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1. Introduction

One of the conventional methods to get approximate, numerical results for quantities
associated to continuum field theories is to put the theory on a lattice and then perform
numerical computations, using the powerful computers now available, to calculate the
corresponding quantity. Putting aside the questions of finite volume effects and other
types of systematical errors the problem then is how small the lattice spacing should be

chosen to get reliable results.

If <. >, denotes expectations computed with lattice spacing a, and if < - >, stands
for the continuum limit, then in general | < O >, — < O >¢ | < a - Plog(a), where
Plog(a) is some polynomial in log(a). It has been Symanzik’s idea [1] that it may be
possible to speed up the convergence to the continuum limit by adding to the lattice
action a finite number of irrelevant terms defining thereby his "improved action”. For
example he claimed that by adding well-adjusted Z,-invariant local dimension 6 terms to
the standard bare action of the Zj-invariant ®} lattice theory it would be possible to get
for all n-point functions | < ¢(z;)---¢(z,) >I — < ¢(z1)--d(zn) >0 | < a* - Plog(a)
instead of | < ¢(z1) -+ - d(zn) >0 — < ¢(z1) -+ - P(zn) >0 | < a? - Plog(a), where the index
I on < - >T indicates that this expectation is computed with the help of the improved
action. This sounds very interesting; however, a careful reading of ref. [1] reveals that
it does not present a rigorous proof of the feasibility of the improvement program in &%,
but rather a (very convincing) plausibility argument (and explicit calculations to lowest
orders). In gauge theories the situation is even worse since so far no one seems to have

made an attempt to prove or disprove the implementability of Symanzik’s program.

Although the mathematical status of Symanzik’s improvement program was unclear
various people took up his ideas and began to add specific irrelevant terms to the standard
bare action of lattice gauge theories with the aim of improving the speed of convergence of
some particular expectation values in lowest orders of perturbation theory [2-7]. Recently
there has been renewed interest in the Symanzik improvement program in the computation
of weak matrix elements (see e.g. [8]). Using Wilson’s method for putting fermions on the
lattice one finds cutoff effects of order a which are potentially rather large. The groups [8]
have thus sought to reduce these effects systematically using the Wohlert-Sheikholeslami

(clover) action [9] which adds to the Wilson term only one additional term of dimension 5
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which is local in the fermion fields and hence easy to incorporate in the updating algorithms.
The results seem rather encouraging.

The purpose of this paper is to outline a simple but nonetheless rigorous proof that
Symanzik’s improvement program works for the perturbative Euclidean massive ®} (see
also ref.[14]) and for the perturbative Euclidean QED4 (with a massive photon), under
the technically essential but philosphically unimportant condition that the lattice theory
is replaced by the corresponding continuum theory with momentum space UV cutoff Aq =
a~'. After this paper had been finished I had been made aware of the work of ref.[14] where,
using a method which is similar to the one employed in this paper, in this continuum setting
Symanzik improvement had already been accomplished for ;. However, the methods of
[14] are still more complicated than the ones used in the present paper. Moreover, the
more simplified treatment of ® presented in the first part of this paper is crucial in order
to understand how to extend the proof to Q ED,4. This work thus offers a simplified proof
of Symanzik improvement for #; and puts Symanzik’s program for abelian gauge theories
on a sounder basis.

To be somewhat more precise, let me briefly describe the main result for ®;. Let
A € [0,Ay] be a scale parameter. Write Lf}‘;‘}“ (p1,--- yPn—1) for the connected amputated
momentum space n-point Green function at r*! order (r > 1) in perturbation theory, with
independent external momenta p;,... ,pn_1, with UV cutoff Ay, and the internal momenta
(of the Feynman diagrams contributing to it) integrated over the range [A,Ag]. Then it
will be shown that for any given, fixed N > 1 the improved convergence bound

S AT pr, . pne)| S AGP - Plag(he)
can be realized for all r,n by adding to the usual bare ®; action suitable local irrelevant
terms of dimension < (4 + N).

