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Massless fermion emission on 1+1 dimensional
curved space-times

Th. Gallay*

Département de physique théorique, Université de Geneve
CH-1211 Geneva 4, Switzerland

G. Wanders

Institut de physique théorique, Université de Lausanne
CH-1015 Lausanne, Switzerland

(24. ITI. 1993)

Abstract. This paper examines the production of massless fermions by the curvature of asymp-
totically flat 1 4+ 1 dimensional space-times. Expectation values of the current and the energy-
momentum tensor in the incoming vacuum as well as inclusive probabilities of detecting outgoing
particles in given states are evaluated. Point-like curvatures give very different results according to
the coordinate system in which they are static for some time. The radiation of fermion-antifermion
pairs is either a steady process with a sort of thermal spectrum or a transient phenomenon accom-
panying the switching on and off of the curvature. The existence of outgoing states occupied with
high probability is also investigated and properties of the fermionic effective action accessible to
our approach are established.

1 Introduction

The purpose of this paper is to present the outcome of an investigation of quantized
massless Dirac fermion fields on curved 1 + 1 dimensional space-times with particular em-
phasis on the pair creation mechanism.

*Part of this work originates in Th. Gallay’s diploma thesis (Ecole Polytechnique Fédérale de Lausanne,
1990).
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Quantized fields in curved space-times have been discussed extensively [1] and the sub-
ject is really not new. Production of spin-% particles in 3 + 1 dimensions has been discussed
recently in [2] and fermions in 1 4+ 1 dimensions have been considered in [3]. There is one
feature of a model of massless fermions in 1+ 1 dimensions which, to our knowledge, has not
been exploited entirely: the general solution of the Dirac equation in conformal coordinates
can be displayed explicitly and it is particularly simple. Due to this favorable circumstance,
the configuration of outgoing fermions and antifermions created by the curvature can be
analysed in great detail and in a non-perturbative way.

Our setup is as simple as possible: asymptotically flat space-times, curvature with
compact support and globally defined conformal coordinates. A complication arises from the
fact that conformal coordinates cannot be asymptotically minkowskian in all directions. This
leads us to equip our spaces with two distinct conformal coordinate systems: an “incoming”
system that is minkowskian in the past of the curvature, and an “outgoing” one, minkowskian
in its future. It is natural to express the incoming fermion field in the incoming system, and
the outgoing field in the outgoing system. This removes the ambiguity in the definition of
the in- and outgoing particles in a natural way.

A drawback of massless fermions in 1+ 1 dimensions is that, due to an infrared singular-
ity, the correspondence between the outgoing fields and the incoming ones is, in general, not
unitarily implementable. This means that the curvature induces the creation of an infinite
number of fermion-antifermion pairs; there is no outgoing vacuum in the Fock space of the
ingoing vacuum. In spite of that, the total mean amounts of energy and momentum which
are produced are finite. The mean outgoing energy and momentum densities can be com-
puted. The outgoing particle content of the ingoing vacuum can be analysed by means of the
inclusive probabilities for the detection of outgoing fermions or antifermions in given states.

Analysing these various quantities, one gets a rather precise picture of the pair creation
process.

In the main applications of our general results we will be dealing with point-like cur-
vatures concentrated on the time axis and switched on during a finite time interval. Two
situations will be considered: in the first one an effective curvature strength in the incom-
ing coordinate system is kept constant during some time; in the second case, it is a scalar
strength that is quasi-static. Surprisingly, the choice between these two possibilities is in
no way innocent: they lead to completely different pair creation patterns. In the first case
one discovers a steady pair emission whereas in the second case, pair emission is a transient
phenomenon accompanying the switching on and off of the curvature. Another surprise is
that in the first type of point-like curvature, the inclusive probabilities of a suitably selected

sample of outgoing states exhibit the form of a thermal distribution reminiscent of a Hawking
radiation [5].

