This paper summarizes other publications
(except §3), to which we will refer for the detailed proofs. The presentation, sufficiently detailed
for non-specialists, will follow the order of the problems listed just above. §1 gives a result for
the two-body system, obtained by a new method for finding bound states, called the variational
perturbation method, initially proposed by Glimm, Jaffe and Spencer. An equation is given,
which connects two Rayleigh quotients, one of the Q.F.T. and the other of its non-relativistic
limit. From this equation it is easy to deduce the existence of a bound state, by simply solving a
Schrédinger equation. Moreover by comparison with the literature we conclude that we have
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obtained the eigenvectors at first perturbation order. In §2 we discuss the subspace of the state
space in which the calculations have been done, the zero-time subspace &J,. The restriction to this
subspace is sufficient for our purpose, because all vectors can be approached by an asymptotic
perturbation series in 9. Moreover &, contains vectors in the domain of the Hamiltonian, and
the orthogonal projection of any vector on the one-particle subspace can be also approached by an
asymptotic perturbation series in 9. All these results need an analysis of the Schwinger
functions in momentum space, that we deduce from a new programme, the WTI Programme. In
§3 we present a new, simple, quantum and almost-relativistic model for a two-particle system at
low energy, deduced from the above considerations, and for which the research of the bound
states leads to the same equation as in §1.
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1. An equation for the two-particle system

A weakly-coupled P(¢), model is an example of the Wightman Quantum Field Theory in a
two-dimensional space-time, describing massive, spinless, chargeless, identical particles with
weak mutual interaction. Such a theory is given by four quantities (7%, Z, ¢, I'), thatis a €-
Hilbert space 7 (the state space), a scalar, unitary and continuous representation Z in 7 of the
Poincaré group of the two-dimensional space-time, a dense subspace I" in 7 and a field o,
mapping Z(R%R) in the self-adjoint operators with domain I and range in T, all these objects
satisfying the Wightman Axioms [1].

We denote by H (Hamiltonian) and by P (momentum) the infinitesimal generators of the
temporal and spatial translations respectively. The Mass operator M is given by

M = VH>-P>,

The problem of the existence of bound states concerns the discrete part of the spectrum of M,
which is expected, for such models, to be as follows :

0 m 2m
[ ] { ] o) >
mg
discrete <

A

continuous

where the eigenspace associated to 0, called the vacuum subspace, is one-dimensional and
belongs to I', and the eigenspace corresponding to m>0 (the one-particle mass), called the one-
particle state subspace, carries an irreducible representation of the Poincaré group. Above 2m,
which is not an eigenvalue, the spectrum is continuous, and corresponds to the states with more
than one particles.

The eigenvalue mg, whenever it exists (depending of the model), is interpreted as the mass of a
two-particle bound state. Its existence suffices to prove that the model describes really interacting
particles.

The set of these models is parametrized by three quantities (m_, P, A), where m_>0 is the one-
particle free mass, P a positive-valued R—R polynomial called the interaction polynomial, and
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The set of these models is parametrized by three quantities (m,,?, A), where m >0 is the one-
particle free mass, P a positive-valued R—R polynomial called the interaction polynomial, and
A20 the coupling constant. The weak coupling refers to A, which is taken small. A=0 describes

models without interaction (which we call free models). In the following we consider families of
models which differ only by A, that we note F= {(#,, %, 95, [')), Ae[0,A,,,.]} for some

Amax>0 (we put a A-index everywhere). The set of these families can be parametrized by m, and
. In such a family there exists a vector , in the vacuum subspace of 7, for each A such that the
scalar products (Q, ; 9,(H" Q;) s are C functions of A on [0,},,5,], for all ne N* and all fe

F(R?).

The complete information on the discrete part of the spectrum of M has been obtained by the
Bethe-Salpeter method (see the references in [3] and [9]), which can be compared to the method
of analysis of the resolvent-operator used in Quantum Mechanic (Q.M.), as much for the

functional analysis technics involved as for the quality of its results. This method confirms the
general structure of the spectrum pointed out above, where m,_is a C™ function of A on [0,A,,,;,]

with m, _y=m, for each family .. Moreover this method gives necessary and sufficient conditions
on the polynomial % for the existence of a bound state. If it exists, it is unique, and the correspon-
ding eigenspace carries an irreducible representation of the Poincaré group. Its mass mB'.;L isaC”
function of A on [0,A,,.] converging to 2m, (which is not an eigenvalue) when A—0.

An other method, called here the variational perturbation method, initially proposed (in a
simpler version) by Glimm, Jaffe and Spencer [2, p. 175-7], has been explored. Let us suppose
that we know all about the spectrum of M, except the existence of a bound state. Thus we are only
interested to know if the spectrum of M is empty or not in the open interval (m;, 2m,). This
method is adapted to this question. It works in a given family % ={(#%,, ...), Ae[0,.]} and

combines three ideas.

First mg is defined by the minimum of a Rayleigh quotient (we drop now the A-index
whenever it is not necessary for the understanding) :

a2
mBZ - inf (W’M \P)
¥e¥ (¥ ;¥)

where #7is the intersection of D(M), the domain of M, and the subspace (1-Ey-E_)7Z, E, being
the orthogonal projector associated to the eigenvalue p of M (we take the Rayleigh quotient of M?

rather then of M because it simplifies the calculations). Here (.;.) is the 7 scalar product. The
interest of the Rayleigh quotient lies in its capacity of regularization : if ¥, is an eigenvector for
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mg, for all A, then it must be singular when A—0 (because the eigenvalue disappears), while the
quotient (¥, ; M? Y% J(¥5 ¥ B = (mB,,L)2 is continuous in this limit (even C7), as we have

just seen. Thus it allows a perturbation development in power of A.

The second idea consists in a good choice of test vectors. We restrict ourselves to vectors of
the following kind :

N . M . s
20 Y 03(f) 2y € &
= j=0

for all N, Me N and suitable functions fJl , where Gg(f) =1 and 9{({'), je N*, are the zero-time

fields, formally given by
COE L,- &% ARy, %) 1 0O0F) - @0 1

The double points :.: denotes the Wick polynomials (see §2, where the existence of such vectors
is discussed). This choice of zero-time fields avoids the use of too many variables. The particular
A-dependance of the test vectors is not necessary, but it help the calculation. Note that A plays here
a double role: it indicates to which Hilbert space 7, the vectors belong, and it is a small parameter
which allows perturbation expansion. Because of the weak coupling, the solution of the
minimization problem approaches that of the free model. Thus the term with f3 is expected to play
a dominant role, while the functions f‘; j#2, will be suppressed.

The restriction to &, the set of zero-time vectors, tends to approach the picture of the
Q.M.. This can be understood as the choice for which the momentum operator P is diagonal,
because it acts on 9, as follows :
PO Q = 6PHQ,

where Pf denotes the usual action of the momentum in Q.M.. While the operators H, M or L
(Lorentz generator) are expected to act on 2, in a more complicated way (see §3).

The third idea consists in introducing the singularity at A=0 in ‘P, before the calculation. We try

to guess it, by the help of the following argument : the localization of the bound state (in the space
of the relative variable) must vanish when the interaction disappears. We introduce a scaling for
the relative variable of the function fJ (which play the main role), replacing X,,; by 8%,,; , where &
is a function of A which goes to 0 when A—0.

We give here a result of this method, after having minimized the Rayleigh quotient in varying
3()) and the functions f', but not the function f = fg (that is, the functions f } are given in terms of
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f). To simplify, we give the result for some families of weakly-coupled P(¢), models, as in [3]
(where the interaction polynomial % is even and has a non-zero fourth degree term ; these

restrictions are removed in [4]). The analytic part uses some quotient of norms q(f) (quotient of
some Sobolev norms), well defined for example if fe ¥ (1R2) and f#0.

Theorem. For all fe LA(R?) with well defined q(f) there exists a vector ¥¢ satisfying :
i) Yre DM)n (1-E-E_)#,
ii) P¥; = ¥py,

RV (2 .11 MR
iii) (FpM¥p) 2m)* + 4m> A\ EHDE - gse F(fL),
(‘P ¥y) <F )

and there exist K,K'e (0,00) such that, for all A<[K'q(D)] " :

B
] < K AT

Here <.;.> is the L*(R?) scalar product and HYR(\/m}) is the relative part of the Hamiltonian of
the non-relativistic limit, obtained by Dimock [5].

The proof of the theorem, and the precise form of ‘¥;, Hﬁ‘; and q(f) are given in [3] and [4].

Note that in the theorem, the speed of light is a fixed constant. The effective non-relativistic
limit comes from the scaling in the relatives variables. But the center of mass system is always
treated as relativistic.

The problem of the part of the spectrum of M in (m, 2m) is now reduced to a problem of

Q.M,, i.e. if the spectrum of H’,\;’f has a negative part.

Corollary. If there exist fe L2(R%) with well defined q(f) and E>0 such that :

<EHIS) £>/<E; > =—E, then the spectrum of M is not empty in (m, 2m — m™XE].

If we assume that the spectrum of M is purely discrete below 2m, as pointed out above, the
corollary states that a bound state exists when some conditions on H’,\Zf are satisfied (this turns out
to give conditions on the interaction polynomial % ). Moreover its mass my is bounded by : mp <

2m - m™A’E.
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The comparison with the precise results given by the Bethe-Salpeter method is surprising. The
conditions on the interaction polynomial < for the existence of a bound state are the same, and the
value for my is exactly the bound given above, at first perturbation orders. Thus we have actually
reached the bottom of the spectrum of M on (1-E_—E_)J# , and { ¥, f as in the corollary } can be

seen as the eigenspace (given by zero-time vectors), at first perturbation orders.

This surprise allows a new view on the formula iii) of the Theorem. It gives not only a new
connection between the Q.F.T. and its Q.M. non-relativistic limit, but also a new interpretation in

terms of particles of some (zero-time) vectors of the state space in Q.F.T..

The theorem allows two interesting developments (passing over the adaptation to other
models). We can calculate the next perturbation terms, minimizing over the functions f3, f} , etc...
This could lead to the relativistic corrections to the Schrédinger equation (at zero-time), proposed
by the weakly-coupled P(¢), models [6]. The second development leads to the creation of a new
theory, by halting the calculation at an intermediate step, before doing the §-expansion, that is
before taking the non-relativistic limit. We obtain in that way a new model for the two-particle
system, quantum and almost-relativistic (not exactly relativistic because of the perturbation appro-
ach), which has the property to have the same non-relativistic limit as the P(¢), models (see §3).

