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Statistics in the Propositional Formulation
of Quantum Mechanics

By Dan Radu Grigore

Department of Theoretical Physics, Institute of Atomic Physics
Bucharest-Magurele, Romania, e-mail: grigore@roifa

(13. V. 1993)

Abstract. We give a definition for the notion of statistics in the lattice-theoretical (or propositional)
formulation of quantum mechanics of Birkhoff, von Neumann and Piron. We show that this
formalism is compatible only with two types of statistics: Bose-Einstein and Fermi-Dirac. Some
comments are made about the connection between this result and the existence of exotic statistics
(para-statistics, infinite statistics, braid statistics).

1 Introduction

The lattice-theoretical formulation of quantum physics (Birkhoff-von Neumann-Piron)
seems to be extremely well suited for the treatement of many problems connected with the
logical foundations of a physical theory [1], [2]. The basic idea of this formulation is that
all elementary (”yes-no”) statements which can be made about a physical system can be
organized in a lattice structure £. For a pure quantum system the corresponding lattice
L is made up of all orthogonal projectors in a given vector space of Hilbertian type H:
L = P(H). A fundamental result asserts that this case is, essentially, generic. Namely, the
most general physical system is described by a direct union of pure quantum lattices [1].

Among other things, the lattice-theoretical formulation of quantum mechanics affords
an answer to the question why two (or many) quantum systems are usually described in
the tensor product Hilbert space of the individual Hilbert spaces of the corresponding sub-
systems (3], [4]. This structure is a consequence of the so-called "weak coupling” condition.
Essentially, this condition requires that the subsystems of the composite system do not
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loose their individuality. Mathematically, if £;,...,L, are the lattices of the individual
subsystems and £y is the lattice of the composite system, one requires the existence of a
map h: £y X ... X L, — Lo with the following significance: if a,...,a, are properties of
the subsystems L,, ..., L, respectively, then h(a,,...,a,) € Lo corresponds to the property:
"the subsystem 1 has the property a,,..., the subsystem n has the property a,”. As we
have said before, if £; = L(H;) with dim(H;) > 3 (¢ = 0,1,...,n) and the map h has
some reasonable properties, then one can discover that in many cases of physical interest
Ho has some tensorial nature.

An interesting problem is if this type of result can be extended for systems of identical
particles. An attempt in this direction is announced in [5] where one finds the rather
strange result that for a system of identical particles only Fermi statistics is allowed. We
should note here that there are other abstract definitions of the notion of statistics in the
framework of algebraic quantum theory [6].

The purpose of this paper is to give an alternative analysis for systems of identical
particles in the framework of the lattice-theoretical formulation. We will give a reasonable
"weak coupling” condition for a system of identical particles and we will be able to prove
that, in quite general conditions, there are only two possible statistics: Bose and Fermi.

The idea of the proof is suggested already by [3], which uses as an auxilliary result,
a certain generalization of Wigner theorem. So, the idea is to look for the ”simplest”
proof of Wigner theorem and try to apply it to our situation. We have found it profitable
to use in such a way Uhlhorn proof of Wigner theorem [7|. Using the idea of this proof
(which will be briefly presented) we will be able to give an alternative (and simpler in our
opinion) proof of the result of [3], [4] for the case of a system composed of two different
subsystems. In particular our proof shows that the conditions impsed in [3], [4] on the
map h: Ly X ... x L, — Ly can be relaxed. These topics are treated in Section 2.

In Section 3 we give our definition for a system of identical particles and derive the
result concerning the possible statistics that was announced above. The proof will follow
the same lines as the one in Section 2. In the end of Section 3 we will make some comments
about the connection between our result and the existence in the litterature of other types
of statistics as: parastatistics, infinite statistics [6] and braid statistics [8], [9].

2 Many-Particle Systems

A. According to the lattice-theoretical philosophy one must describe any physical system
by a lattice (£, <) which is complete, atomic, orthocomplemented, weakly modular and
satisfies the covering law. Usually we will omit the order relation < in writing the simbol
of a lattice. Such a lattice is also called a propositional system [1] (see $2.1). As regards to
the physical interpretation we mention only the following facts without bothering about a
precise mathematical formulation:

- the elements of £ are interpreted as elementary (”yes-no”) assertions about the
system (more precisely equivalence classes of ”yes-no” questions)
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- the order relation < means logical implication
- the infimum operation A has the meaning of the logical "AND”
- the atoms of £ are interpreted as the states of the system

- the minimal element 0 is interpreted as the property "the system does not exist”
and the maximal element I is interpreted as the property ”the system exists”.

The standard models of propositional systems are:

a) P(T'); here I is an arbitrary set and P(T) is the set of all subsets of I. The infimum
is the intersection and the orthocomplementation is the usual complementation. This is
the pure clasical case.

b) L(H); here H is an arbitrary vector space of Hilbertian type and £(H) is the set
of all linear closed subspaces of H. The infimum is the intersection and the orthocomple-
mentation is the map associationg to any subspace of H its orthogonal suplement. This is
the pure quantum case.

As asserted in [1] these cases are rather generic, in the sense that the most general
situation is obtained by taking a direct union of pure quantum lattices; in this case the
center of the lattice £ is a pure classical lattice I: £ = VaerL(H?®).