The method which will be employed to prove these results is an elaborated version
of Polchinski’s [10],[14] continuous renormalization group approach as formulated in [11]
and extended to QED in [12]. In the present paper we do not go into all the mathemat-
ical details because these can be found in the aforementioned references (i.e. [11, 12]).
Rather I have made an effort to give a readable account of the method of [11, 12] which
hopefully conveys its inherent simplicity and gives convincing evidence that this method

is indeed a very powerful formalism to investigate structural properties (e.g. perturbative
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renormalizability [11,12], renormalization of composite operators [13], ...) of perturbative
field theories.

In the next Section the continuous renormalization group approach of [11] to the
perturbative Euclidean massive ®} will be reviewed and supplemented with the necessary
ingredients to accommodate improvement terms. The main new result will be the definition
of the improvement terms.

The proof of improved convergence for ®; will be given in Section 3, and in Section 4

I will comment on how to deal with QED.

2. Construction of the Improved Action for &}

2.1 The differential flow equations for the improved Green functions
Choose a number N, N € IN, and keep it fixed in what follows; A;N(Ag = UV cutoff)

will be the factor by which we will increase the speed of convergence of the Green functions.
We make the following Ansatz for the improved action of the Euclidean, massive, and

(for the sake of simplicity of this presentation) also Zz-invariant ®} theory:

ShhoiN(gy = 1 / d'z d'y ¢(z)(C1°) (= —y)e(y) + L™ (g) . (1)

The conventional kinetic term [ d*z ¢(z)(—0 + m?)¢(z), m? > 0, has been replaced by
the regularized version [ d*z d*y ¢(z)(CA°)~!(z — y)¢(y), where the regularization will be
chosen in such a way that in the functional integral more or less just those components ¢(p)
of ¢ are integrated out which belong to momenta p with |p| € [A,Ay]. The first term on
the r.h.s. of (1) represents the 0** order contribution to §4:40N and LA%N comprises all
terms which are of higher order in perturbation theory (i.e. ¢* interaction vertex, counter
terms, improvement terms). I wish to stress that we are going to improve convergence only
for the nontrivial, i.e. at least 1** order, Green functions, because the 0'* order 2-point
function (see (2), (3) below) is given by a simple, explicitly known formula; moreover it is
easily seen that the momentum space 0** order 2-point function converges exponentially.

Let us discuss the regularization. We put

4 e’ (z—y)
Cﬁ°(m —y) = /(%r%p:;-—mz (R(AO,P) - R(A’P)) ’ (2)
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where in principle one would like to set R(A,p) = x[o,a)(|p|), but due to the nondifferen-
tiable nature of the characteristic function this choice would be a disaster for doing easy

estimates. So for technical reasons it is much more convenient to require
R(Ap) = (1-e™M™) K(Z) (3)

where K (f;) is a smooth version of x[o,4)(|p|); namely one imposes that K should be
smooth with K(a) =1, for 0 < a < 1, and K(a) = 0, for 4 < a. The factor (1 — e~*/™)
guarantees that R(A,p) converges to 0, as A — 0, uniformly in p. As a result of (2), (3)
we see that roughly speaking

0 , |p| <A or |p| > A

Ao P
Cx°(p) {(p2+m2)_1 y |l € [A, Ao]

The bare interaction LA%¥ is split into the standard &} piece, G°, and the improve-

ment terms, JAoV;

LAoGN — gho 4 [AaiN (4)

where
Gho = 6m2-fd4m #*(z) — 6Z-/d4a: #(z)0g(x) +A-/d4:c¢4(:c) , (5)