We explain in the following Sections how these findings come about. Our space-times
and their coordinates are presented in Section 2. The Dirac fermion field machinery is
reviewed and the in-out correspondence is defined in Section 3. In Section 4, mean outgoing
quantities like current and energy-momentum are computed in the incoming vacuum. A
master formula for inclusive probabilities is established in Section 5 and applied to our
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point-like curvatures in Section 6. In Section 7 we prove that a strong curvature pulse has
outgoing states which are occupied with probabilities close to 1. The results obtainable
within our approach are completed in Section 8 with a discussion of the implementability of
the in-out correspondence. If implementability holds, an effective action can be defined and
we show that the functional derivative with respect to the metric of its imaginary part is
correctly related to the energy-momentum tensor. Computational technicalities and proofs
are collected in four appendices.

2 Setting the stage

The 1 + 1 dimensional space-times we shall consider are parameterized by conformal
coordinates z* (p = 0,1). They are covered by a single map extending over the whole
(z°% z')-plane. The scalar curvature R(z) is assumed to have a compact support D. The

metric has the form

guu(m) = €™y, (2.1)

Nuw = diag (1, —1). The Liouville field Q(z) is related to the curvature by
(92 - 82) Q(z) = —R(z)e™). (2.2)

At given R this is a nonlinear equation for 2. We define our coordinates in such a
way that Q vanishes outside the absolute future of D. This implies that  is the retarded
solution of (2.2). As shown in Fig. 1, it reduces to functions Q4(z*) of z*, resp. =™, in the
causal shadows D, and D_ of D (z* = (1//2)(z° £ z')): it is equal to a constant g in
between. Our space-times are asymptotically flat but the conformal coordinates z* become
minkowskian only in the past of D: generically they are not minkowskian in its future.

The assumptions we have made are consistent if the retarded solution §) of the nonlinear
equation (2.2) is non-singular over the whole plane. This is not automatically the case and
imposes constraints on the curvature R. The way singularities may appear is best seen if
eq. (2.2) is rewritten as an integral equation

Oiz) = —-;— 1 d’z’ R(z")e™), (2.3)

where C, is the past light cone of the point z. A negative R produces a positive 2 which
gets amplified exponentially. This can result in a divergence of §) at finite times as will be
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illustrated in examples at the end of this Section.

(a).

Fig. 1: An asymptotically flat space-time depicted in two conformal coordinate systems
(a): in the incoming coordinates z the Liouville field € is nonzero in the union of D, Dy, D_
and Do (D = supp R); Q(z) = Q4(z*) + Q_(z7) in Dy U D_ and Q(z) = Qo in Do; (b):
a similar situation holds in the incoming coordinate system y with D, D4, Dg replaced by
D,Dy,Do. D is the image of D under the change of variables (2.4).

We can define, and shall indeed use, a complementary set of conformal coordinates y*
which are minkowskian in the future of D (Fig. 1). The two sets of coordinates are related
by two increasing functions 5* of a single variable:

yt=0"("),  y =97(") (2:4)
The Liouville field Q}(y) of the new coordinates is obtained from Q(z) by the relation
Qy) = Qz) — agp(z) - a_(z), (2.5)

where ay(z*) = In(8:9*(z%)). In eq. (2.5) and in many forthcoming ones a function of y
is equated to a function of z: it is understood that the values of these variables are related
by eq. (2.4). The functions a4 have to be such that §} vanishes in the future of the support

D. This condition fixes the new coordinates up to a global Poincaré transformation. Up to
a translation we have

.
ni(:ci):/ due*t¥) (2.6)
0

with
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A for = <a”
a_(z7) = N (z7)+A for a<z™ b
Qo+ A for z= > b"
(2.7)
—Qo—A for z* <at
ay(zt) = Qi(zt)—Q—A for at <zt <bF
- for zt > bt

The intervals [a¥, bT] are the projections of D on the 27— and z*-axis. A is an arbitrary
constant: a change of A produces a global Lorentz transformation. For any choice of A, y*
is linear in z* for z* < a* and z* > b*.