B. We schetch briefly the proof of Wigner theorem from [7]. The idea of the proof
will be afterwards adapted to the study of many-particle systems. The purpose of Wigner
theorem is to classify symmetries of propositional systems. Such a symmetry is, by defini-
tion, a structure-preserving map between propositional systems. We adopt the following
definition:

Definition 1: Let £,, L, be two propositional systems. A map h: L1 — L, is called
a symmetry if it verifies:

a) if p € £, is an atom then h(p) € £, is an atom
p

(b) for any a; € £; 7 € I an index set, one has:
Nierh(a;) = h(Aiera;)

(¢) h(51) = I

(d) for any a € £; one has:
h(a)' = h(a')

Remark 1: Usually (a) and (c) are replaced with the condition of bijectivity, which
is, in general, stronger.

Let us now suppose that the lattices £, L, are of the pure quantum type: £; = L(H;)
where H; is a vector space of Hilbertian type over the division ring D; with dim(H;) >
3 (¢ =1,2). Then one can proceed to a rather exthaustive classification of maps h verifying
Definition 1. We provide the main steps below.
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1. If ay,...,an, € L(H;) are atoms it is obvious what we mean when we say that
aj,...,an are linear independent: for any z; € a;\{0} (: = 1,...,n), the vectors z1,...,z, €
H; are linear independent. We also use the following notation: if z; € H;\{0} then the
atom containing z; is denoted by D; - x;.

The first observation, following form Definition 1, is that ay,...,a, € L(H;) are linear
independent atoms iff h(a1), ..., h(an) € £L(H,) are linear independent atoms.

2. We define now a map B : H; — H, as follows:

-B(0)=0

- for any =, € H;\{0} we take B(z;) to be an arbitrary non-zero element in the atom
h(Dl + I ).

In this way we have

Dg g B(;El) = h(Dl ' 331)

for any z; € H;\{0}. It is clear that, in general, the map B will not be additive. However,
one must observe that there is a phase factor arbitrariness in the definition of B. One takes
advantage of this arbitrariness of B; namely one shows that by apropriately modifying B
one can make it an additive map.

3. Let z,,y1 € H;, be linear independent vectors. Using step 1 one easily establish
that one has:

B(z1 4+ y1) = w(z1,21 + 1) B(z1) + w(y1,z1 + 1) B(nr) (2.1)

where w : H; xH; — D,\{0} is defined for the moment only for linear independent vectors.

4. Let now z1,y1,21 € H; belinear independent vectors. If one writes B(z1+y1+21)in

two different ways with the help of (2.1) one easily discovers in this case a ”cohomological”
relationship:

w(y1,21) w(z1,y1) = w(z1,21). (2.2)

5. An easy consequence of (2.2) is that for any z;,y; € H; linear independent one
has:

w(z1,y1) w(y, 1) = L. (2.3)

6. We now define w(z1,y;) for z;,y; € H;\{0} linear dependent as follows. One takes
z1 € H; such that z; and z; are linear independent and tries to define w(z1,y1) by:

w(z1,y1) = w(z1,y1) w(z1,21). (2.4)

The right hand side does not depend on the choice of z; above, so this definition is
consistent. We note that it is at this point that one needs the restriction dim(H;) > 3.

7. Using the extension of w defined above, one shows easily that (2.3) is true for any
z1,y1 € H1\{0}.

8. Next, one shows that (2.2) above is true for any z,,y;,21 € H;\{0}.
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9. Finally, one extends (2.1) for any z;,y; € H;1\{0}.

10. We are ready to redefine the map B such that it becomes additive. We take
z] € H,\{0} arbitrary but fixed and define for any z; € H;\{0}:

B(z1) = w(z1,2°) B(z1). (2.5)

Then an easy computation shows that B verifies for any z1,y; € Hy\{0}:
B(z1 + 1) = B(z1) + B(y1). (2.6)

It is clear that (2.6) stays true even if z; or y; are zero. Because we still have
D, - B(z,) = h(D; - z1) for any z; € H;\{0} we might just well take instead of B the new
map B.

In conclusion, if Definition 1 is true, one can find an additive map B : H; — Ho:

B($1 + yl) = B(a:l) + B(yl) (le,yl € Hl) (27)

such that:
D2 ¥ B(:B]) = h(Dl $ .’l!l) (Vﬂ:l € H]_\{O}) (2.8)

11. It is not difficult to show that B also verifies:

Im(B) = H,. (2.9)
It follows that B is a bijective map.
12. Now it is rather easy to prove that there exists a map ¢ : Dy — D; such that:

B(Ma1) = 9(M) B(z1) (YM € Dy, Yo € Hy). (2.10)

Moreover, the map ¢ verifies for any Ay, u; € Ds:
@(A1+ p1) = (A1) + (k1) (2.11)

w(A1p1) = (A1) (p1) (2.12).

It is not hard to convince oneself that ¢ is indeed a division ring isomorphism. So in
fact one can take Dy = Dy(= D).

13. From Definition 1 it follows that the map h preserves the orthogonality relation-
ship. If the division ring Dy is commutative, it follows that ¢ also verifies:

#(A) = ¢(}) (2.13)

where A — ) is the involution of Dy.
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Remark 2: The usual cases Dy = R,C,H can be analysed in detail as in [2]. If
Dy = R, H one finds that one can take ¢ = id so B becomes a linear map, and if Dy = C
one has two cases: @(A) = X and ¢(\) = X corresponding to B linear and respectively
antilinear. We have recovered the usual statement of Wigner theorem.