The proof of the theorem can be divided into two parts of different nature. The first part
constructs a zero-time vector ‘¥; in (1-E —E_ ), which satisfies the formula iii) up to O3 (see
[3] or [4]). Here the analytic difficulties are neglected, and the expansions in powers of A are
taken as formal series. So this part is rather "algebraic”. It can also be done, with suitable
modifications, for other Q.F.T. models. The second part (the "analytic part"), concerns the
control of the remainder % (f,A). It is specific to models with rigorous mathematical construction.
The method given here works for the weakly-coupled (), models, but is certainly not strong
enough for other models. To obtain the formula iii), expansions in power of A have been
performed at three stages :

developments of the scalar products (ei(f)Q;MZGj(g)Q), (ei(f)ﬂ; (1-E,) Gj(g)n)
development of the Rayleigh quotient,
development in the scaling parameter 8 (taken as a function of A).

The control of the remainders of the last two expansions is easy but tedious. It is given in [3] and
[4]. The control of the remainder of the first expansion is more difficult and we need to go back to
the details of the construction of the models. It is obtained by combining [3], [4], [7], [8], [9]. In
§2 we present an outline of these works.
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2. Analysis of the zero-time subspace

We present here the analytic problems encountered in the use of zero-time vectors in the theo-

rem of §1. More generally, let us go back to the presentation of the variational perturbation me-
thod. A subspace 7 of & is required, which, for the convenience of the calculations, should be :

1) contained in the domain of M, with scalar products (;M2) C*in A,

2) orthogonal to the vacuum and one-particle states,

3) large enough (dense in (1-E~E_)#),

4) small enough (parametrized injectively by a space of functions),

5) convenient (the operators P, H, M, L should act on it in a simple way).

The aim of this paragraph is to show that some suitable subspace of 9, the zero-time
subspace, could be an acceptable candidate for such a subspace.

About question 1): the zero-time vectors are given by some limits, so the question of their
possible presence in the domain of M (which is an unbounded operator) makes it necessary to go
back to the basic definitions. After having exposed the main points of the construction of the
P(¢), models (§2.1) we can state the problem (§2.2). The difficulty consists in the control of the
asymptotic decrease of the Fourier transform of the so-called Schwinger functions and of their
derivatives with respect to A. A new programme, the WTI Programme, is established to
investigate this problem (§2.3). It allows us to prove (§2.4) that there exist zero-time vectors in
the domain of M and M?, and that for two such vectors &, {, the scalars product (€, M" ),
ve {0,1,2,3,4}, are C™ in A.

About question 3): we do not prove that &, is dense in &, but § 2.5 states that it is "almost
dense”, in the sense that all vectors of # can be approached by an asymptotic series (in power of
A) of vectors of 9. Then the restriction to 9, has no consequence for any investigation
involving a perturbation calculation. The orthogonalization with respect to the vacuum and one-
particle states, (question 2)), is studied in § 2.6. The projection (1-E,—E )& of any vector Ee
can be approached again by an asymptotic series (in power of 1) of vectors of ..

About question 4): let us recall that we have chosen the zero-time vectors subspace especially
for this property to hold. We do not need to prove it, because we do not encounter difficulties by
having too many variables in working with .,

About question 5): 9, is satisfying for the free models (§ 2.2). For the interaction case, we
discuss this problem in § 3.
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2.1 Construction of the weakly-coupled P(¢), models :
the main points

The construction of the weakly-coupled (@), models by Glimm, Jaffe and Spencer [1] uses a
large detour, passing by the so-called Euclidean Field Theory (i.e. with imaginary time). We

expose first this theory (for more details see [7] and [8]). The basic tool is a probability space
(Q,Z,n), where

Q= #'(R%R),
Z is the Borel o-algebra of Q (given the weak topology),
U is a probability (i.e.normed, positive) measure on X satisfying some conditions.

The conditions on p are the Probability Axioms for Quantum Field Theory, stated below. By the
Minlos theorem there is a one-to-one correspondence between the probability measures on X and
the functions ¢ : #(R*R) — C satisfying :

i) Normalization : €(0)=1.

ii) Continuity : ¥ is continuous.

iii) Positivity : for all ne N* and fe . (le)", let A;; = €(f; - ). Then A is a semi-positive
definite matrix.

In this correspondence € is the characteristic function of u, that is

€ = J.ci"’t@ du(@ forall fe #(R%R)
a€Q

where ¢ (the Euclidean field) is the map from ?(le) to the random variables on (Q,X) defined by
¢q) = q(f) for all ge Q.

The Minlos theorem generalizes the Bochner theorem for infinite dimensional integration
spaces. It gives an easy way to obtain probability measures on X. For example f — F(b(f,f))
satisfies i), ii), iii) if F is any continuous, positive-valued function on R satisfying F(0) =1 and if
b(f,g) is any semi-positive definite bilinear form continuous on .9’(]R2) (this statement follows
from the proof of proposition 1.1.2 of [6]).

Let % be the Euclidean group on R? (rotations, translations and reflections), acting on % (R?

in the usual way. We single out a particular direction in R? which we call Euclidean time ; a point
in R? will be written as x = (X, X), where x is an Euclidean time, and X is a space point. Let
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{T(x), xe ]Rz} ¢ denote the subgroup of translations, and let 6€ ¢ denote the reflection in the X

=() hyperplane. We also define:
5+ = {fe ARY), &, %) = 0 if %<0 }.
From now on, we write .% instead of #(R% or #(R%R).
The Probability Axioms for Q.F.T. are the following conditions on p, in term of &’ :

i)  Euclidean invariance : €(Yf) = €(f) forall ye ¢, fe .

i)  Osterwalder-Schrader positivity : for all neN* and fe (#*)", let B; ;= €(6f; - f;).
Then B is a semi-positive definite matrix.

iii) Cluster property : lim [€(f+T(sx)g) - €()€ (g)] = 0 for all xe R*~{0} and f,ge .

iv) Regularity : for all fe .7, a»% (of) is of class C” in an R -neighborhood of, =0 and
there exist a Schwartz space norm |...| and finite positive numbers a,b,c with

|9i¢@n]__, | < ab™ @) 1" for all ne N* .

From the last axiom the moments of p exist as tempered distributions :

S, () = J ¢r,(q) -+ ¢5.(q) du(q)  for all ne N* and fe .
qeQ

As consequences of the above axioms, the distributions S, satisfy the Osterwalder-Schrader
axioms [7], so there exists a Wightman Q.F.T. model (7, Z, @, I') such that the S, are the
analytic continuation of the distributions (Q;¢(f,)---¢(f,)<2) 5 10 imaginary time [10]. The S, are

called the Schwinger distributions. Let us give the construction of the state space 5%, the

momentum operator, P the Hamiltonian H and the Lorentz generator L.
Let & (the Euclidean Hilbert space) be the closure in LZ(Q,u) of the €-span of the following set
{1, (¢p)" ; ne N*, fe 99}
Let & * be the closed subspace of & obtained by restricting the functions f to bein ™ :
& = closure of the span of { 1, (¢p" ; ne N*, fe #* }

We denote by E* the orthogonal projector on & *. Following Klein and Landau [11] we introduce

the operator :
# = E*QE".
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Note that % measures in some sense the "non-locality” of the measure p. It is a bounded and

positive operator by the axiom i) and ii). The subspace #¢ can be seen as a pre-Hilbert space
with the scalar product (#€ , #1) > (#E ; D)y for all §, (e &. Its completion is identified as

the state space #. We denote by W : &— F# the canonical map generated by #7

The Euclidean group & acts in a natural way in & (we write the same symbol for the group
elements and for the operators of the representation). The translations of space T((0,x)), xe R,

EY

commute with % thus {WT((O,)‘())W”', xe R} is well defined on 7%, and gives a continuous

unitary group. By Stone's theorem there exists a self-adjoint operator P, (the momentum) such
that
WT((0,X)W ' = exp (iPx) forallxe R .

The translation of a non-negative Euclidean time T((t,0)), te R, =(s20}, maps & in &* and ker #~
in ker # . Thus {WT((t,O))W'l, te R, ) is well defined on Z#, and gives a continuous self-adjoint

semi-group. By the extension of Stone's theorem for semi-groups, there exists a self-adjoint
operator H, (the Hamiltonian) such that

WT((L,O)W ' = exp (—tH) forallteR,.

Moreover WT((t,O))W'1 has norm <1 for all te R,, so H is positive. The square of the mass
operator M? = H? — P? satisfies the formula :

(WE; MW)..

lim A (WE; WTGOW WO),
x—0, x>0

lim A, (#E;TX) 0,
x—0,x20

for all €, e &for which the limits exist. We have just found that the scalar products involved in
the Rayleigh quotient of §1 can be obtained in the Euclidean framework.

Let R(a), ae ]—=,n], be the rotation of angle a in R?, respectively its representation in & For
all ae] ~—:— : 125 [ there exists a closed subspace &, of & such that R(a) : &, — &™. Let W, be the
restriction of W to & . Then {W_uR(a)Wa'l, e ] - '21, %[} is a symmetric local semi-group

([11]), so by a generalization of the Stone theorem ([11]) there exists a self-adjoint operator L
(Lorentz infinitesimal generator) such that

W_R(@W,” = exp (-oL) forallae]-7,51[.
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Thus all functions of the operators H, P and L can be studied in the Euclidean framework.

Note that 1€ & (more precisely, the random variable Q=g+1), which is an invariant vector
under the action of the group ¢. The vacuum vector of 7 (which generates the vacuum
subspace) is taken to be Q = W1. It satisfies automatically : PQ=HQ=M Q=L Q =0.

We pass now to examples of such a theory, the weakly-coupled P(¢), models. We begin to
expose the case where the coupling constant A = 0.

Let m >0 be given. The free model, describing non-interacting particles of mass m,, is cons-
tructed from the following characteristic function €, :

E.(f) = exp —%(f;Cf)

for all fe &, where C = (—A+m°)'1. Here <.;.> is the L2(1R2) scalar product and A is the
Laplacian on R2. C is called the covariance operator. 6, satisfies the hypothesis of Minlos'
theorem (see [7]), so there exists a probability measure p, on £ with characteristic function €.
Moreover €, satisfies the Probability Axioms for Q.F.T. (see [7]) so there exists a Wightman
Q.F.T. model with state space &% , Hamiltonian H,, momentum P_, mass operator M, and
Lorentz generator L, constructed from %, as mentioned above. We denote by W, the canonical
map & =12(Q,u,) —%, , and by Q, = W, 1 the vacuum vector.