It is clear that (2.7) leads to a ) vanishing in the future of D; in fact ) is the ad-
vanced solution of (2.2) written in terms of the y-variables. We call the z- and y-variables
respectively incoming and outgoing conformal variables.

Before we close this Section we want to prepare the ground for the illustrations which will
appear in the following Sections. They deal mainly with point-like curvatures concentrated
on the time axis and switched on during a finite time. It is convenient to display such a
curvature as follows:

R(z) = V2e 3% 5(20/V3) (). (2.8)

The factors /2 facilitate the passage to the light-cone coordinates. The exponential factor
has the effect that the strength p is a scalar under conformal coordinate transformations
¥ — 2¥ = f(z*) which transform the z-time axis into the z-time axis [6]. We may also
write (2.8) in terms of an effective strength p(z°/v/2) = exp(—(z°,0)/2) p(z°/+/2) which

is no longer a scalar:
R(z) = V2j(z°[V2) §(z"). (29)

We shall be interested in situations where either the effective strength or the scalar
strength is static during some time. This leads us to define two types of point-like curvatures.

Type I. The effective strength j is quasi-static in terms of the incoming coordinates:
supp p = [0, L], p(u) = p = constant for u € [L;, L,}, 0 < L; < Ly < L.

Type II. The scalar strength is quasi-static: suppp = [0, L], p(u) = p = constant for
u € [L],Lz].

Clearly a type I point-like curvature has a scalar strength which is not quasi-static and,
conversely, a type II curvature has an effective strength which is not quasi-static in the
incoming coordinates. This last effective strength will be quasi-static in coordinates z# such
that their Liouville field vanishes on the image of the interval [L, L,] of the time axis. As
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we shall shortly see, these coordinates exist: they differ from our incoming and outgoing
coordinates because their Liouville field is nonzero in the past as well as in the future of the
curvature.

For both types of point-like curvatures the retarded Liouville field has the form
Qz) = 6(z")F(z~) + 0(—z")F(z+), (2.10)

where 6 denotes the standard step function: 6(z) =0 for £ < 0 and 6(z) =1 for £ > 0.

The asymptotic forms {24 are identical and equal to F. Each type has its own F":
Fi(u) = —6(u) log (1 + [ v ﬁ(v)) , (2.11)
0

FH(U.)

1 fu :
—0(u) log (1 + —2-j dv p(v)) g (2.12)
0
These results illustrate the observation on the existence of {2 made at the beginning of
this Section: 2} is nonsingular only if the integral of p (or p) from 0 to L is not too negative.

If we want the time axis of the outgoing coordinates to be the image of the time axis of
the incoming coordinates, we must set A = —§/2 in (2.7).

The 2-coordinates mentioned above are given by
2% = (%), C(u) = /u dvetF ) (2.13)
0
The Liouville field € of this coordinate system is
N ~ N
() = 5 el ) (F(z™) = F(z*)) (2.14)

where ¢(z) = 6(z) — 0(—z) and the effective strength j is equal to the scalar strength p: it is
quasi-static in the type II case.  is a truly static field, equal to (1/2v/2)pz!, in the double
cone ((L;) < z¥ < {(L;) (p is the static value of p(u)).

We consider both types of point-like curvatures as natural choices. It is a surprising
outcome of our work that they lead to totally different pair creation patterns.
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3 The fermion field and its in-out relationship

We want to construct a massless Dirac fermion field on the 1 + 1 dimensional curved
space time presented in Section 2. We start collecting a few well-known facts [1, 2, 3]. In
arbitrary coordinates the Dirac equation is

() (0, + wu(z)) ¥(z) = 0, (3.1)
where v#(z) = e%(z)7°, e%(z) are the components of a zweibein of vector fields €,(z) (e = 0,1,
eter gur = Nab, €€l = ¢g**) and 7° are flat space Dirac matrices. The spin connection w,
is given by

1 v v _p
&y = Z’Yu [auFY + F,,,ﬁ l (32)

in terms of the Christoffel symbols I'2,.