Remark 3: One can also show that there exists § € Do\{0} such that Vz,,y; € H;
one has:

< B(:Bl),B(yl) >H,= 590(( T1,Y1 >'H1) (214)

with § = §. The idea is to adopt (2.14) as the definition for § as a function of 1,¥1,22,¥2
and to show that in fact it is a constant.

If H; and H, are Hilbert spaces over R,C or H one can show that in fact § > 0.

So, by a rescaling, B can be made an isometry.

C. Now we come to the study of a composite system. We formulate [3], [4]:

Definition 2: Let {£;}?_, be three propositional systems with £; # £,. We say that
the system Ly is composed of the subsystems £, and L, if there exists amap b : £ X L3 —
Ly verifying:

(a) if p1 € £; and p; € L, are atoms then h(p1,p2) € Lo is an atom
(b) Va; € Ly (i € I) and Vb; € L2(: € I) (I is an index set), one has:

Aierh(ai, b;) = h(Aserai, Nierb;)

(c) h(I1,I) = Iy
(d) Ya € £, and Vb € L, one has:

h(a,b)' = h(a',d")

Remark 4: The existence of the map h can be also called the weak coupling condi-
tion [3]. Indeed, when postulating the existence of such a map one implicitely asumes that
the subsystems £; and £, do not loose their individuality. It is clear that the proposi-
tion h(ay,az) coresponds to the property ”the subsystem 1 has the property a1 and the
subsystem 2 has the property a,”.

Remark 5: The physical interpretation of the axioms (a)-(d) above is rather trans-
parent [3], [4]. We note however that we did not include in this definition the condition:
h(a1,1I2) & h(I1,a2) Va1 € L1, Vay € Ly which is explicitely admitted in [3], [4]. In fact,
the analysis below will show that this condition is redundant.

We proceed now with the classification of maps h in the case when £; = L(H;) where
H; is a vector space of Hilbertian type over the division ring D; (i = 0, 1, 2).
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We also admit that dim(H;) >3 (i =0,1,2). We will follow closedly the steps 1-12
of part B.

1. One can show rather easily that the atoms a; € £; (i € I) are linear independent
and the atoms b; € L, (7 € J) are linear independent iff the atoms h(a;,b;) € Lo (i €
I,7 € J) are linear independent.

2. We now define a map B : H; x ‘H, — Hy as follows:
- B(0,z2) =0, B(z1,0)=0 (Vz; € H;,Vz2 € H3)

- for z; € H;\{0},z; € H2\{0} we take B(z1,z2) to be an arbitrary non-zero vector
in the atom A(D; -zy,D;-z2). In this way we have Dy - B(z1,22) = h(D; -z1,D2-z2). Like
in part B we will use the phase arbitrariness in the definition of B to make it biadditive.

3. We fix the vector z; € H;\{0}. Then we can repeat steps A3-A10 for the map
ty — B(z1,z2) and we succeed to redefine B such that it is additive in the first argument:

B(z1 + y1,z2) = B(z1,22) + B(y1,%2) Vz1,y1 € Ha, V2 € Ho (2.15)

4. Now we fix z; € H;\{0} and repeat steps A3-A9 for the map z, — B(z1,z2). We
find that there exists a map: w,, : (H2\{0}) x (H2\{0}) — Dy such that Vz,,y, € H>\{0}:

B(fﬂhm +Y2) = wa, (22,22 + yz) B(wl,fcz) + wa, (y2,22 + yz) B(mlyyz)- (2-16)
The function w;, also verifies Vz3,y2, 22 € H2\{0}:

we, (Y2, 22) we,(T2,Y2) = wa, (22, 22) (2.17)

and:
Wz, (T2,Y2) wa, (y2,22) = 1. (2.18)

5. We want to apply the trick A10 to get additivity in the second argument of B
without ruining the same property in the first argument. For this we have to show first
that in fact wz,(+,-) does not depend on z;. This is rather simple. One takes z;,y; €
H; (1 = 1,2) linear independent and makes in (2.16) z; — z1 + y1. If we use now the
additivity (2.15) we arrive quite easily at the following relationship:

wz1($2’y2) = ‘-"m(-"?z’yz)- (2-19)

If 1,y € H1\{0} verify D; - &y = D, - y; one takes z; € H;\{0} such that D, -z, #
D; - z; and has from (2.19):

We, (Z2,Y2) = Wz, (22,Y2) = wy, (€2, 92)

In this way one extends (2.19) for all z;,y; € H;\{0}. We have only the restriction
Dy -x3 # Dy -yz. But if Dy - z3 = Dy - ya, then w,,(z2,y2) is defined according to A6 as
follows:

wml(m21y2) = wzl(zz,yz) wzl(fcz,zz)



484 Grigore

where 2, € H,\{0} verifies D, - 22 # D, - y,. (see (2.4)). The right hand side of this
relation does not depend on z; according to what has been proved so far . So we have
succeeded to extend (2.19) to all z;,y; € H;\{0} (: = 1,2).