The fact that these models describe free particles is due to the gaussian form of €(f). To obtain
models with interaction we must perturb %,(f) as much as to destroy the gaussian property. This
turns out to be a difficult problem, whose solution involves very singular operations.

First we must control local products of distributions (the so-called problem of the U.V. limir).
We introduce new random variables, the Wick polynomials of the fields, denoted by :¢;": for
ne N* and fe #(IR?), defined by the generating formula :

i (i(l)n .¢n. _ eia¢f
ST g

,aeR,

with :¢f° :=1. We will use the algebraic notation :A+B: = :A:+:B: and :kA: = k:A: for k a constant.
Let % be a R—R positive-valued polynomial (the interaction polynomial). We take a C™-function
g : R’>>R with compact support and satisfying [ g=1, and for all ne N* we define g, by : g,(x)
= n’g(nx) for all xe R,
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Theorem (U.V. limit, Nelson). The following limits exist in LZ(Q,uo) :
. m L m
; e s ol . ie f 2
i) 11} 197, = sclim g J H(Orpog,) s i) A
for all Ne N*, me (N*)Y, fe (F(RH)N.

" -AV, _ ’ " . 42
ii) e A = i-ﬁz, exp | — A J- .?(¢T(x)gn). d*x
A

for all A>0 and A compact set of R®.

This theorem is due to Nelson [12] (see [7] for other details). The maps :¢™: from #to &, are
called the Euclidean Wick fields. For each A>0 and A compact set of R?, the probability measure
is well defined, as it follows from the theorem :

da@ = 7D du@

for all qe Q, where Z, , is the normalization factor, and its generalized moments (or generalized
Schwinger distributions) are also well defined :

N
m mj,
SEA® = J IT 0™ dusa
Q i=1
for all Ne N*, me (N*)" and fe (#(R%)". The goal now is to perform the limit A—>R”. The key

for this, and for the answer of our further analytic problems, is given by the following estimates
for S§ 4 which are uniform in A and A.

Let us introduce some notations. B is the Banach space of Lebesgue-measurable functions f on
R? with the norm :

el = D 1 x,f 1,

AeR

where R is the lattice of R”: {(n,n+1)x(m,m+1) ; nme 2} and ¥ " is the characteristic function

of the compact set A. For f =f,® ... ®f with all f,e ‘B we also note Il £ Il =1ll f; IIl --- Il £, lll. For
two set in B, f={f,,-.f .} and g={g;,,g,}, we denote by d(f,g) the smaller distance in R’
between U {support f;; i=1,...,n} and U{support g;; i=1,...,m}. For n,n'e N* and me (N*)",
m'e (N*)“' we write m+m' = (m,,...,m,,m';,....m',) and £, = m;+---+m,. |
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Theorem (Uniform bounds, Glimm, Jaffe, Spencer). There exist K, A, m € (0,0¢) (depending
only on P and m,) such that, for all Ae[0,A] and A compact set of R’:

) |Sya®] < KM g, it

ii) Is’{;""(fo 2) - ST, ST (@] < K™ Lyt MEN Mg & BIED

for all n,n'e N*, me (N*)", m'e (N*)", fe B" and ge B

The proof [1], which is very difficult, consists in controlling a series called the cluster expansion.

This is the crucial step of the rigorous construction of any Q.F.T. model. Note that the theorem
gives a continuous extension of the Si. A, always written with the same symbol, from F" to B".

It follows from the theorem that the S, and the measure y, , converge when A—R? (the so-
called thermodynamic limit). Let B, be the ball in R? of center 0 and radius n for each ne N*,

Theorem (Thermodynamic limit) Ler A< [0,A].

a) Convergence of the generalized Schwinger distributions : for all ne N*, ‘me (N*)"
and fe 3", S';:Bn(t) converge when n—oo, and the limit S':(f) satisfies :

) |ST®] < K g, mem,

i) |ST™(Feg) — ST(H) ST (@)| < K™ Lt MEN Mgl & 2IEE

for all n,n'e N*, me (N*)", m'e (N*)", fe B" and ge B".

b) Convergence of the measure : for all 6e Z, p, Bn(c) converges when n—eo, and the limit
M, (o) defines a probability measure p, on L which satisfies the Probability Axioms for
Quantum Field Theory.

a) is proved in [1] and b) in [7]. Let 4, be the characteristic function of p, for Ae [0,A]. It
follows from the theorem that a Wightman Q.F.T. model (¥, Z,, ¢;, I'}) exists, with
Hamiltonian H,, momentum P, and mass operator M,, constructed from %, as mentioned above.
We denote by W, the canonical map & = 1%(Q,u,) =% , and by Q, = W, 1 the vacuum vector.
These models, called the weakly-coupled (), models, describe a quantum and relativistic world
of particles which actually interact ([13], [14]).
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2.2 The zero-time vectors; the problem

Let Ae [0,A] be fixed. The combination of Euclidean fields ¢" (for ne N*) given by
o) = tof, - ¢¢ ¢ forall fe(F(RY)"

defines a continuous map ¢™: (¥(R?)" — & . By the nuclear theorem it can be extended
continuously to a map (also called ¢") from FURHYM to & .

The Fourier transform §° of ¢” is defined by ¢°(f) = ¢™(f) for all fe F((R*)") where T is the
ordinary Fourier transform of f. The map &;"‘ s PURHM - &, is also continuous.

To study the zero-time vectors we begin with the case of the free models (i.e. A=0), where the

situation is more clear. In that case the Euclidean scalar product of vectors :¢n:f, :c2>m:g for
n,me N and f,ge . (1R2) is given by

m_€(of + Bg) =5 nl<lf;Ced".
P &) €BE) | gpo ™™

(1075520 3 )g; =9, 0

We obtain after some calculations, with now fe #((R*)™ and ge F(RH™):

(60 07(®) )y = 8, n! Jdt;“(k) 500 &M

R
. dk;

where d€'(k) = H Zim?’ and 5 is the following symmetrization of f :
i=1 i o

B ppnen) = = 2, Hgqueeeslugu) s £ ll Ryooeeatpe (R,

mec,

where o, is the set of all permutations of {1,...,n}.

Let A be a C-Hilbert space. For all e N* we denote by A, = Sym A®---® A (symmetrical n

times tensorial product), which is a Hilbert space with the scalar product deduced from (f®-.-®f ;
ge.--®g) Ay = ((f; g) a)“ for all f,ge A. The Fock space over A, denoted by F(A), is the

Hilbert space F(A) = eOSn <oo An, where A, = €, with the scalar product {1 7. A
(8oss8n N sy = Liognieeo Enir) a, Where f, g€ A, for all ne N.

We take A = L?(le,E_,l) ; we have just seen that the map j : F(A) — &, given by
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i((Fypen fo)) = f 3 L oS
J(((T ) o+£m¢<>

is well defined and continuous (we have performed a continuous extension of t;;‘ from & ((]Rz)")

to A, that we still write ¢"). We can say more about j.

Proposition. j: . F(A) - & is an Hilbert space isomorphism.

Proof. Let f = (£,.....f,...) € F(A). From the above scalar product it follows that |l j(f) II% =
Il f Il 57 ) 50 j is an isomorphism from F(.A) to its range, Ran j. By construction of &, (i ;
fe F(A)) isadense setof &, thusRanj=§&,.

Let ne N*. The function ((R,,K),...,(k..K)) = f(R,.K),....(kp.K ) = g(Ky,....K,) (that is,
constant in the variables f(l,...,f(n), belongs to A, provided that g is Borel-measurable and
bounded in the norm :

J de"(k) IfS(k)l* = (zm“nl dn"(®) lgS @)’
R Il

—

n
where dn“(E) = H o(:l((l_(l') and o is the function on R : w(p) = \} p2 + mo2 ; g5 is now the

i=1 i

complete symmetrization of g (in all variables). For such a function f we write : g‘l‘(f) = 3""(g).
This defines a continuous map o : LA(R" " - & . Let X be the Hilbert space generated by the

functions ge #(R) with ge L*(Rn") (X is a Sobolev space). The vectors 6"(g) = 67’(5) for all
ge X, are the Euclidean vectors at zero-time. They can be written formally as 6"(g) = ¢"(8"®g),
where 61is the Dirac generalized function. By application of W, we obtain the zero-time vectors of
Hy .

W,0"(g), ge X, ne N*,

which, together with the vacuum vector , generate the zero-time subspace 9,. The zero-time
vector "65_(f)Q," introduced in §1 (by an imprecise definition) can now be identified with

W,0™().

The scalar product of 7 is the same as of &, but with <f;Cg> replaced by <6f;Cg> for
functions f,g with support property : f((%,; )= g((?(,;)) =0 if x < 0. For such functions a simple
calculation [7] gives :

<Of;Cg> = 2n Idn‘a‘c’) T ((o®),k) 2iok).K)
R
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In particular <6f;Cf> = 0 does not imply f=0. As a consequence the map W,oj : F(A) — H is
not injective. To find a isomorphism between &, and a Fock space of functions we must restrict
ourselves to the zero-time vectors. We define the map i : F(X) —» 7, by

i((Ey ) = Wof, + W, 2, \[1—_ 0°(f,5)
n=1 n!

which is well defined and continuous. We can say more.

Proposition. i : F(X) > # is an Hilbert space isomorphism.

Proof. For all f = (f,....f,...) € F(X) we have Il i(f) II% =|lf Ilﬂg(), so i is an isomorphism

from F(X) to its range, Ran i. By construction of &, the span of the set

{Wo°f(f) ; £,=1, f;=g®-.-®¢g (n times) for 1<n<N, f =0 for n>N, for all Ne N*
and ge F(R%) with g(%,X)) =0if % <0}

is a dense set of 7%,. By the above identity for <0f;Cg>, this set is not distinguishable in 7 from

the same set with now g is replaced by h, where E((f:,i? y = E((im(E ),E)). Thus the zero-time
subspace 9, is dense, and Rani =7 . ¢

From the Proposition and its proof the following results are easily deduced.