JAN .= f d*z (local, Euclidean invariant, even polynomial in ¢

(6)

and its derivatives, of dimension < 4 + N)
Here the coefficients §m?, §Z, ) and those present in I4% are formal power series (fps)in a
parameter which is called g; the interpretation of g heavily depends on the renormalization
conditions; for instance one can impose renormalization conditions such that g may be
identified with the renormalized coupling ”constant”. One of the important points is that
§m?, 8§Z, ... are supposed to be at least first order in g.
The major aim of this work is to show that §m?2, §Z, ... can be determined uniquely
in such a way that
a) any renormalization condition on the mass, the wave function and the vertex can be
realized;
b) improved convergence of order A; 2~ holds true for all the renormalized Green func-

tions.
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With our notation the generating functional, ZA+A0N(J), of the (unnormalized) Green

functions with |p| € [A, Ao] integrated out (formally) reads
R P m

The generating functional, —log ZA+40iN(J), of the corresponding connected Green func-

tions is written as the sum of its 0" order part, —3 [d*zd*y J(z)CA(z —y) J(y), and of

the higher order remainder, LA A0V,

—log ZMAoN(7) = -1 / d*z dty J(2)Cro(z — y)J(y) + LAAN(9)| s=choy - (8)

In other words, LA 20N () is the generating functional of the nontrivial (i.e. at least 1%
order) connected amputated Green functions with momenta integrated out in the range
(A, Ao].

Expanding LA+A0N as a fps in g, and at each order in g as a polynomial in ¢(p), the

expansion ”coeflicients”
LAMN(  pa1) , r =12, , n o= 2,4,6,... , (9)

are precisely the momentum space connected amputated n-point functions at perturbative
order 7, with independent external momenta pi,...,pn_1; the n'® external momentum,
Pn, 1s fixed by momentum conservation as p, = —p; —ps —+++—Pn—1. The Lﬁ';{‘O;N respect

among others S, (i.e. Bose) and O(4) symmetry:

L{},-‘nAO;N(pla v ’pn—l) = Lﬁ;’ﬂ,Ao;N(pf(l), s ap‘lr('n.—l)) ) Vr € Sy 3 (10)

and

LR (A s s Apgy) = BRI py o Pt} VAE D) (11)

Using the methods of [11] it can be shown that the £2;2N satisfy an infinite set of coupled

differential equations:

BALﬁ;f"‘N(pl § 5 B 1p'n-—1) = .FTI_\;‘AO;N(pl, .o ,pn_]_) ) (12)



Keller 459

where 8y = 0/9A and

AAosN i dat AAN
fr,n ° (pls' .. ’Pn—l) o= _(n-2+-2) j (2_.,3? Q;‘%%iﬂ ' L"-r-,n-;-)z (q’ —q,P15--- ’Pn—l)
Lopt® AAgN
b BB LNy )
r ' =p
n'4n'=nt2
AAo;N
. L:.,.u,,:n ("‘Q,pn’, s 1pn—1)]
symm
(13)
Q:=—p1 — - —Ppn_1, [+ ]symm denotes symmetrization with respect to the momenta
P1,-.- yPn; notice that because of r',7"" > 1 the restriction »' + »" = » implies that

r',r" < 7. Thus the r.h.s. of the differential flow equation (12) consists of a term which
is linear in £ (£ being of the same order as, but having a larger number of external legs
than, the differentiated £ on the L.h.s.) and of a piece which is quadratic in £ (the L's
contributing to which being of strictly lower order than 7).

It is easy to provide an heuristic motivation for the correctness of (12), (13): L’.ﬁ;ﬁ‘“‘N

can be written as a sum over (finitely many) connected amputated Feynman diagrams
whose vertices stem from LA%N (see (4) - (6)) and whose propagators Co%(p) (cf. (2)) are
the only A-dependent quantities. Therefore the derivative 85 acting on such a Feynman
diagram acts only on the lines of the diagram; if the line on which it acts is a 1PI line
then this produces a contribution to the (1-loop graph type) linear part on the r.h.s. of
(12), and otherwise we obtain a contribution to the (tree graph type) quadratic piece on

the r.h.s. of (12).