6. It follows that in fact in (2.16)-(2.18) w,,(+,-) does not depend on z; so we have
for any z,,y. € H,\{0}:

B(zy,z2 + y2) = w(z2,22 + ¥2) B(z1,22) + w(y2, 22 + y2) B(z1,¥2)- (2.20)
where the function w also verifies

w(yz, 22) w(z2,y2) = w(z2,22) (2.21)

and:
w(z2,y2) w(y2,z2) = 1. (2.22)
Now we apply the trick A10 for the map z; — B(z;,z2) and we succeed to make it
additive in the second argument, preserving in the mean time the same property in the

first argument. So, beside (2.15) we have:

B(z1,z2 +y2) = B(z1,22) + B(z1,y2) (2.23)

and:
Do § B(ml,xz) = h(D1 . ml,Dz g :Bz). (224)

7. Like in part A it is not difficult to show that B also verifies:

Im(B) = H,. (2.25)

8. Step A12 goes now practically unchanged. One proves the existence of a map
@ : Dy x Dy — Dgy such that:

B()\lxl,/\ng) = lp(Al,Az) B(:L‘l,wz). (226)
Moreover, the map ¢ verifies:

©(A1 + p1, A2 + p2) = (A1, A2) + (A1, 22) + (1, A2) + (p1, p2) (2.27)

P(A1p1, Aapz) = p(A1,A2) p(p1, p2)- (2-28)

9. Like at A13 one can show that if Dy is commutative ¢ also satisfies:
QE(A1, Az) = (p(xl, Xg) (229)

where the bar denotes the corresponding involutions of D; (i = 1,2).
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Remark 6: If D(] = .D] = Dg = R we have ‘P(AI,/\Z) = A] Az and if D[) = D1 = D2 ==
C we have four possibilities:

(M h2) = Mdz,  p(A1,A2) = Ay
(A1, A2) = Az, @(A1,A2) = Arde.

On the contrary if Dy = D; = D, = H one can prove that (2.27)+(2.28) have no
solution. It is quite possible that, in general, the weak coupling problem does not admit

solutions if Dy and D, are non-commutative division rings. (See however in connection
with this problem [10].)

10. Taking into account the Remark above it is intersting to consider the particular
case when Dy = D; = D; is a commutative division ring and ¢ : Dy x Dy — Dy is:

fp(Al,Az) = Xl)\z. (230)

We have:

Theorem 1: In the conditions above one can take Hy = H; ® Ha. Moreover, if ‘H;
are Hilbert spaces and we identify £(H;) with the lattice of the orthogonal projectors in
H;, then the map h is:

h(a1,a2) = a1 ® a,. (2.31)

Proof: One has to check that the map B has the universality properties defining the
tensor product (see e.g. [11]).

®1: We have Im(B) = H, according to step 7.

®2: Let H be vector space over the division ring Dy and g : H; X H, — H be a
bilinear map. Our purpose is to identify a linear map f : Ho — H such that:

foB=yg. (2.32)

We procced as follows. First, let us consider z;,y; € H; (¢ = 1,2) such:
B(z1,22) = B(y1,92)- (2.33)

Then, one easily establish that y; = A\;z; (i = 1,2) with Ay, Ay € Dy verifying A1 Az =
1. It follows that

9(y1,92) = g(z1,22). (2.34)

So, taking into account ®; we define f : Hy — H as follows:

- for elements of the form B(z;,z;):

f(B(z1,2z2)) = g(z1,22) (2.35)
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(and this is consistent because of the implication (2.33) = (2.34)).
- for all the other elements we extend f by linearity:

O B(ziywi)) = Z 9(=i,yi) (2.36)

i=1

(and again one can prove the consistency of this definition). But (2.35) and (2.36) gives
(2.32). Q. E. D.

Remark 7: The theorem above takes care of the case Dy = R. In the case Dy = C
we have the four possibilities from Remark 6. ( We note that in this case H; are Hilbert
spaces according to Amemiya-Araki theorem [1], [2]). We still have to analyse the last
three of them. We define the antilinear maps a; : H; — (H;)* (i = 1,2) by:

(eti(zi), ¥i)ms =< =i, yi >n; - (2.37)

Here <, >4, is the scalar product on H; and (, ), is the duality form between H;
and (H;)*. For the case @(A1,A2) = A1 A, we define: By, : (H1)* x (H2)* — Ho by:

Bia(z1,22) = B(afl (31),0‘2_1(“’2))

and note that Bj, is bilinear so applying the theorem above we can take Hy = (H1)* ®
(H2)* = H; ® H,. In the last two cases one procceeds similarly and finds out that it is
possible to take Ho = (H]_)* ® Hz = Hl ® (Hz)*.

Remark 8: A formula of the type (2.14) can be also proved in this case, namely:

< B(z1,22), B(y1,2) >1o= 6p(< z1,91 >n,, < 22,42 >n,) (2.38)
for some § € D,\{0}.