Proposition For all n, ae N*:
i) P,*W0"(f) = W,0"(P™), provided P*fe X,
i) H" W,0"(f) = W,0"(h™f), provided h"fe Xk, ,
iii) L, W,0"(f) = W,0™(L_f), provided L fe X,
where for all (El,... ,En)e (IRZ)“ :
PR, R,) = Ry AR ) FR 1 B ),

b ... k) = (0;) + ... + @(K))* T(K,,....K,) and

et — = i - a = a ~ g
L f(k,,..k)=—i (a)(kl) aT‘Sl + ..+ ok, aT"’,J Byl »

From the last proposition the action of M =H>-P*is easily calculated and we obtain ;

M’Q, =0,
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M>W,0'(f) = m 2 W,0'(f) for all fe X, ,
M® W, 07(f) = W, 0"(M>f) for n>2, where M°f = bf — P*f, provided M’fe X,, .

The two first eigenspaces are the vacuum and the one-particle states subspaces respectively.
Moreover W, 0"(f), n>2, is in the domain of M if M*e X,,, which is realized if hfe Ky

Thus, to conclude, the following subspace of 2 :
{W,08"(f), ne N*, n>2, Wfe X, }
is a good candidate for 7 satisfying all the requirements 1) to 5) of the beginning of this section.

For models with interaction (i.e. A#0) the situation is more complicated, because we have no
explicit forms for the scalar products. Let us state the problem of the existence of zero-time

vectors in the domain of M. Because the action of P on such vectors is trivial (as in the last
proposition) we have only to look at the domain of H. A vector WA = W¢"(f) (for some n,f)

belong to the domain of H%, and the scalar products (WA; H**WA) is a C”-function of A, if

vV ~20
d, 37 x(t.1)

t=+0

is well defined for all ve N, where
xth) = (WA; e Hwa ) » = (FPA;TRO)A),.

Without lost of generality we can take ¢"(f)e & (this imposes only a support property for f) so
that (%A ; T(1,0) A)g,= (A ; T(t,0) A)Z" Let us write %(t,A) in the following form :

TN it(3, 5
xtd) = | &% & TR Ep) Tapalopre F

where s, 1, is the pseudo-function generating the Schwinger distribution : S, ;, 1(f,8) = (§"(D);
6™(g)) (for suitable m, g) and En,m,k is its Fourier transform (in the distribution sense). We
speak about a zero-time vector if the function T does not depend of the K, variables ; in that case,

we separate these variables from the "momentum variables", which cut the problem in two steps :

qaran | = e [dR 45 TE IO L@
t=+0 t=+0
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- it )
where: & (k.p,) = | d'R d'B sp.akp)e 5§1 pj )

The problem leads to the study of the asymptotic decrease of the pseudo-function gn,n,k' If the

)Za

decrease were sufficient, the t-derivatives would be given by the factor (£ ﬁj inside the last

integral. We will see that it is not so simple. In the free models for example, in the case n=m=1,

- ~ @(k
the pseudo-function s ,  is given by s(k,p) = psz(—m_p)z , and the form of the denominator is not

(]

sufficient to guarantee the integrability of $*®s(k,p) even for o=1/2. But after integrating over K

and § we obtain, in this example : E(K,p,t) = 3(K—p) $ exp(-Itlo(p)) , and then

2(t0) = Jz—dw% 1T@) exp(-ltlo@))
R

which, for all fe AR), is a C”-function of t for >0, with a well defined limit for t—+0 ; and
also each derivative admits a well defined limit for t—+0.

In the next paragraph we present a programme which decomposes each Schwinger distribution
in a sum of products of two kinds of terms. The first one are distributions of the free models (for
them we must "first integrate and then differentiate"), and the others have a Fourier transform
with a good asymptotic decrease (for them we must "first differentiate and then integrate") and
their derivatives with respect to A have the same property. The consequences of these results on

the zero-time vectors will be discussed in §2.4.

2.3 The WTI Programme

We present a new programme for the Schwinger distributions, in order to study the asymptotic
decrease of their Fourier transforms. It is based on two analytic results, the inequalities i) and ii)
of the theorem of the thermodynamic limit (last theorem of §2.1), and on three algebraic-like
operations :

(W) : the Wick projection,
(T) : the truncation,
(I) : the integration by part formula.

First we expose these operations and then we discuss their consequences.
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We will adopt the notation : (... ), for J dy, ...

2.3.1 (W) : the Wick projection. We first give a definition. The Wick-Schwinger distribu-
tions SW, , with Ac[0,A] and ne N*, are given by

SWioalh) =g 0t h

forall fe SAAR)" ; for n=0 we take SW,, = 1. Note that for A=0, SW,, , = 0 for all ne N*. All

Schwinger distributions can be decomposed linearly into Wick-Schwinger distributions, the
coefficients of the decomposition being Schwinger distributions of the A=0 case.

Lemma Let X be a finite non-empty subset of N*, p a partition of X and fe (f/(]Rz))X. Then the
following formula (W), called the "Wick projection”, holds :

H :II ¢fj: = Z (H :H ¢fj:)0 : H ¢fj:-

Jep jel @YX  Jepy jel jeX-Y
Integrating over W, for all Ae[0,)] gives :

( H =H Ofi: h = 2 ( H :H of; )y SWixyinfxy)

Jep jel gcycX Jepy jel
where fx y=® x.vf;.

The proof is given for instance in [7]. pyis the restrictionof pto Y.

2.3.2 (T) : the Truncation. Let ne N*, ®cR" a neighborhood of 0 and ¥« C™(O)
satisfying Z(0) = 1 (the generating function). For Ic{1,...,n} (non empty) we consider the
following numbers (with the notation Dy = IT;¢{9)) :

My, a moment of ¢, defined by : M| = (D{¢)(0) and
Ty, a truncated moment of ¢, given by : T = (Dy In :£)(0).

These quantities are related together as follows.

Lemma Let ¢, {M;, Ty, Ic{1,...,n}} as before. For all 1c{1,...,n} (non empty) we have :

pMm=> [I 1. i) Tp= 9, DPTap-nt [ My .

pe () Jep pe (1) Jep

Notation : .F°(I) is the set of all partitions of I. For a proof of this well known result, see [7].
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As first example we take Z(x) = (eix'A),L, where x-A = x;A+...+x,Ap and {A;, 1Sj<n} are
suitable random variables. The moments are M = i" (IT;c1 Ay and the truncated moments are
noted by Ty =i" (Tl 5A5)1-

An other example is given by : G(x) = G(x-D/E(x-f), where x-f = x;fj+...+x,f, . The
moments are the Wick-Schwinger distributions SWp, , (fp), with f;=® ;. f;. The truncated
moments, called the truncated Wick-Schwinger distributions, are denoted by SWT,, 5 (fy).
Because the logarithm of % is a sum, we have SWTy,, = ST, 5 — ST, . Note that a simple
calculation gives ST o= 85,5 <.; (1-4)1 >

2.3.3 (I) : the Integration by parts formula. This is a family of relations between
Schwinger distributions obtained by an adaptation of the familiar "integration by parts formula" to
the functional integral; see [1] or [7].

We denote by P¥ the k-th derivative of the interaction polynomial < (if k>deg P, P=0).
For all Ae [0,A], ne N* and pe &, the set of all partitions of {1,...,n}, we consider the
combinations of Schwinger distributions :

SO = tm (] : %@

A—)R Je P

sg® = m_ (J1; %@ 3%

for fe (AAR?)®, with the notation : { ... ha for de;,Ll, A ... The limit A—R? has to be taken
in the sense of the thermodynamic limit theorem, §2.1.

Lemma For all ne N*, fe (& (R))" and e [0,A], the following "integration by parts formula"
(I) holds :

i) SWn = T (0P Si(E)
pe Fp

ii) SWToa® = T VP ST,
pe

pl, .
where f.e (AARY)" is given by £, =@ ([T;e;CE) .

In the lemma, C is now the operator (1-A)"!. Note that the r.h.s. involve the functions Cf; instead
of f;, 1<j<n. This is the key for finding the local regularity of the Schwinger distributions.
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2.3.4. Local regularity. The integration by parts formula (I), i) (previous lemma), together
with the inequality a), i) of the thermodynamic limit theorem (last theorem of §2.1), have the
following consequence ([7]).

Lemma. For all Ae [0,\] and ne N*, the Wick-Schwinger distribution 'SWM is generated by a

continuous and bounded function sw,, , called a Wick-Schwinger function ; moreover llswy, , ”L°°

is also a bounded function of A on[0,A].

This lemma has three important consequences. First, by (W) all Schwinger distributions S, 5
are generated by functions s, ;, which have the same singularities as the functions s, 3 o. But s, o

can be studied in great detail (see §2.2 or [7]) ; they are C” functions on the non-coincident points
NC(n) defined by
NCm) = { (xp,-...xp)e (RH™ , x;x; for all i }

and have only logarithmic singularities. The functions s, , are then continuous on NC(n) and

locally integrable at any power.

The second consequence is that the first limits of the U.V. limit theorem (§2.1), which lead to
the Wick-fields, can also be obtained when A#0.

Proposition. For all Ae [0,A] the following limits exist in LZ(Q,u,L) (with the notation of the

U.V. limit theorem §2.1):
N - N
I1:0%: = stim
i n -1

i=1 e

j :(¢T(x)gn)"“: £(x) d%x
R

N
and they satisfy : (_]} 030 = Sp(

or all Ne N*, me (N*)N, fe (% (RH)N.

The :¢%" are the Euclidean Wick fields of the interaction model. The proof of the convergence
(see [7]) consists in writing the corresponding L*(Q,u,)-norms as sums of products, by (W), of
distributions with A=0 (which converge by the U.V. limit theorem) times distributions SWp, ,
(which converge because they are generated by continuous and bounded functions). The problem
is now one of convergence of a product of convergent distributions. It can be solved by
performing the limit in two steps in a standard way.

The third consequence is an extension of the formula (W).
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m

Lemma For all ne N*, me N" and \e [0,\] the distribution S}’ is generated by a function s

continuous on NC(n) and locally integrable at any power satisfying the extended formula (W) for
all xe NC(n) :

m
Sy (Xpse . sXp) = 2 K™ sg(XpseeoXp)  SWmy a(Kgsee X qseeeXp) «

0svEm

n 5
In the lemma m and v are multi-indexes, K’\': = II v’) (binomial coefficients) and
i=1 i
n

m-v = ¥, (m-v,). In swy, 2 (Xy,...,X},...,X,) the variable x; appears m;—v, times, etc.... If an
i=1 ’

index v, is 0, then the x;-dependence in s:)’(xl,. ..,Xp) 1s dropped.

The proof of the formula (see [8]) consists in showing again the convergence of a product of
convergent distributions (because the Euclidean Wick fields are given by limits, and the formula
(W) introduces products).