2.2. The boundary conditions for the improved Green functions

The differential equation (12), (13) tells us how the connected amputated Green func-
tions vary if we slightly change the range of the momenta over which we integrate. The
basic strategy to prove perturbative renormalizability and improved convergence will be to
get suitable estimates on the solution {L2:20iN} of (12), (13). For this reason it is useful

to investigate the boundary conditions which the flow of Green functions obeys, i.e. we

are interested in the behaviour of {£2;30V} as A = 0 and A = Ao. Now, if A = Ag then
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no momenta at all are integrated out, so obviously
Ohodul¥ o  plul . (14)
in analogy to (4) we write
LN = ghe 4 AN (15)

On the other hand, if A = 0 then all momenta < Ay are integrated out and we wish to

impose the renormalization conditions reading
0,Ag;N :
Ly (pi=0) = A (16)

and

ooy = (emP)E | 8,8, L080N(0) L 2.6,,-(62)F ,  (17)

where the renormalization constants A2, (§m?)2 (§Z)E are supposed to be finite and in-
dependent of Ay, but otherwise they can be chosen at will. Probably the most standard
choice of renormalization conditions is (6m2)f = (6Z)F = 0 and AR = (4))7! . 6,1 so
that m and g may be viewed as the renormalized mass and coupling ”constant”. Of course
we will have to show that the general renormalization conditions (16), (17) can really be

realized by adjusting the bare parameters §m?,6Z and X appropriately. This will be done

in a short while.

2.3. The definition of the improvement terms

To begin with, a few technical remarks need to be added. Notice, first, that we
may assume without loss of generality that the UV cutoff Ag belongs to the interval
[Ao,min, 00), where Ag min is some fixed positive number, e.g. Mo gitn = 10'2m. Next it is
convenient to introduce yet another scale parameter, A;; the only restriction A; has to obey
is 0 < A; < Agmin; the point is that we will establish good bounds on the renormalized
Green functions £%2%" by relating these to £AA%N and these latter will be bounded
by doing estimates on £AA0iN | A € [A;, Ag], by using the differential flow equation (12)
for A € [A1,A¢]; to fix ideas let us put A; := %Ao,min- I wish to emphasize that there is
no physics contained in A; and Ag min. Finally, for k € ZZ the symbol 7* is introduced; if
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k > 0 then 7* f(p1,... ,pn—1) stands for the Taylor expansion of f(p1,... ,pn—1) around

P1=-'+=pPp—1 = 0 up to and including the k*® order in p1,... ,Pn—1, i.e.
k
" :
T f(P1,... 7Pn—1) = Z % (%)J f(tps,. .. ’tpn—l) - ) (18)
=0

if £ < 0 we set 7%f := 0.

Let us discuss now the construction of the improvement terms {Iﬁ;’j” }. Keeping in
mind that the Green functions £%2%N computed with the help of the T4°:N’s, should be
closer to the continuum limit, £%°, than the unimproved £%#°’s one expects that the
Z40iN's should contain some information on the theories with larger UV cutoff, i.e. on

' . - - - - - . L]
L%940’s with Ay > Ag. This intuition is made more precise in our formula

oo A:) )

H e () L ;N :

Ir{\,:’N(Pl»- .- sPn—l) = _A dA:) 8A:) -/ dA' T4t fr{k,nAo (Pl: cee 7pn—1) ’ (19)
0 Ay

(AO = [AD,minyoo) y T 2 1)

(F is defined in (13)) which, as I will demonstrate in a moment, gives a recursive definition
of the improvement terms. Equation (19) has not been obtained by trial and error, but
rather (19) seems to be the only natural thing to do once one attempts to prove our
improved convergence Theorem (see Section 3).

It is evident that (19) implies that the dimension of Z2%/" does not exceed 4+ N, as
required; in particular I,‘}‘?jN =0ifn>4+ N. Since gﬁg = 0 for n > 4, and because
N > 1, (15) shows that also L2%N = 0,ifn > 4+ N. Let us prove now that (16), (17) and
(19) provide us also with a unique definition, respecting all the required symmetries, of the
remaining improvement and bare interaction vertices, i.e. of {If.f,",fN, Eﬁ."‘}jN :n<4+ N}
The proof will be carried out using induction in (r,n).