If the variables z* are conformal coordinates, for instance the incoming variables of
Section 2, one can choose a zweibein of vectors parallel to the coordinate lines, €, =

1
exp(—iﬂ)éfj 0/0z". An arbitrary zweibein {¢,} is obtained from {€,} by a local Lorentz
transformation A:

] . [ chx shA
«&)=MDaE, M= (G o )@ (3.3
The spin connection becomes
1 . 1
.y - (au A+ ¢, vaun) , (3.4)
2 2
;’7,5 — ;?O;yl, E# ¥ e npAEAy, etV = _61!#, 601 = 1.

In the chiral spinor basis where 4° = diag (1, —1), the two components 3_ and 3, of ¢
decouple and the general solution of the Dirac equation (3.1) is expressed in terms of a free
massless field ¢:

. [-%Q(x) % %A(x)] disl. (3.5)

We see that a massless Dirac field is the same as a pair of independent Weyl fermion
fields. Consequently we may restrict ourselves to one chiral component, for instance 1
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which gives rise to the right-moving outgoing particles. We do that and 1 stands for ¥_
from now on.

The curved space canonical equal time anticommutation relations of the 1-field imply
flat space canonical anticommutation relations for the ¢-field, in particular:

1

\/56(3:' -z'7). (3.6)

{106} =

We notice that the ¢-field is gauge independent, i.e. it is unaffected by a change of the
zweibein {¢,}. Such a change modifies only the hyperbolic angle A in the exponential in
(3.5). In the past of D where Q2 = 0, the only difference between 3 and ¢ comes from the
gauge dependence of 1. This leads us to identify the ¢-field as a gauge independent incoming
free field, and we call it ¢;, from now on. The creation and annihilation operators appearing
in its Fourier representation

¢in($) = \/_]é__T_r_ 2_3-7_: Lw dk (ain(k)e"ikx— " b;tn(k)eikz:‘) , (37)

create and annihilate incoming fermions and antifermions:

{a;‘;(k),am(k’)} = {bl(k),b;n(k’)} = §(k — k). (3.6')

What we have done in the incoming coordinate system can also be done in the outgoing
one. The result is an expression of the Dirac field 9 in this system similar to (3.5):

~ 1

$() = e [~30) = 330)] Fou(v). (38)

The Liouville field {0 is given in (2.5). ¥ is evaluated with respect to a zweibein {&}
which is obtained from the canonical {€,} by a local Lorentz transformation specified by A.
$out 18 the gauge invariant outgoing field.

We are primarily interested in t’be correspondence between ¢;, and cﬁmt. It is determined
by the relationship between 1 and 3 resulting from the transformation law of a fermion field
under the £ — y change of coordinates and the {¢,} — {€.} gauge transformation. One
obtains

B) = e [-5 (30) + 3(0-(7) — 04 (24) ~ A@)) | (o) (.9
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(a- — a4)/2 is the hyperbolic angle of the Lorentz transformation relating the canonical
zweibeins {€,} and {¢,}. Combining (3.5), (3.8) and (3.9) we obtain the in-out correspon-
dence:

$out(y—) = e_%a_(z_)¢in(m—)~ (310)

We observe that this is consistent with canonical anticommutation relations for aout
in the y-coordinates if ¢;, satisfies such relations in the z-coordinates. The outgoing field
®out has a Fourier representation similar to (3.7) in terms of the y~-variable. The in-out
correspondence (3.9) determines the Bogoliubov transformation relating the creators and
annihilators of the in- and outgoing fields

Qout Kl K Qin
(bj:.ut)z(K3 Kj)(bt,) (3.11)

The kernels K;(k,p) are nonzero for (k,p) € Ry x R,. Their values in this quadrant are
obtained from a single function U(k, p):

Kl(k:p) = U(k: p)a 1{2(k7p) = U(k’ —P),

- 3.12
Ks(k,p) = U(=k,p), Kulk,p) = U(~k,~p), )
with

U(k,p) = L./ﬂo dz ek (#)-pa] gia-(2) (3.13)