2.3.5. Asymptotic decrease. The truncated Schwinger distributions ST';l are defined as the

truncated moments (times i™) of the generating function

n
R'sab (o) = dp, exp iz oni:Q)R':fi
i=1
Q

They are connected with the distributions S;‘ by the formula in lemma 2.3.2. Thus they are also

generated by functions st;:’ continuous on NC(n) and locally integrable at any power. Moreover

they have an asymptotic decrease property, which follows now from the second inequality a), ii)

of the thermodynamic limit theorem (last theorem of §2.1). Note that by the translation invariance,
st;&n (Xy5- . -5Xp,), Where (Xy,...,X )€ (R?", do not depend on the R2-variable X;+...+X,. Thus st;zl is

a function of the relative variables (x,—x,,...,X,_;—X,)e (R*)™! alone. We need one more
definition. For ne N, n22, for (x,,....x,)e (R®»"and for {I,J} a partition of {1,...,n} in two
parts, let us denote by dI,J the smallest distance between the convex envelopes in R? of (x;, ieI}
and of {xj,je J}. Then we define : o(xy,...,x,) = max { dI.J , (LI}e &} (see figure 1).
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d {1,2,3},{4.5,6}

= S
{1,3,5}),(2,4,6} ik /6

Figure 1

Lemma For all ne N, n>2 and me (N*)" there exist Ke (0,°) and ve N* such that

Ist;“(xl,...,xn)l < K( I L(xiwxj)] exp (- m o(xy,...,%y))

1<i<j<n

for all xe NC(n) and Ae[0,A].

Here L(x) = £(m_JIxl), where £(r) = 1 + lInt| if O<r<I and £(r) = 1 if r>1.

The proof (see [8]) is complicated. It does not follow directly from the inequality a), ii) of the
last theorem of § 2.1 (which concerns only smeared distributions), but uses a consequence of this
inequality on the spectrum of the Hamiltonian, which has a gap of length m. The exponential in
the lemma comes from this gap. Thus the lemma is a consequence not only of the inequality
mentioned above, but also from the existence of the Hamiltonian, that is from all the Axioms.

We will use two consequences of the lemma. The first one is that the truncated functions are
integrable in the relative variables.

Proposition For all ne N, n>2, me (N*)", Ae[0,A] and 1<p<co the function :

(Xps- v oXn_10) P 887 (X4, % _1,0) is in LP(RY™), and its IP-norm is bounded in \.
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To prove the proposition (see [8]) we bound the involving integral using the previous lemma
and we introduce a lattice on (IR%)" to separate the local and the asymptotic difficulties.

The second consequence of the lemma concerns the derivative of the Schwinger functions with
respect to A, which have to be well controlled before doing perturbation calculations. The

following theorem concerns the derivatives of the Schwinger distributions. The interaction
polynomial P is written as P(x) = leisN a; x', where N is even and a,>0. In what follows we

take a,=0 for i=0 or i>N.

Theorem For all e [0,1], ne N* me (N*)" and fe A(RY™), the function A—>ST :‘(D isin
C™([0.A]) and the following identity holds for all ve N* :

2SI = (1Y ¥ g x &y fx) st ix,y) .
« N RZMV)

In the Theorem, ic N" is a multi-index, i={i,,...,i,}, a; = [ ] a;,, and m+i = (m,,....,my,

1sj<v
13,...,1y). Note that the 1.h.s. of the formula is well defined, because of the integrability properties

of the truncated functions. The proof is due to Dimock [15].

Let us pass to the differentiability of the Schwinger functions ([8]).

Proposition For all Le[0,A], ne N*, me (N*)" and xe NC(n), the function M—st '(x) is in
C™([0,A]) and the following identity holds for all ve N*

8; st;l(x) = (-1)V 2 a; J N dzvy stn;i(x,y) .
ieN" R

In particular, x — a; st;l(x) is continuous on NC(n) and locally integrable at any power .

This formula, often used in the literature but never completely proved, is a consequence of the
theorem and the fact that the r.h.s. is continuous on NC(n). This last result follows from the
integrability property and from the local regularity seen in §2.3.4.

We summarize the consequences of the asymptotic decrease by a statement on the Fourier
transform of the truncated functions. By the integrability property, the Fourier transform in the
relative variables gives well defined, continuous and bounded functions. By derivation with
respect to A they become a sum of Fourier transform of other truncated functions. Thus their
properties of continuity and boundedness are conserved by derivation with respect to A.
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2.3.6. The Wick-Schwinger truncated functions. The Wick-Schwinger truncated
distributions SWT, , introduced in §2.3.2 are also generated by functions swt,, , the Wick-

Schwinger truncated functions. They are the most interesting functions occurring in the weakly-
coupled P(p), models, because they have the local regularity of the Wick-Schwinger functions

(bounded and continuous) and the integrability property in the relative variables of all truncated
functions. Moreover they generate all the objets of the models in the sense that by successive
applications of (W) and (T), all Schwinger functions are sums of products of only

— Schwinger functions of the free models (i.e for A=0),
— Wick-Schwinger functions,

and only the last ones depend on A. The formula of integration by parts (I), ii) (lemma 2.3.3) has

the following consequences.

Proposition For all Ae [0,A] and ne N, n>2 :

i) swty,is of class CH((R*™) and belongs to LP(RH)™) (w.r.t. relative variables) for all
1<p<eo, the IP-norm being bounded in \ ;

ii) for all xe (R®)™ the function Aswt o (x) is of class CT([0,A]) and its derivatives
9, swt,, for all ve N satisfy all the properties stated in i) ;

iii) the derivatives of the Fourier transforms a;shv;tm satisfies, for all ve N and pe (R*)
@y <
67 ¥ Pi)
i=1

-ﬁ1 (p} + m%)
-

B: SWln,;\(p) = a; E:(pl’- 3 -’pn-l)

where 9, X is a continuous function on (R®™" such that there exists Ke (0,%), independant
of A and of py,....pp. With

a‘;zi(p,,...,pn_,) < K.

The proof consists in establishing iii). The formula is simply (I), ii), (in lemma 2.3.2) written
after having performed a Fourier transformation in all variables. (To have symmetric notation we
often take the Fourier transform in all variables rather than in the relative variables; this simply
introduces an extra 8 pseudo-function). X3 is a sum of Fourier transforms (here in the relative

variables) of truncated functions :
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S pny) = D (M) A [zp,, ):pi]

i€l i€ Ir

where py=—(Py,---Pn1)s Ay (1 ny= e (: PYS): ), (finite constant bounded in A, by the first
lemma of 2.3.4) and, for p={1,,..,] }e & , r>2, ,ﬁl_p(ql,...,qr_l,—(ql+...+qr_1 )) is the Fourier

transform (up to 2n-factors) of (x,,..x, ;) F (I < ;:SD'Ii'((p(xi)): :) I with x, = 0 (where ¢(x) =

®(T(x)8) ). The differentiability with respect to A and the continuity and boundedness of 9, %, are

those of all Fourier transforms of truncated functions.

Note that X! contains a constant (8, (1,..n) )» thus have no asymptotical decrease.

2.3.7. A formula for the truncated functions. The last proposition allows us to write the

functions swt,, , in term of functions X3, which are made of Fourier transforms of truncated
functions sty For iterating our programme, we have to apply it to these functions. But the Wick

projection (W) gives expressions where the truncated properties are no more evident. So we need
for the functions st} a formula which generalizes the previous proposition.

We introduce some notation. For ne N*, and me (N*)" let ‘&, be the set of all connected
graphs linking n vertices of my,...,m, segments respectively. To each such graph G we associate

a nx{ matrix €(G), (the incidence matrix), where £ is the number of lines of the graph (that is £ =
% leis“ m,), as follows : we choose a direction to each line (arbitrarily), and we put

+1 if the line j get out of the vertex i
e(G) { —1 if the line j goes in the vertex i

0 if the line j do not reach the vertex i

A tedious calculation gives the formula (called Wick theorem) ([1]) :

n £
SDp..pp) = @) > Jdé‘(k) I1 6‘”(pi -, &(G);; kj]
GE% i=1 j=1
ok

where d&(k) = H k—'— . The WTI Programme gives a similar expression for stﬁ for all A,
j=1 j o

involving graphs with more lines (but less than X m;) and functions remaining under the

1<i<n

integrals. These functions are bounded and continuous.
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Proposition. For all Ae [0,A], ne N* and me (N*)" the function .ﬁ;n satisfies, for all pe (R*)™

~m z «G) @) 48
S (Pyy- . oPy) = de, (k) q 5 (pi— Z;e(G)i,j k;)f’f (ko gy
1= =

Ge&

where &, is a set of connected graphs of n vertices and less than X, ... my; lines,

1<i<n

L(G), for Ge &, is the number of lines of G,

\97;6, for Ge &, is a continuous and bounded function such that, for fixed ke (RYHH©),
AT, ,LG (k) is of class C°([0,A]), and which satisfy : for all ve N there exists Ke (0,00) such that :

3 T (kyre- kg | < K for all ke (R and Ae [0,A].

The formula of the proposition can be compared with the formula for the swt functions
(proposition of § 2.3.6), the functions % playing the role of the functions Z. But it remains to
integrate on variables associated to the loops of some graphs with less than X, .. m, lines. The
proof (see [8]) is based on a formula which generalizes the extended (W) formula (last lemma of §
2.3.4), in which only truncated functions appear :

Lemma. For all Ae [0,A], ne N* and me (N*)" the following formula holds for all xe NC(n) :

n
st;_n(xl,...,xn) = 2 H [swtl,m(xl,...,xl,...,xn) - _Zl KIiJC(Xer)}
i#j=

pE 9"po Jep

where p, is a partition (1,,...1,}e & with I[l=m, for all iandr=X . m;; Kli'j =

82’“" Sl,ﬂ!n.“ Sl.illnll ; in SWt;L,|J|(x1,...,X1,...,Xn), Xl appears |Jﬂlli Iimes, ef(,‘ cee

Notation : 9‘;,0 is the set of all partitions of {1,...,r} mutually connected with p, , that is

those partitions pe 5 for which all unions of Je p differs from all unions of I;'s (except for the

total union). The restriction of those partitions is necessary to avoid the factorization of the
variables x,,...,x,, . That is, each term of the sum cannot be a product f(y)g(z) with y and z

disjoint subsets of {x,,....x,}.