Induction hypothesis: For Ag > Ag min, and for all pairs (r',n') with either (r' < r

and n' > 1) or (r' = r and n' > n) the ZA%Y and £A%Y are uniquely defined O(4)-

r'n r',n!
Ao;N

y —

and S,/-symmetric polynomials in p;,... ,pn —1; moreover, for n' = odd we have T,

r'n
AgiN __
L0 =0.
Induction step (i.e. prove the same properties for Z2%" and Eﬁ,‘;jN): The Green

. AN . . .
function £, is a sum over connected amputated Feynman diagrams whose vertices
1]
Ao,Ao;N

!

are of the type £ where either (r'"' < 7" and "' > 1) or (¢"" = 7" and n'" > n'");
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AaAO;

thus the induction hypothesis says that all the Green functions £/’ N, (r'yn') as in the
induction hypothesis, are uniquely determined (and have all the required symmetries).
Comparing (19) to (13) we thus see that by the induction hypothesis the r.h.s. of (19)
is indeed well-defined, and that l’#;’t;N = 0, if n = odd; obviously I,,“}’%‘N is a polynomial
in p1,... ;pn—1. The O(4)-invariance of R(A,Q), R(A,g) and the induction hypothesis
imply O(4)-invariance of f,ﬁ:{A:’;N, and the induction hypothesis also says that F,QL.ZA:’;N
is §,-symmetric; using (18) this means that Z2%Y inherits these symmetries. Now, if
n > 4 we have [,,’.‘,?,jN = I,{‘,g;N , s0 in this case the induction step is completed. However,
if n < 4 the renormalization conditions (16), (17) enter the game and we encounter the
following situation: By the induction hypothesis all the [,f,‘:’nl,v , and by the induction step
also I,{fg‘” , are known; these vertices, together with the counter term gi‘,g, determine the
Green function E',’.:,,"}“‘N , thus g,’.{; can be adjusted uniquely in such a way that (16), if

n = 4, or (17), if n = 2, is satisfied. This finishes the induction step for n < 4.

It remains to be verified that with this kind of induction scheme we really cover all
pairs (r,n), r > 1, n > 1. But this is easy to understand: First of all notice that for (r =1,
n = 4 + N) the induction hypothesis is trivially fulfilled, so we may start our inductive
process at (r = 1, n = 4 + N). After the first induction step we are lead to treat (r =1,
n =4+ N —1), afterwards (r = 1, n = 4 + N — 2), and so on, until we have reached
and dealt with (» =1, n = 1). But now the induction hypothesis is automatically true for
(r=2,n =4+ N), and so we proceed with the bare vertices at 2°¢ order in g. After this

we move to 3'¢ order in g, and so forth. This finally proves the claim.

3. Improved Convergence for &}

In order to state the subsequent results we need to introduce a suitable measure of the

size of B:Lﬁ;f"‘N , where 8 = 9p*-.-0pn-1 is a momentum derivative of order |w| :=
n—1 4 _

EJ-:l lwyle [wy| = E,;=1 Wiy Wi = (Wj1y... ,Wj4), Wi, € INg. Namely, we define

|| 8= L2:A0iN ||, 4y to be the maximum over all multiindices w with |w| = z and over all

(P1y--- ,Pn-1) With |p;| < max{2a,2b},1 <7 <n—1,of [BFLEMN(py,... ,pn-1)l-

Choose some 7, 0 < 7 < oo, and keep it fixed in what follows. n will indicate the
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range of the momenta p;,... ,pp,—1 within which (i.e. for |p;| < 29,1 < j < n —1) the

improved convergence of Lg"ﬁ“"N will be shown.

Theorem: For the general renormalization conditions (16), (17), for any fixed , 0 < 1 < oo,
all z >0, all Ag with Ag > Ag min and all A € [A1,Ao] we have the bounds

| 82L2A0N |y y < A*T™TF. Plog( ) (20)
“ azaAoci\,;i\o;N ”(A-ﬂ) < A;z—N. A5+N—n——z . Plog(ﬁ-‘f) , (21)

where Plog(-) stands for some polynomial in log(-) whose coefficients depend neither on A nor

on Ay but which may depend onn,A;,N,r,n,z,....