Remark 9: One can extend the results obtained up till now for the more general case
when L£y,L£; and £, are systems with superselection rules i.e. £; = VaieIiL(HEa‘)) [F =
0,1,2). Here Ip,I; and I, are some index sets. We proceed in analogy to [1] $3-2. First
we note that the map h preserves the relationship of compatibility, namely if a; is in
the center of £, and a; is in the center of £;, then h(a;,a;) is in the center of £o. It
follows that the map h induces a map h : P(I1) x P(I3) — P(I;) where P(I;) are classical
propositional systems (see the begining of part A). The map h also verifies the axioms of
Definition 1. In this case one can easily discover that Iy = I; x I, [12] so in fact we have
Lo = Va, el arenL(H ) and h(L(H™), L(H?)) = L(H**?)) Vay € I;,Va, €
I,. 1t is now clear that for all the maps h*1*? = h| one can apply the

L(H )y L(H?)
previous analysis.

Remark 10: It is obvious that the analysis contained in this Section can be eas-
ily extended to the case when the system Ly is composed of more that two subsystems
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L1,y Ly (n > 2). This kind of generalization seems to be more cumbersome to do if one
adopts the line of argument in [3], [4].

3 Systems of Identical Particles

A. We try here to propose a definition for a system composed of two identical subsystems
by modifying as little as possible Definition 1. It is clear from the begining that one must
take £, = L, i.e. we have a map h : £L; X L1 — Ly. Also, we expect that, because of
the identity of the the subsystems, this map is symmetric. The physical interpetation of
h must be the following one: if a,b € £, are two properties then h(a,b) correspond to the
property: ”one of the subsystem is in the state a and the other is in the state ”. Because
of this (natural) interpretation it follows that we cannot expect that item (b) of Definition
1 holds in this case. If we could interpret the supremum operation V as the logical ”OR”
we would be tempted to substitute (b) of Definition 1 by something of the type:

h(a,b) A h(c,d) = h(aAc,bAd)V h(aAd,bAc).

However, it is known that V can be interpreted as the logical "OR” only in the
pure classical case. (Indeed, in the pure quantum case one can easily find two properties
a,b € L(H) such that the logical proposition aORb corresponds to no element in L(H)).
So, the relation above cannot hold.

After this discussion we make an attempt for a convenient definition.

Definition 2: We say that the propositional system Loy is composed of two identical
subsystems if there exists a propositional system £; and a map h : £; X £; — L, verifying:

(a1) if p1,p2 € L1, p1 # p2 are atoms, then h(p1,p2) € Lo is an atom
(az2) if p € £, is an atom then h(p,p) € Ly is either 0 or an atom

(as) if a,b,c,d € L, are atoms and
h(a,b) = h(c,d) #0

thena=¢, b=dora=d, b=c.
(by) if @ < ¢,d and b < ¢,d, then h(a,b) < h(c,d)

(b2) the atoms a; € £; (¢ € I) are linear independent iff all the distinct non-zero
atoms of the form h(a;,a;) are linear independent

(C]_) Vpx,pzzatomsh(plrpz) =Ip
(e2) h(I1,I1) = Iy

(d) h(a,b) = h(a', ')

(e) h(a,b) = h(b,a).

Remark 11: All the axioms exept (b2) and (c;1) are rather easy to interpret from the
physical point of view. We note that if, in analogy to Definition 2, one would require that
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h(p1,p2) is an atom Vp;,ps € L;, then one would obtain only Bose statistics as a result
of the analysis below. On the other hand, if one requires that h(p,p) is always 0, then
one obtains the result in [5]. So, we accept a more general situation described by (a,) and
(az). This is the only possible generalization which preserves the general idea which had
suggested Definition 2 (see [3]). In particular, (a2) takes into account the logical possibility
that the two identical system cannot be in the same state.

Because (b;) and (c;) have a certain degree of naturalness we think it is interesting
to analyse in detail the consequence of this definition.

We proceed now with this analysis on the lines of Subsection 2C in the case £; = L(H;)
where H; is a vector space of Hilbertian type over the division ring D; (¢ = 0,1) and

dim(H,) > 4.
1. We define a map B : H; x H; — H, as follows:
- B(0,z3) = B(z1,0) =0, Vz1,2, € H,
- if z; € H,\{0} and A(D; - z;,D; - z;) = 0 then B(z;,z;) =0

- if zy,22 € H;\{0} and z; # z; or if z; = 23 but h(D; - z;,D; - 1) # 0, then
B(z1,z2) is an arbitrary non-zero element of the atom h(D; - z1,D; - z3)

It is clear that we have D, - B(:cl,:cg) = h(D; - z1, D - z2).

2. From Definition 2 (b;) one can show that for any z; € H;\{0} there exists a

function w,, : (H;1\{0}) x (H1\{0}) — Dy such that Vz;,y;,z» linear independent we
have:

B(z1 + y1,22) = wa, (21,21 + y1) B(x1,®2) + we, (1,21 + y1) B(y1, z2). (3.1)

3. Next, one takes z1,y1,21,22 € H; linear independent and shows that we have:

wz:(ylvzl) wzz(mlayl) =w22($1,21) (32)

and
Wz, (T1,¥1) Wa,(¥1,21) = 1 (3.3)

4. Like at 2A, we now extend the function w,., to other values of z;,y;. One must use
definitions of the type (2.4) and prove their consistency. It is at this step that one needs
the condition dim(H,;) > 4.