Performing a Fourier transformation and using the proposition 2.3.6 leads to

S (PrreeP) = 2 Jda'(k) (11 6‘”(1:;— > kj)JH 8‘”[): k,»]z'i({k,-,jen)

pe 5, i€l Jep jeJ
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where Z((k,jel)) = E)({k,je}) - El K, (- mp).

i#j=

Note that the two products of 8 pseudo-functions cause no difficulties, because the partitions p,
and p are mutually connected (so there is no 8-square!). We separate the integration variables k; in
two sets. We define the partition inf(p,,p) by collecting the sets InJ for all Ie p, and Je p. Now in
each element of p we choose an element of inf(p,,p), and we call K their union. We introduce the
function :

Ty @nntly) = J IT —dzl‘l—z- 1'[8‘2’(2 kj]E'i({kj,jeJ})

2 .
jek K+ my e jel

which is a function of the k; , ieL = {1,...,r}- K (which we have called q,,...,q5). Note that, due
to the good properties of X', these functions satisfy all the analytic properties stated in the
proposition. We insert these functions in the above formula for st}', which leads to the announced

formula (the graphs G depend on p and on the choice of K).

2.4 Zero-time vectors in the domain of the Hamiltonian

We are now able to answer the first question of the beginning of this § 2, about the
smoothness of the zero-time vectors. There exist indeed zero-time vectors in the domain of M and
even in the domain of M? (this will be usefull in §2.6). Moreover for two such vectors &, {, the
scalar products (¢, M" {), ve {0,1,2,3,4}, are C” in A. Because the operator P acts trivially on the
zero-time vectors we have only to study the case where M is replaced by H. We follow essentially
the way of the free model case §2.2, the WTI Programme bringing enough information about the
scalar products of the models with interaction.

Due to the previous analysis, the scalar products of Euclidean fields can be defined for
functions in a larger space than .%°, which admit functions with & pseudo-functions of the

Euclidean time. Moreover, these scalar products, smeared now only in the space variables, are
differentiable with respect to A and to an extra Euclidean time variable obtained by translating one
of the two vectors (§ 2.4.1)

§ 2.4.2 deduces the existence of zero-time Euclidean fields and § 2.4.3 translates these results
in the Minkowskian Hilbert space, constructs the zero-time vectors and states their properties.
§ 2.4.4 presents some generalizations.
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2.4.1 Regularity of some Euclidean scalar products. Let us take n,me N*, fe ARHY
and ge A(R*)™). We consider the function Xgg ON R2x[0,)] given by

XgsA) = ("0 TE) 0™(®)), - ("D 1D, (1;07(®)),

I &"x &My £(x) g(y-5) spma(X.y)

with y —s =(y, - 8,...,y, - 8). Here s, . is the function generated by the distribution S;, 1, 1 (f,g)
= ("D ; o™(g) )'{ (Note the differences with the notation of §2.2 : se R?, the truncation property
in s, 4 and the absence of the operator %#").

We will see that X¢ .(s,A) is well defined and differentiable with respect to s and A even if f and
g are of the following kind
(R% 3y - h(y) &Y - %) for some ke R

for j=n or =m (with the notation : 8§ — %) = 1< 8¢5 - %) ), provided the functions of the
space variables h belong to some function spaces. Moreover, even in this case, it can be
differentiable with respect to § if the Euclidean times § and X; have a right sign.

xf_g(s,k) involves only the orthogonalized part of the smeared fields ¢"(f) with respect to the
constants (recall that the constant random variables Q=q>ce T belongs to &). We will also use

the projection on the constant, so we introduce

XA = (1;0°0), = [ % f0x) swpa(x) .

The function spaces we need are build on the semi-norms b and norms b, (with ae N),

defined for all suitable functions f as follows

LD’ = ‘[dn“(l‘c’) HOEY || 6(2 fj)
R pes, Jep \j€J

by o = 5 [ amdty 1B (2 m(k)) 311 8(2 k)
=0 gn J=i+l pe s Jep \j€J

n —>
1, o is the function on R : (p) =\ p> + m_> ; fS is the
1=1 20in)

complete symmetrization of f and & is the set of partitions of {1,...,i}. If i=0 or if n=1 the sum
over 22 must be omited.).

(Recall that : d'(K) =

Mathematically the norm by,  is the L*-norm of a Borel-measure on R".
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Examples. For suitable functions f :

b = m 2|50 ,

bY(D° = J & _1T®R-BF + m2IFo0l,
) R
2 d_l_() ~ o 12 —a
= — | f(k k
by o sz(k)l ®F o@)°,

d dk ~ o o 12 = R
bu(f)2=f = 2 K,k (axK,)) + o(k,)) +
2; 2]1)232)| 12|(l1 2)
R2
2 =] dE) “f‘é—», 2 Eu
+ 2m, [mﬁ,)l k.0 o)

R
Let us introduce the following function spaces :
By (respectively B, ) is the space of functions fe 1,.(R™), with at most polynomial growth,
having continuous Fourier transforms (in the distribution sense) and well defined bg(f)

(respectively by, 4(f)).

These spaces are given the topology induced by their norms or semi-norms. We do not close
them, because we do not need completeness.

We state the differentiability properties of X ,(s,A) and %£(1) for functions f and g as described
above. We will use the notation Pﬂf introduced in the last proposition of § 2.2, and R, = {xe R,
0<x<eo},

Proposition. For all Ae[0,A], s€ R?, n,me N*, e R" and ye R™:

1) for all fe BC let us write F(z) = f(z) 8% - X) for all ze (RY)";
then X3 (A) is a well defined C™ function of . satisfying for all ve N :
there exist Ke (Ops) Independentof £, & and b with |a§L 22| <K b26).

2) forall B, B, B, N with B,+B, =B, for all Pﬁlfe Bn.o and PBZgE Bm,O let us write

F(z) = f(z) 8" - %) for all ze (RY)" and G(z) = g(z) 8™E — ¥) for all ze (RH™,
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then for s fixed, A = Xg g(s,A) € C7[0A],
andforallveN, s a‘; XE.G(S:A) € C*(R) for fixed S and . ;

T B \
the derivations commute : d., a; ArG(S:A) =0, 82, XF.G(SA)

moreover there exists Ke (0,00) independent of f, g, X, ¥ and A, with
&, 8} Ar.a(s.M)| <K by o™ by, o(P7) .

3) for all ae {1,2,3}, with the same hypothesis and notation as in 2)
burPPfe B, , P2ge B, . and %e (R)" and - §e (R Y™,
§ 1 350] Xp(sA) € CH(R.) for fixed S and \;

all the derivations with respect 10 $, s and \ commute ;

moreover there exists Ke (0,0) independent of £, g, %, § and \, with

328", 3} Ap.G(s.M) | <K by o(PD) by o(P) .

4) The statement 3) is also true for o.= 4 if k;=s for all 1<i<n and y;=t for all 1sj<m, for some
s, te R, .

The proof (see [8]) begins with functions F, G in % and establishes the proposition with, in
the r.h.s. of the estimations, the semi-norms N2(F) (resp. norms N, «(F)), defined as LD
(resp. by, (D), but with R®, f and dn" replaced by (R%)", F and d&". Let us denote by F 4 (resp.
F .o the space of functions Fe I_,1 o((RH"), with at most polynomial growth, having continuous
Fourier transforms (in the distribution sense) and with well defined Ng(F) (resp. Nn_a(F)).
Because ARY™ —_, F° and A(RH)™) —, F% o (continuous injections) we have obtained the
extension of y¥ (resp. Xrg) from #to 2 (resp. o). We call them again x% and XF.G-

Functions like F and G in the proposition belong to F2 or %, ,, and the semi-norm b2, (resp.

n,a’

norms b, ) are simply the restriction of N (resp. N, o) to this set of functions.

Let us present the others steps of the proof. The functions s, 5 and swy, ; are decomposed
according to the WTI Programme. The permutation of differentiation and integration : d; j h(s,t) dt
= jas h(s,t) dt, is allowed when the functions h(s,t) and d; h(s,t) are Lebesgue-integrable in s for

all t and continuous in t for all s. This permits us to perform the derivatives for 1) and 2). Using
that 9} Z;(k) is bounded in k and A we obtain the existence of 9} x(A) provided that
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Jd&“(k) Eol Y T 8‘”(2 kj)
J

peF, Jep jel
is well defined. But this expression exists for functions F like in 1), and becomes then, after
integration over the variables k; :

o Jdn“(l?) IT@)| (z m(i?j)]_l > I 8[2 E'j)

jel pe#, Jep \j€J

which can be bound by a constant times b(f), using the Cauchy-Schwartz inequality. 2) is
proven with similar technics.

To show 3) and 4) we start from 2), that is from 82, 8; Xr.c(s,A) with F and G like in 2). The

WTI Programme decomposes s, , ; in products of functions of the free models and functions
swt;; . According to the Leibniz rule we have only to look at the differentiability of each term
separately. The functions of the free model are differentiable only if §, X; and ¥; have the right
signs (see § 2.2), which is realized for S R,, Xe(R,)" and —ye (R,)™. Moreover each
differentiation gives a factor X, u)(fj) which for integrability reasons requires that f is sufficiently
regular at infinity (in particular if fe % these terms are C”(IR,)). Let us look at the differentiation
of the factors swt;,. By the formula of the proposition § 2.3.6 we have to control a product of

factors of the following type :
& iEE) (T —(THE)
lim a“ﬂn — ) vk le © e *¥ e F- a;zgl({kj,jell)

]
t—+0 =T f(j2+ (!)(kj)2 1

(multiplied by S(Zjelfj) ) for some sets I c {1,...,n+m}, J, K, L € I with L =1 -K. Let us
suppose that o < 3. Because the derivatives of 2'; are bounded, the above expression is bounded

dk.
k.
J’(I;II k2 + m(ﬁj)z) j§1 J)

which gives the announced result. For o > 3 we need more information on Z;' Recall that it is a
sum of functions Alp’ which are truncated Schwinger functions evaluated at some sums of

by a constant times

Tk

jel

variables k; (let us call them p;). We iterate the WTI Programme using now the proposition 2.3.7
in order to find the decrease in those variables p; . In the other variables we have only to study the

following limit of derivatives of one-dimensional Feynmann integrals :
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lim o*
to+0 ¢

H & Jf’( o WS &) i3 48) (T i)

el
v kle € e e
D9 ]
i1 K+ o(k) jel

The conditions on X; and on ¥; in 4) simplify only this last problem.

Remark. Continuing iterating the WTI Programme it is perhaps possible to prove the proposition
for all ae N, but with stronger conditions on f and g.