Before proéeeding to the proof of our Theorem I wish to point out some of its immediate

and important consequences.

Corollary 1:
I OnaLon® oy < AG2N - Plog(42) . (22)

Proof: It follows from [11] that £)2°N may be written as a sum over connected amputated

Feynman diagrams whose vertices are of the type Cf}.‘,;ﬁ";N (instead of the conventional

Ef.‘j',fY) and whose propagators are given by (p? +m?)~!. R(A;,p) (instead of (p? +m?)!-

R(Ao,p)). Thus each internal line of such a Feynman diagram carries a momentum p with

|p| < 2A;, and the derivative 8, acts just on the vertices Lf},i;ﬁ";N. A short moment’s
thought, employing (20) and (21) at A = A; and z = 0, leads to (22). |

Corollary 2: The renormalized Green functions E&;‘}O?N (p1y--- yPn—1) converge as Ay — oo,

if|pj| < 21,1 <j <n-—1. In fact we have the improved convergence bound

|£2:ﬁO;N(p1a v apn—l) - Cg:go;N(pla e apn—l)l - AD—I_N ' Plog(%f) ’ (23)
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iflpjl <27,1<j<n—1.

Proof: (23) is a straightforward consequence of (22) (Cauchy sequences). |

Corollary 3: In the limit A — co we find

L?-::O;N(pli e ’pn—l) == 52,’?(?1, v apn—-l) 1 (24)

if lpjl 21,1 < j <n—1, where {L}}0} is the set of standard, i.e. unimproved, connected
amputated ®§ Green functions defined using the same regularization (2), (3) and the same

renormalization conditions (16), (17).

Proof: See Proposition 6 in ref. [11]. n

Let me finally remark that the bound (23) is not the best one obtainable with our methods.
Indeed, in order to derive (21) it is not crucial that the theory under consideration is

actually Z,-symmetric; but we could exploit this symmetry to end up with an additional

factor A-Ay?! on the r.hus. of (21) and so we would get an extra Ay! on the r.h.s. of (23).

Proof of Theorem: The proof is by induction, and the induction scheme is (in principle)
the one which was employed to discuss equation (19). That scheme can be applied also in
the present situation because there is for each » a number n(r) such that ,Cf.";i\mN =0, if
n > n(r); it is easy to verify that one may set n(r) := (2+ N)r + 2.

So choose (r,n). The induction hypothesis is that the inequalities (20), (21) hold for
all || BZ(BAO)Lf,’,ﬁ?‘N l(a,m) With z > 0, Ag > Agmin and either (»' <r,n' > 1) or (r' =,
n' > n).

In the remainder of this Section I will sketch the induction step. Remember that each

time the symbol Plog(-) appears it stands in general for a new polynomial in log(-).
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I: Some preparations

Employing the induction hypothesis on (13) using (20) it is not difficult to check that
for A € [Ay, Ag]
10°Fr ™ flay < A7 Plog(s)) (25)

and similarly (13), (20) and (21) yield (as usual for A € [A1, Ao))
1 8200 Fpsto™ llamy < AGP7N - A*FNTRTZ. Plog(32) . (26)

1

The bound (25) implies that e.g. for Ag > Ag min

44+ N—n
z ey, e A gy NG j—2 -n—j LY
| 2 N ES N laey € D, ATTT-(Ap) T -Plog(32) ,  (27)
j=z

whereas (26) can be applied to prove that e.g. for Ag > A4

I az,r‘l-i-N—naA:)]_—i\’;;Aa;N T 4+§:n Ag—Z(A:)4+N——n—j .(Ag)—Z—N~Plog(%%)
w (28)
Taylor’s remainder formula
1 k
A= rrerspams) = [ at B @ tpas) 09

and (25) can be used to show that for Ay <A< Ajand4+ N -n2>0
“ 82(1 _ T4+N_n)f:}’f,"A°;N ”(A,'l]) < A6—2—N . A5+N—n—~z . Plog(%‘ll) . (30)

but for 4+ N —n < 0 the inequality (30) follows directly from (25) and from the observation
that A3™™2 = A2~ N AJHN-n—2 < AS2-N  AS+N=n=z_ Pinally, by (26) (and (29)) we
obtain for A; < A <A’