5. Using the definition of w from above, one extends (3.1)-(3.3) to all z;,y1,2;1,22 €
H;1\{0}. So, applying the trick 2A.10 one succeds to make the map B additive in the first
argument:

B(&‘:l +y1,ﬂ’:2) = B(31,£2)+B('y1,$2). (34)
Next, we apply the trick 2C.5-6 and obtain additivity in the second argument also:

B(z1,22 +y2) = B(z1,22) + B(21,92)- (3.5)
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Moreover, we still have:

Do & B(.‘B],Zz) = h(Dl o :cl,Dl 4 2:2). (36)

Of course, in obtaining (3.4) and (3.5) there are more cases to study (by comparison
with Subsection 2C) because there are more possibilities of linear dependence which has
to be studied case by case. Exept for tediousness, the proof is not very difficult.

Remark 12: One can extend the result above for a system of n identical subsystems
(n > 2) if one takes dim(H;) sufficiently large.

6. From Definition 2 (c;) one gets immediately:

Im(B) = H,. (3.7)

7. Now we come to the most interesting part, namely we use Definition 2 (e) which

expresses the identity of the subsystems. This will impose some additional restrictions on
the map B.

Indeed, Fron Definition 2 (e) it follows the existence of a map ¢ : H; X H; — Dy such
that:

B(z1,22) = e(z1,22)B(z2,21). (3.8)

It is an easy matter now to use the biadditivity of B and prove that in fact € is a
constant element of Dy:

B(zy,z2) = eB(z2,21). (3.9)
It is clear that € is constrained by:

=1 & (e+1)(e—1)=0.

We have exactly two possibilities: ¢ = 1 and ¢ = —1. We call these possibilities
statistics. When we have:

B(icz, 5'31) = 3(31,1’2) (3'10)
we say that we have Bose-FEinstein statistics and when we have:
B(zz,z1) = —B(z1,z2) (3.11)

we say that we have Fermi-Dirac statistics.

Remark 13: The result above can be extended to the case of n identical subsystems
(for n > 2). Indeed, if we have already the additivity of the map B : H;" — H in all
arguments, then instead of (3.9) we will find:

B(25(1) s To(n)) = e(0)B(T1, ey Tn) (3.12)
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for any permutation o € P, of the numbers 1, ...,n. From (3.12) it follows that € : P, — Dy
is an one-dimensional representation of the permutation group P,. If one denotes the
transposition of ¢ with ¢ + 1 by o;, then one knows that for any i one has: o? = id
and o; 0;41 0; = 041 0; 0;41. From here one immediately has for any ¢: &:(::r‘;)2 =
and e(o;) e(oit1) (o) = €(0it1) €(oi)e(oit1). The first relation gives (o;) = +1; then
the second one gives €(0;) = e(oiy1). If e(0:) = 1 (Vi), then one has ¢ = id, and if
€(oi) = —1 (Vi), then one has ¢(o) = sign(o).

8. Like at 2C.8 one finds out that there exists a map ¢ : D; x Dy — Dy such that:

B(Me1, Aaz2) = 0(A1, Az) B(zi, ). (3.13)

This map verifies:
(A1 + w1, A2 + p2) = @(A1, A2) + (A1, p2) + @(p1, A2) + (11, p2) (3.14)
@(Arp1, Aap2) = @(A1, A2) @(p1, p2). (3.15)
P(A2, A1) = p(A1, Az). (3.16)

If Dy is a commutative division ring ¢ also satisfies:
@(A1,22) = p(A1, A2) (3.17)

For Dy = R we have ¢(A1,A2) = A\ A2 and for Dy = C we have another possibility,
namely (A1, A2) = A 2.

9. Like in the precceding Section it is interesting to consider the particular case when
Dy = D, is a commutative division ring and ¢ : Dy X Dy — Dy is:

p(A1,A2) = AAs. (3.18)

We have in analogy to Theorem 1:

Theorem 2: In the conditions above one can take Hy = V2H, if B is symmetric and
Ho = A*H; if B is antisymmetric.

Remark 14: We see that the structure of symmetric and antisymmetric tensor prod-
uct emerges naturally in our framework. In particular, this is the case when Dy = R,C.

Remark 15: One can also prove a formula of the type (2.38):

< B($1,22),B('y1,y2) >He=

1
56[‘P(< 1, >'H13< T2,Y2 >7‘£1) =i (P(< T1,Y2 >'H1$< T2, >7"1)} (319)

with +(—) if B is symmetric (antisymmetric).
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For the case of n identical subsystems, the coresponding formulae are:

< B(Z1y.005Zn), B(Y15 00y Yn) >Ho=

1
6D P(< 21, Yo(1) >Hysers < Ty Yo(m) >1) (3.20)
n oceP

if B is symmetric, and:

< B(:Bl, ey :cn)) B(yl PRLLE) y‘n) >MHo=

1
Eﬁ Z (—1)|°‘|¢,(< Z1,Yo(1) >Hyr s < Ty Yo(n) >,) (3.21)
oEPy

if B is antisymmetric. In (3.19)-(3.20), § € D,\{0}.

Remark 16: Let us supplement Definition 2 with:
(f) if @,b € £, are in the center of £;, then h(a,b) € L, is in the center of Ly

Then one can extend the results above to the case when £y and £, are propositional
systems with superselection rules (see Remark 9).

B. It is interesting to see what gives our analysis in the case when the one-particle
system is an anyon i.e. a projective unitary irreducible representation of the Poincaré
group in 1 4 2 dimensions. It is tempting to see if one can recover the multi-anyonic wave
function.