2.4.2 Euclidean vectors with precise Euclidean time. The operations of extension and

restriction of the scalar products can also be performed for the Euclidean fields. As before we
must distinguish the subset of & generated by the constant random variables. Let P, be its

orthogonal projector.
Let Ae[0,A], n,me N*, %e R™ and ye R™ be fixed.

The field : P_*¢" can be extended continuously from A(R?*)") to F2 (this gives FoxF\)
itself) and then restricted to the functions (R*)" z - F(z) = f(z) 8" - %) with fe B2 . This

gives a map q’ﬂ,x : BIxR" - P & that we call the Euclidean field with precise Euclidean time

along the constants. The scalar product involving d’g,x is given by the formula :

(1;@,,(E0), = xBM).

The field : (1-P_)*¢" can be extended continuously from F(R*)") to .F, no (by a standard
analysis argument) and then restricted to the functions (R*)"® z - F(z) = f(z) 8"(Z - %) with
fe B, ,. This gives a map @, : B xR — (1-P)¥ that we call the Euclidean field with
precise Euclidean time. The scalar product involving @, , is given by the formula :

( q)n,l(fa%) ’ (Dm,l.(g’ g’) )ﬁ, = XF,G(O,X)
for all (R*)™s z - G(z) = g(z) 8™(Z - §) with ge B ..

Ifx=0, (D?m(f,O) and @, ,(f,0) are the Euclidean zero-time vectors. If A = 0 they coincide
with the corresponding vectors of §2.2 :

@, (£,0) = P,8"(f) and @,,(£0) = (1-P,) 67(D.

For more details, see [8].
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2.4.3 Zero-time vectors in the domain of the Hamiltonian. We translate now the
results obtained in the Euclidean theory to the Minkowskian Hilbert space 7%;.

We choose an Euclidean-time direction in IR? and construct an operator W, which passes from
the Euclidean Hilbert space &, to the Minkowskian Hilbert space 7, as explained in §2.1. The
map

Wor = Wee®,, 1 B X(RY" > (1-E)5%,

is called the field with precise Euclidean time (note the sign of the Euclidean time). Its restriction
to the zero Euclidean time ¥, ;(.,0) is the zero-time field, and its values ¥, ; (£,0), fe B, , are the

zero-time vectors. Formally they should not be distinct from the zero-time Wightman fields
applied on the vacuum state :

W, u(£,0--81,0) = (1-E) 0\(,98) - 0,(£,88) @, = (1-E,) © [(f,@.-8f,) O,

where the last notation is that one of the zero-time vectors used in §1.

Let us denote by D, (A;) € #, the domain of any self-adjoint operator A,.

Theorem. For all Ac[0,\], n,me N*, ke (R)" and ¥ (R))™ :
Existence of vectors with precise Euclidean time in D,(P,) and D,(H,) :
forallpeN : ¥, ,(f.%) e D,(P}) if P’fe B, ;
¥, (f.%) € Dy(PH) n D,(H,) if PPfe B, ,;

if %;=s 20 for all 1<i<n : ¥, ,(f,%) € D,(P) n D,(H}) if PPfe B,,.
Scalar products of these vectors :
for all B, B, B,e N with B,+B,=B, ae (0,1,2,3}, PPife B, and PPge B, « .the scalar
product (¥, (g, - $); PPH* ¥, ,(£%) ) 5@ C™ function of
it and its derivatives are given by the formula, for all ve N :

3, (¥oa(g.~9); PPH ¥, (£%) ) = % 3" 3} xe.(sM) g, B

where F : (R)"» z - £(z) 8"E - %) and G : (RH)™= z 1 g(z) §"E - )
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and there exists Ke (0,00), independent of \, X, gz, f and g, such that :

|8{ (¥o@-9:PP Y (%), | <Kb, Db, %) .

|
The above statement is also true for o.= 4 if X;=s for all 1<i<n and §Ij=t for all 15j<m,
for some s, te R, .

The theorem also concerns the zero-time vectors : it suffices to take X=0 and y=0. Note that the

projection of the zero-time vectors on the vacuum state is neglected. It can be treated as in the
Euclidean case.

The proof of the theorem (see [8]) follows from the Proposition of §2.4.1 by standard analytic
arguments.

Remark. By successive applications of the WTI Programme it is perhaps possible to verify the
following conjecture : ¥, ,(f,%) € Dy(HY) for all oe N if ke (R,)" and fe AR").

2.4.4 Beside the norms b, ,. Does the b, , be the optimal norms for which the theorem
§2.4.1. We have seen

that the combination of § pseudo-functions arises from the invariance of the truncated functions

holds ? Let us look at the possible improvements in the definition of b_ ,
under the space translations, so they can not be avoided. The (Zw;)*-factors are also necessary,
because they are those which enter in the case where A=0 (see §2.2). Nevertheless we will see

two possible improvements.

The first one is concerned with the special case where the interaction polynomial is even. In
that case the Wick-Schwinger truncated functions swt, ; with odd n vanish all identically. Then
we can replace bm by the same expressions, but involving only even partitions, that is partitions

{I,,....I;} where all ITl, 1<j<k are even numbers.

The second improvement can be useful when the test functions f depend on A in a singular
way, as we have seen in §1. The 8 pseudo-functions in bm come all from a factor swty 5. Due to
the nice properties of these functions and because they vanish when A—0 we can put a A-factor in

front of each one without destroying any properties necessary for the theorem. Then we can
replace the b, , by the same expressions, but with a A-factor in front of all 3 pseudo-functions.
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2.5 "Almost density" of the zero-time vectors

We try now to answer the third question of the beginning of this § 2, about the density of the
zero-time vectors. We will only see the weaker property that all vectors can be approached by an
asymptotic series of zero-time vectors.

To be more precise, let 2% be the span of {Ql, ¥, (%), ne N*, fe B, ,, xe (R +)“} , the
set of vectors with precise Euclidean times. 9}, is clearly a dense subspace of #,. The span of

{ Q,, ¥,.(f,0), ne N*, fe B , } , denoted by 9, is the set of zero-time vectors. Then the
following statement holds.

Theorem. For all \e [0,A] and © =¥, , (f X) € G, there exists a sequence of 9, A°
{C;, ie N} such that, for all Ne N :

i=0

N
Hﬂ -y A g, H,z; < MK b, ()

for some Ke (0,<) independent of \, fe B, , and xe (RN

Before presenting the proof of the theorem (which constructs the vectors {;) let us discuss its

result. Nothing is said about the growth of K when N increases. Thus nothing is known about the

possible convergence or resummability of the series. So the theorem does not imply the density of
9, but only to the weaker statement, that for all perturbation calculations, 2} and 2}, are
undistinguishable. We call this property the "almost-density of % ,".

In the theorem we must suppose that f and X do not depend too wildly on A. Recall that 5%
itself depends on A (via the construction of the measure p,) and 9, {; € 7% . So A plays a double
role : it indicates which Hilbert space the vectors belong to, and it is a small parameter which

allows perturbation expansion. To get a better understanding of the situation, consider the fibre
bundle with base [0,A] and fibre 7% (see figure 2), and let 9" be the set of the cross sections. An

element fe 97is given by a family of vectors {f,e 7% , Ae [0,A]}. The zero-time vectors generate
a subspace 95 € 9" which satisfies according to the theorem :

for all fe 9"and Ne N there exist ge .5 and Ke (0,) such that lif,—g,ll 5 <K 2",

It would be dense in 9" provided the topology would be generated by the following set of
neighborhoods of any fe 77
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K= {ge 7, Il fx—gk”&i<KlN for some Ke (O,oo)}

for all Ne N, which is without interest for us because this topology is not fine enough to allow
calculations by any resummation procedure.

\Subspace of .7 generated by the vacuum subspaces

' - . - -
A cross section entirely contained in vacuum subspaces

Figure 2

The proof of the theorem (see [9]) starts by supposing that there exists a perturbation

expansion : _
3 =2 N
i20

for all 9e F, and with each {.€ 9, . Then for all e Z), :
_ k
0=(&;0-3INE) = Y A [(é;ﬂ ) - X (& Ci)k_;]

k>0 i=0
where we have expanded the scalar products, with the notation (A,B)= Zl‘(A,B),. Note that for

fixed k, i takes only a finite number of values. Thus for all ke N we must have :
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k-1
(g;gk)o - (g;ﬁ)k - 20 (i;Ci)k_i .
1=
pr we take 15}=‘I‘n,,b(f,§’() and write {; as Ejzl‘Pj‘x(Anf";{J,O), for some unknown functions
Anf'_;:;]. If we take §="F,,(g,0), the Lh.s. of the previous formula is easily calculated (estimation
nk,r

from the free theory), and is (&%, 2(A ¢ g ,0))l,_, - So the above formula gives A™ in terms of
the sets {An'l'J, je N} with i<k. This leads to the following formal definition of Arfl:;d.

Definition. For all ne N*, fe B8
jeN*and pe R, by :

~n,i,j —

2~ , o .
A¢g(p) = j—!F('ﬁ') kl;llm(ﬁ’k) where F is given, for all ye R, by :

no and Xe (Ry)™ let A7’ be the functions given, for all ie N,

Fh =23, & [ a7 (@) spyur( G000

A=0

i-1
i-k 1 .k,
-2 9, X! 2 Idr? Anf&r(?) SPj,r,x((?,O) ; (X,0)
k=0 T2l A=0

(for i=0, the term containing the sum over k does not appear).

The definition uses the functions sp;, instead of the s;,, introduced in §2.4.1, which would
appear naturally according to the previous considerations. sp; ., are called the partially connected
Schwinger functions and are defined as follows. We write s;, as a sum of products over the

partitions of {1,...,j4+r} of some truncated functions (which are defined by this operation, by the
lemma of §2.3.2). Let us denote by J={1,...,j} and R={j+1,....j+r}. sp;,, is obtained by

summing only on the partitions of JUR which connect all element of J to R. This connectedness

property is necessary to avoid & pseudo-functions in an’,lf(ﬁ’), and for the following results.

Lemma. For all n, ie N and je N*, A™, B, x(R )-8 j0- Moreover, bj'o(A';::f) < K

b, o(f) for some Ke (0,e°) independent of fe B, and xe (R,

This result is not trivial : it says that some Schwinger distributions can be evaluated at the func-
tions Ay's’, which are themselves combinations of Schwinger functions partially evaluated at f.