” 3:(1 _ T4+N_n)6Aof,j.\,:;A°;N ”(A,n) & AEZ_N . A5+N—n—z . (Ar)—l . Plog(%‘f) . (31)

Notice also that for any A € [A;,A¢] andn+2>5

AR Plog(8) < AT Plog(£) e

II: Induction step for (20)
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(a) zwith z4+n > 5+ N, A = Ay: Because for any w with |w| = z we have agﬁﬁ’gﬂo;” =0
(there are at most dimension < 4 + N terms present in the bare interaction) we

certainly can write
| LAY agy < A*TMF-Plog(£) (33)

where A € [Aq, Ag]-
(b) z with4+ N > z+n > 5, A = Ag: For |w| = z we evidently have 87’G29 = 0; so by
(14), (15) and (19)

oo
. s ALALGN
I 82 Lan N Naoumy < / dns 4 | PRt
Ao

Ay ™
— ;DA JAgiIN
+ ]; dA' ” 8ZT4+N naA:) rnn ° ”(Ao,r’) } ’
1

and applying (27), (28) we can perform the integrals; using (32) we obtain the bound
(33) also in the present case.

(¢) z with z +n > 5, A € [A1,Ao]: Acting with 8}, |w| = 2, on (12) and integrating it

from A up to Ay gives, upon taking norms,
18°£22 N eamy < N OLREAN Neaomy  + AA° N’ || FFLAN Ny
(33) together with (25), (32) lead to (20).

(d) z with z + n < 4; as an illustration the case n = 4, z =0 (n = 2,0 < z < 2
is treated similarly [11]): Remember that [,?,,‘f‘”N is a sum over Feynman diagrams
whose vertices are of the form ﬁf,‘,;ﬁ"‘N and whose propagators look like (p? 4 m?)~!.
R(A1,p); so, using the renormalization condition (16) and the induction hypothesis

for {Cﬁi’:}mN} it is easily seen that
[LogtN(pi =0)] < comst (34)

where ”"const” stands for some Ap-independent number. Integrating (12) from A; up

to A, at p; = p2 = ps = 0, using (34) and (25) we arrive at
Lo N(0)] < Plog(f) (35)

Applying (29) with k =0 on f = ﬁf,;A‘”N, using the already established bound (20)
for || Blﬁﬁng;N ll(a,n)» we end up with (20) for n =4, z = 0.
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III: Induction step for (21)
(2) z with z +n > 5, and A € [A;,A(]: Integrate (12) from A up to Ag, apply 94,5,
|w| = z, on it, and use (14), (15), (19) to get

AAgs N 44+ N— Ao,Ao; N
_a;,paAo‘Cr,;t ” - a;;” (1 =¥ n)fr,v?:. ”

Ao ;
+ /A dA' 82 (1 — TN =)0y FA AN

A
! qw_4+N-n A AesN
- / dA apr BAOJ-',.,“ B
A,

This equation together with (30), (31) and (28) yields the desired bound.
(b) z with z + n < 4, as an example n = 4, z = 0: The same considerations as in part II

(d) of our proof, using the fact that 6A0£2;20;N(0) = 0, show that

08, L2354 (0)) < AF?N - Plog(4e)

o™~r4

Integrating d,,(12) from A; up to A and applying (26) we obtain
Ba Ly @ (0)] < AFPTN AN . Plog(3e)

o T,4 1

and a final application of (29) yields the claim. u

4. Symanzik Improvement for QED

Let me begin by briefly summarizing the main features of the treatment of ref. [12],
where the differential flow equation method (some principles of which have been presented
in Sections 2 and 3) has been utilized to give a rather simple proof of the perturbative
renormalizability of the 4-dimensional Euclidean QED (with a massive photon).