For the identification of the one-particle system we rely on the results of [13] where
the complete list of projective unitary irreducible representations of the Poincaré group in
1 4+ 2 dimensions is given.

We provide here the necessary information. One should consider the unitary irre-

ducible representations of the universal covering group of the Poincaré group in 1 + 2
dimensions. '

First, one identifies the universal covering group of the Lorentz group in 1 + 2 dimen-
sions with:

G=Rx{uelC| |ul<1} (3.22)

with the composition law:

—2iy,, = 21y
(z,u) - (y,v) = (m+y+-1—_ln1+e uv ute v)' (3.23)

2t 14 e2Vpu ' e2W 4+ up

(one writes ﬁ:ﬁ: € C; — {—1} uniquely as e?" with t € (—7/2,7/2)).
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Next, one provides the covering homomorphism é : G — CI}_ by composing 6; : G —

SL(2,R) given by:

1(2,8) = — ( Q)+ el +a) - ien(l—u) —ieT (1 - ))
1— [u? \ —2€"(1 +u) +ie7**(1 + @) ie**(1 — u) +ie” (1 — @)
(3.24)
with 8, : SL(2,R) — L_T'_ constructed in analogy to the covering map SL(2,C) — LL (in
1 4+ 3 dimensions).

Finally, one identifies the universal covering group of the Poincaré group in 1 + 2
dimensions with the inhomogeneous group associated to G:

in(G) =G x R® (3.25)

with the composition law:
((z,u),a) o ((y,v),b) = ((z,u) o (y,v),a + é(z,u)b). (3.26)

The analysis [13] provides a complete list of all unitary irreducible representations
of in(G). We give only the formulae for the systems of non-zero mass and of zero mass,
leaving aside the tachions and the representations of null momentum. We denote by X
the upper (lower) hyperboloid of mass m € R, U{0} and by a the corresponding Lorentz
invariant measures. Then, the particle of non-zero mass are identified to the representation
W™ (m e Ry,n=+,s € R) acting in L*(X7,,da?,) as follows:

0 = 2iz s/2
m,n,s i{a, isz | P +”'7m—ue <p> ,,
WIS) () = eHesds | EAIM B0 S P2 | fis(a,0) ). (320

The particles of zero mass are identified to the representations W"** (n = +,s €
R(mod 2),t € R) acting in L*(X,daj) as follows:

0 - 2iz s/2
- <p>
p° — e p ] y

18,1 it G y z
(W2iiieh) (p) = eHemle [p°—ue—2i==<f)>

, Im(ue™?"< p >) _1
R e e Lo Y ELCC R N )

Here < p >= p! + ip? and {a,p} = a’p® — a'p! — a?p?

We will take in the scheme of A as the one-particle space H; one of the two possibilities
above. Next, we should decide about the statistics: Bose or Fermi? To discriminate
between these two possibilities we procceed as follows. We apply the standard construction
of the field operator for both statistics and check the causality. In the Bose case the
commutator [¢(z),#(y)] should vanish for z — y a space-like vector and in the Fermi
case the same should happen for the anti-commutator {[¢(z), #(y)}. Simple computations
show (see e.g. [14], ch. 3) that in the first case the commutator is proportional to the
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antisymmetric Pauli-Jordan distribution and in the second case the anti-commutator is
proportional to the symmetric Pauli-Jordan distribution. Only the first case verifies the
causality condition required above. So, we are entitled to conclude that we should choose
Bose statistics. This statement is a very primitive spin-statistics type theorem.

Now we restrict (3.27) or (3.28) to the universal covering group of the Euclidean group
in 1+ 2 dimensions, i.e. we put v = 0 and a = (0,a). We get in both cases a representation
which can be realized in H; = L?(R?,dp) and acts as follows:

(Uz,af) (p) = e Pe'* f (R(z)""p) (3-29)

Here:
— (cos(:c) _sm(z)) | (3.30]

sin(z) cos(x)

For the composite system of n such subsystems we use Bose statistics (as justified
above) and obtain the Hilbert space:

VnHl = {f : Rxn — Cl / |f|2dp1...dpn < o0,

f(pa‘(l)’ "‘)pa(n)) = f(pl,"',pn)’ VO' G Pn,}

and the representation
(UE:f) (P1y-eyPn) = e @ (PrFPa)gionz g p(2)=1p, . R(z)"'pn). (3.31)

Next, we perform a Fourier transform and end up with a representation acting in the
Hilbert space:

Ho = {f : (R?)*™ — C| f |fI2dx;...dx, < 00, f(Xa(1)s -1 Xo(n)) = f(X1,1Xn), Yo € Pr}
according to the formula:
(USZF) (X1, s Xn) = "2 f(R(2) 7 (%1 — 2), oy R(@) 7 (xn —0)).  (3.32)

Remark 17: We note that this formula indicates that the total spin of the system is
ns.

Remark 18: Let us define the configuration space:
Qn = ((R?)*™\C)/Pn. (3.33)
Here C is the so-called collision set:

C = {(X1,..yXn) € (R*)*"|x; = x; forsome i #j} (3.34)
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and one factorizes to the natural action of P,,.