To complete the proof of the theorem only operations on the terms of the perturbation series are
needed. A stronger version of the theorem (unpublished) states that for 9D, (H,) (that is

fe B, ,) the functions Afg’ belong to B, that is all the {, are in D, (H,). So the intersection of
the subspaces %, ,n D,(H,), which we really needed in §1, is also "almost-dense".
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2.6 Zero-time one-particle states projection

We try now to answer to the second question of the beginning of this § 2 concerning the
orthogonalization with respect to the vacuum and one-particle state subspaces. We have seen in
§2.2 that in the free models the span of {W,0"(g), n>2, ge X} have this property. This is no
more true in the interacting models. The orthogonalization with respect to the vacuum state causes
no problem because this subspace is generated by the unique vector Q,. The difficulty in (1-Eg—
E.,) comes from the projector E_,. As in §2.5, we will not really obtain it, but only approach E_£,
for any vector &€ 9 ,, by an asymptotic series of zero-time vectors.

To get a better approach of the spectrum of the mass operator we begin to estimate the action of
the resolvent operator of M on the zero-time vectors, by approaching (Mz-z)'lﬁ for &e ), and
suitable ze @ by an asymptotic series in 2.

Let us introduce some notation: for a self-adjoint operator A, d(A,z) is the smallest distance in
€ between z and the spectrum of A. We introduce on B, ,; with n,me N¥, the norms f

d7™(f) given by
- R 1 ol
40 = (1 * (es) ] b * (Gagm) S
where R is some fixed arbitrary number such that R>>m,_. We denote by O the following open
subset of € :

® = {ze @, 1Z<R, d(MZ,2)>0, d(M2,2)>0 } .

Theorem. For all A [0,A], Ne N, ze ® and ¢ =¥, ,(£,0) € F; withd ™" () < o there
exists a finite sequence of %, : {C, ;. 0<i<N} such that :

N dn,NH(f)
1 i N+l z
' v -0 - );,) A, l{%51 <MK gapy

for some Ke (0,00) independent of A, f and z.

Note that the conditions on f depend on the order N ; but this concerns only the dependence of

- — . . 5 5
f(x lv"'sxn) mn the Val’lable X 1+...+x o

To construct the vectors £, ; for 9 =¥, (f,0) € B, , 9#0, and suitable ze €, let us suppose
that there exists a perturbation expansion such that :

ﬂ = (Mi. Z) E x gz'i
i20
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where all {,; € 9, ,. (Note that {,; must be in the domain of M?). Then we write C,;as
Eja‘l’j‘l(Bl;'_lz'J,O) for some functions Brfl";'l. We follow now the same way as in § 2.5, and obtain
analogous results (see [9]). We find that B : B,;1x0—-8;, and that zp)— B nf"'z’J(f)’) is

continuous on OxR'.

We use now the information on the mass operator M given in the beginning of this paper, §1.
For A sufficiently small, a circle ¢ in € can be drawn, with center m?, such that d(M(z,,z)>% mtz,

and d(M3,z)> m{ for all ze € (see the figure 3). Let us call A the maximal value in (0,A] for
which these conditions hold for all A [0,A]. We fix now A€ [0,A] . The projector E;;, can now be

written as
1

B e 4 W

. . " ni,j " n,i,j
Because of the nice properties of the functions By ZJ stated above, the new functions D 1
given by

~n,i,j, = _ L ~n,i,j —
Dy (p) = -2~ L? dz B ¢, (p)

n,i,j

for all pe R/, belong to B, 4, and then the vectors {; = 21D " 0) lie in the domain of M?

and have the property stated in the following theorem.

Theorem. For all Ae [0,A], Ne N and ¥ =¥ ,(f,0) € 9, with bn,o(f) and bn,o(PzNMf) o
there exists a finite sequence of 9, : {C; , 0<i<N} such that :

N .
En® -3, AL, || < A (Kb, + K by (PPD)
i=0 ﬁ

for some K, K'e (0,00) independent of \ and f.

/\Cg ” . 5 .
m —
Ok 0 A ?‘ﬁ-\ .
\_/

Figure 3
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3. Zero-time representation of the Poincaré group

Here we try to construct an intermediate theory between the Q.F.T. and the Q.M. adapted to
the two—particle system at low energy. More precisely we go back to the theorem of §1 and to the
details of its proof, and we stop the calculation at an intermediate level, before doing the
expansion in the 8 parameter (in order to avoid the non-relativistic limit). Let us denote by ‘¥(f)
the vector obtained by minimizing the Rayleigh quotient in varying the functions fj ,jeN, but not
f = f) . We change the representation of the relevant Hilbert space, introducing for each f a new
function F (on R?) such that :

1@ 112 = [g2 an’@) 1E® P

——L_ and @ is now the function on R : p > (p*+ mz)m. Note that
20(k;)
here m is the one—particle mass of the model with interaction (it depends on ).

where dn’(K) = Hie{l,Z}

We can compute the first perturbation orders of (¥(f),0¥(f))4 for ® = H%, or P8 orL,

which give bilinear forms for the F's. It is then possible to define operators which generate these
forms. We obtain in this way a new quantum and relativistic model, which is simple but not
completely satisfactory because it comes from the first orders of a perturbation calculation, so that
the Lorentz invariance is realized only at O(A%). Nevertheless this model is interesting for many
reasons. It is simpler than the P(¢), models and well adapted to the two-particle problem;
moreover it has the same mass spectrum (in the neighborhood of 2m and at first perturbation
orders) and it admits the same non-relativistic limit.

A Quantum Relativistic model is a representation in a Hilbert space of the Poincaré group or of
its Lie algebra, which for a two-dimensional space-time is generated by three operators : P
(momentum), H (Hamiltonian) and L (Lorentz generator), satisfying the commutation rules :

[P,H] =0
[P,L] =iH
[H,L] =iP

The last proposition of §2.2 gives an example of such representation, the "representation for n
free particles”, which has the interesting property that it works at zero-time. We want now to
introduce interaction terms in this representation, deduced from the (@), model in the way
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explained just before. For the two-particle system at zero-time we obtain the following
representation.

# =1*R%*n?). On & we define (formally) the operators P, H, L by

Pf(K) = (K+K,) f(X)
Hf(K) = Q&) f(K) + x% dn*®") £(X") 8(K+K5-K,-K,)

3(K+K,-K,-K,) 2
QEK) + QK"

6(12'1"“13'2—121—1_(’?.)
QEK) + QK"

.
LfE) = L f(X) + x% L, | dn’(K") (X"

Y

4! a, 2?' 2
+ Ao | dn(KY) (LK)

where Q(K) = (K} + o(Ky and L, is as in the last proposition of §2.2, with now m, replaced
by m. For A=0 we obtain the representation for 2 free particles. These operators are well defined
and symmetric on the domain .#(IR?). Their self-adjointness will be shown in another paper [16].

We can now reverse the situation, forget the P(¢), models and consider the above expressions
for 7, H, P, L as definitions (we also forget the restriction to weak relative energy). To simplify
the notation we introduce the operator ¢ on # defined by

ﬁf(?) = % J dnz(ﬁ') f(E!) 8(l('l.+'ﬂ'2_¥l_'—?2)

Q&) + Q&Y

@ is a bounded operator [16]. We also denote by €2 the multiplication operator by the function
Q(K). Then H and L can be written as

H
L

Q+AQ+0Q) = Q +A1{Q,0}
L, + AL, Z+0L,) = L, + A{L,, T}

where {A,B} = AB + BA . Then P, H, L satisfy the following commutation relations :

Proposition. On #(R ?) the operator H, P and L satisfy :
[P,H] =0
[P,L] =iH
[H,L] =iP + A2[{Q, @}, {L,, 7} ]

The proposition shows that H, P and L give "almost" a presentation of the Poincaré group.
The third relation states that the term proportional to A in [H, L] vanishes identically. If we want
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that the term proportional to A> vanishes also, we must add to H and L new appropriate terms
multiplied by A? (see [16] ).

The proof of the proposition will give the answer to another question : how can we modify the
interaction terms in H and L so that the commutation relations of the proposition hold again (see
the remark after the proof).

Proof. Because of the & pseudo-function in the definition of ¢ we have [, P] = 0. Thus [P,
H] =[P, Q] + A{[P, Q ], }. Because two multiplication operators commute we have [P, Q] =
0, and then [P, H] = 0. We also have : [P, L] = [P, L] + A{[P,L,], Z}. But [P,L;] =i, so:
[P,L]1=iQ+A{Q, 7} =iH. Now:

[HL]1=[Q L] +M[ @ {L,, 7} + [{ Q, FLL,]) + A[{Q, FL{L,, 7}
Using [Q,L,] =1iP, we obtain :
[H,L]=iP+2AGPC +QOL~L 0OQ)+ M[{Q, 7},{L,, 711

Until now we have not used the explicit form of the Kernel of ¢ (except from the presence of the
8 pseudo-function). The proposition is proved if for all f € F(R?)

2%

7o (PO+QOL,-L,0Q) fK) = i(K+K) [dn2(1'(") f(K") S(R;+R;-K,-Ky)
4

Q&) + Q")

8(?'1"‘?2—-121“ 2)
QE) + QK"
3(K+K-—K,-K,)
QEK) + QK"

+ Q(E’)Jdn"a?') (LHH(K")

- L, [ dn’(®") Q&) f(K")
vanishes. Let us denote by () the r.h.s. of this expression.

We make the change of variables (12,, 12,) — (o, %) given by :

E = m(chx sho + shy cha)

R, =m(chy sho — shy cha)
(note that L (K) = —i9,), and the change : (K}, €) — (e, ') given by the same formulas. Note
that d’(K") = > do'dy’ and

SRRy B, k) = 2
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chysha

where Q' = Q(X') and & = arg sh
chy'

Then (¥) becomes :

(see [3, Appendix I] for other formulas).

| - | 3 F(@y)
) = i(R+K,) f%dx'ﬁ% - iQ Ili'dx QQ+Q)

. F@,x')
+ 13 f d Q + Q'

where F(a,)) = f(X) and Q = Q (K). With : 9, = =7 d_=

| R, + R
* = gfdx- F@x) (aa oot ods !22')]
1 K, +K
Q0

Butaam= -

(' y » SO (*)=0. ¢
Remark Let us replace in the kernel of ¢ the factor Q—iﬁ— by a function &(a,,x"). From the

proof it follows that the commutation relations of the proposition hold again provided that :

K,+K
aag(a!x’x.) — = 5'2 §(ﬂ,X,X')

This differential equation is easily solved and gives : §(a,x,x") =%(%%2 for an arbitrary

function C. Then the proposition is true even if we multiply the kernel of ¢ by an arbitrary
function of y and Y.
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