Because the momentum space regularization (3) violates the local U(1) invariance the
starting point of [12] is the fermion-photon theory with bare interaction Lagrangian

LAQ — GAO ,
A z 6u® 22

Gho - / dz {$F2, + 204 + B4 + a(4) r3a)
~ WP + mEY + e(1+20)U4T}
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where the bare parameters z;,... , 24, 6\, ém and §u? are fps in the coupling e depending
on the renormalization conditions to be chosen; the regularized propagators of the massive
fermion and massive photon are given by formulae which are analogous to (2) where,

however, (p? + m2?)~! has to be replaced by

(p+m)~! , for the fermion (m > 0) (37)
or by
601,3 1-2A PaPps 2
+ S , for the photon (p*>0) . (38)
T
et A (B4 5)( + )

In (38) A is the nonzero gauge fixing parameter. The fermion-photon theory defined by
(36) - (38) exhibits O(4)- and charge conjugation-invariance, and this fact implies that
the counter terms (36) are indeed sufficient to account for all possible divergent Feynman
diagrams. And now it is an easy matter to apply the differential flow equation method
to show that for any renormalization conditions the fermion-photon theory (36) - (38) is
perturbatively renormalizable. In a second step one investigates the validity of the QED
Ward-Identities (WI) in the theory (36) - (38), and one can employ the flow equation
method once more to show that if one imposes QFE D-type renormalization conditions on
the theory (36) - (38) then the Q ED WI become fulfilled in the limit Ag — oo.

After this condensed review of [12] let me sketch the realization of Symanzik improve-
ment for the Euclidean QFE D4 with a massive photon. The theory under consideration will
be a fermion-photon theory with regularized propagators (37), (38) as before, but the bare

interaction Lagrangian, LA%Y  will differ from (36) by the addition of irrelevant terms:

LAN  —  gho 4 [AaN , (39)

with GA° of the form (36), whereas A9V is constructed inductively according to the
definition (compare to (19))

Ao N
(845 )

Hilgeee sk 21 geee singJ1yee 3Jn

(=2} A:) A" A' N
= — [ dA:] BA:) / dA’ (T4+N_k_3n‘7:r;k‘,2$; (pl’ tee ,pk+2n—1)) ; ’
ks Al FliyersyIn
(40)

where k =# external photons, 2n =# external fermions, y;,... are photon vector indices,

?1,... are spinor indices of ¥’s and j;,... are spinor indices of ¥’s; as usual r = order
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of perturbation theory. F,. ;%" is determined by formula (15) of ref. [12], i.e. by an

expression similar to (13). Inductively it can be seen that IA%N and thus LAV as well,

is invariant under O(4) and charge conjugation. Thus the methods of Sections 2 and 3 can

be applied again to prove the

Theorem: For any renormalization conditions and any fixed n, 0 < n < oo, and all Ay >

Ao, min we find
vAo; -
|6Ao‘cg;k,°2£r(p17 2o 3pk+2n——1)u1 yoos 1jn| < AD =N Plog'(%‘ll ’ (41)

if |P1| < 277: s 1 |Pk+2n—1| < 27.

Because the dim > 5 contributions to LAY can be shown to be irrelevant, i.e. they

N converge to the

vanish sufficiently fast as Ag — oo, the improved Green functions £%40i
corresponding unimproved ones, £L%A°, if A — co. This observation together with (41)

yields once more the explicit improved convergence estimate

0,Aq; N 0, —-1-N A
I’Cr;k,ozn (pl’ J )I‘l:--- - Lr;:f’Zn(pl’ e )P»u---l -<— AD ! : Plog(j_{;l) H (42)
if |p1| < 27,..., for any renormalization conditions on the fermion-photon theory.

Now, if we restrict ourselves to Q ED-type renormalization conditions (for more pre-
cision on this see [12]) we know that
a) improved convergence (42) still holds;
b) the cutoff-removed renormalized Green functions {L?,;':‘:zn}, by (42) coinciding with
{23501, obey the QED WI [12).

These remarks finish the proof that what we have achieved is improved convergence for

the Green functions of Euclidean Q ED, (with a massive photon).
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