Then, it is clear from (3.32) that the composite system we have described is localizable,
in the sense of Newton-Wigner-Wightman [2] on the configuration space @, i.e. one can

work in Hy = L%(Q.,).

It is more convenient to identify R? with the complex plane C as follows: z; =
z; + z:cf (7 =1,...,n), @ = a! +1ia?. In these new variables the Hilbert space is:

Ho ={f:C*" = C| / |f|?dz1dz;...dzndZ, < 00 F(Zo(d)y oy Bain}) = F(215 oy¥n)}

(3.35)
The formula for the representation (3.32) takes the form:

(U22£) (2101 2) = €™ f(e™* (21 — @), ey €7 (25 — @)). (3.36)

Now we proceed as follows [15]. To every element f € H, we associate the multiform
function F' defined on the universal covering space of Q,:

F(z1,.y20) = [] (25 — 2)* f(21, 001 20) (3.37)
i<k
(see [15], eq. (1.15)).

In this new representation (3.36) becomes:

(U,?:F) {24 § sosgiin )= ei(’”+9"(“_1))zF(e_"”(zl - a), ...,e"'”(zn — a)). (3.38)

Now we concentrate on the expression of the total Hamiltonian. It is clear that in
the representation (3.35)+(3.36) the total Hamiltonian is the sum of the free one-particle

Hamiltonians: "
j=1

Let us try however like in [15], eq.(1.17) to consider that the total Hamiltonian is
the sum of free one-particle Hamiltonians in the new representation (3.37). In this case,
reverting to the old representation, one obtains a topological interaction, i.e. the total
Hamiltonian is:

H= zn:HO(V,- —iA(z)) (3.40)

where:

Au(z;) = -6 Z Ep ——— Iz - zkgz (3.41)

We have obtained the so-called system of n "free” anyons, as presented in [16]-[21].
So, we can conclude, like in [15] that a system of ”free” anyons is equivalent to a system
of bosons carrying a charge e and a magnetic vorticity ® with: e® = —4.
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Remark 19: One notes from (3.37) that by exchanging two variables , say: z; < z,
one gets a sign (—1)2%. So, it is tempting to call  the "statistics” of the system and
say that one has interpolating statistics between Bose and Fermi statistics. However, we
think that it is more natural to stick to the interpretation above, namely to conclude

that a system of anyons is nothing else but a system of bosons with a special topological
interaction.

Remark 20: One may wonder if there exists a connection between 6 and s. An
analysis based on the algebraic framework of quantum theory gives: s = 8 (mod 1) [6], [9].
Probably the same conclusion can be derived in a more simpler way, using, as above, the
argument of causality with the modified Hamiltonian (3.40).

C. Finally, we try to explain why one does not obtain in our analysis exotic statistics as
parastatistics and infinite statistics [6] which appear naturally in the algebraic formulation
of quantum theory. For this, one has to make a comparison between the algebraic and the
lattice-theoretical formulation of quantum theory.

The first question to settle is: what is the algebra of observables for a pure quantum
system £ = L(H)? According to [1] (see also Subsection 2A), every orthogonal projector in
H is an (elementary) observable of the sytem. This implies that the algebra of observables
of L(H) is B(H) i.e. the set of all bounded self-adjoint operators in H. That’s it, the
algebra of observables is the "largest” possible one. But comparing to the analysis of [6]
we note that in this case we are left only with Bose and Fermi statistics. In fact, exotic
statistics can appear only if the algebra of observables is "smaller”. Even in this case one
can prove that any system with parastatistics can be converted into a system with normal
statistics (Bose or Fermi) by enlarging the algebra of observables: namely, one can prove
the existence of a gauge group of symmetry G and then a system with parastatistics can be
transformed into a system with normal statistics but living in a non-trivial representation
of the gauge group G [22].

So, there seems to be a physical agreement between our result and the corresponding
algebraic analysis. We might note however that our result is quite independent of the
space-time localization properties of the physicsl system. On the contrary, such properties
play a major réle in the algebraic framework.

4 Conclusions

We have succeeded to prove that the lattice-theoretical (or propositional) point of view
on quantum physics is compatible, under very general assumptions, only with two kind of
statistics: Bose-Einstein and Fermi-Dirac. We have also succeeded to show that there exists
some "philosophical” agreement between our result and the similar analysis appearing in
the litterature, in the algebraic framework.

As we have explained in Subsection 3D, the game seeems to be more simpler than in
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the algebraic formalism because the algebra of observables is "too large”. In fact, for the
same reason, all automorphisms of the algebra of observables are unitary (or antiunitary)
implementable in the lattice-theoretical framework, so we cannot describe the phenomenon
of spontaneous breakdown of symmetry. (This phenomenon appears when the algebra of
observables admits automorphisms which are not unitary implementable).

So, an interesting direction is suggested. Namely, one should try to generalize some-
how the lattice-thoretical framework such that the corresponding algebra of observables
is strictly smaller than B(H). If this can be accomplished, then it is plausible that more

phenomenae as the spontaneous breakdown of symmetry could be accomodated in this
framework.

We finally note that one can approach the problem of describing systems composed of
subsystems using the more refined concepts of entities and separated entities of Aerts [23].
However, this approach is not compatible with the Hilbert space formalism of quantum
mechanics, so there is no hope of obtaining tensor-like structures as in our approach.
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