’ 27 J-o

According to (2.7) and (2.3), the explicit form of a_ in the shadow of D is

a_(z7) = —l/ d’uf(z” —u”) R(u)e™™ 4+ A, (3.14)

2J/p

It is instructive to compare our results with the Bogoliubov transformation describing
the in-out relationship of a massless charged fermion field on Minkowski space in a back-
ground abelian gauge field [7]. Formulas (3.12) and (3.13) are valid in this case, with U
replaced by

+oo . s
V(k,p) = 217 L dz el(F-P)z giw-(=) (3.15)

Up to a constant, the phase w_ is given by

wfa )= e/dzu 8z~ — u~) E(u), (3.16)
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where E is the electric field and e the fermion charge.

Whereas the structures are very similar, there are striking differences:

(1) Thzere is)a real exponential exp(1a_(z)) in (3.13) instead of the phase factor exp(iw_(z))
in (3.15).

(i1)) V is simply the Fourier transform of this phase factor whereas (3.13) contains the
hybrid construct [kn~(z) — pz] reflecting the fact that on a curved space the in- and
out-fields are defined in terms of different variables.

Consequently we may expect the discovery of truly new features distinguishing fermions
on a curved space from Minkowski fermions in a gauge field. The following Sections will
confirm this conjecture.

4 Current and energy momentum

We start our investigation of the pair creation mechanism encoded in the in-out auto-
morphism (3.10) with those aspects which do not depend on its implementability. We begin
with the outgoing current: its right component is given by

i) = V2 Blav7) owly7) ¢ out (4.1)

where : : out Means normal ordering with respect to the outgoing creators and annihi-
lators. This current coincides with the full fermion current in the future of D, the support
of the curvature.

If (j— ) is the expectation value of j_°** in the incoming vacuum:
(3-(7)) = (n, 3" (™)) , (4.2)

eq. (4.1) can be rewritten as

j—out(y_) \/— ¢out ¢’out(y ) :in+(j—(y-))
e gz ) + (G_(y7))- (4.3)

Eq (3 10) has been used in the last equality and ;™ is the incoming counterpart of 7_°"
) - m(‘r )¢’in($ ) *in

Straightforward computations sketched in Appendix A lead to the surprising conclusion
that { j_(y~)) vanishes identically. Obviously, this does not mean that there are no outgoing
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particles created by the curvature: fermions and antifermions are produced on top of each
other so that there is no net outgoing current. Recovering both light-cone components,
eq. (4.3) reduces to

~oul —ag(z¥) :in
P (yt) = emox (=) jin o E), (4.4)

Remembering the transformation law of a covariant vector v under a change of conformal
coordinates [04(y) = (dy*/dzt)lvyi(zt)] we see that 3¢ and ;! are the components of the
same vector field in the incoming and outgoing coordma,te systems.

Appendix A tells us that the vanishing of ( j4 ) is due to the relation K3(k,p) = K (k,p)
between the kernels of the Bogoliubov transformation. There is no such relation in the case
of an abelian background field in Minkowski space and the mean outgoing current is nonzero.
In fact, it cannot vanish because of the chiral anomaly.

We turn now to the energy-momentum tensor and define its outgoing form in the same
way as the outgoing current:

giu:( )= "\/"—" ¢Iuta ¢'out (ay‘aout)t ¢‘out : out( _)- (45)

There is a similar expression for 5?,_ in terms of the left-moving $out Whereas 9"“‘ =1

The mean value (5__ ) of g°** in the incoming vacuum is nonzero: according to Appendlx A
one finds

(0--(v7)) = o [202-0 — (3,-0)7] (e7) e72-C7). (4.6)

487r

Remember that (#__) is a tensor component in the outgoing coordinate system. The
corresponding component in the incoming system is obtained by removing the exponential
n (4.6). As a result we recover the asymptotic form of the energy-momentum tensor in the
incoming vacuum obtained by point-splitting [8]:

(8- (@) = 1= [202-92) ~ (2-0(2)]. (4.7)

As (04_(z)) = (1/487) \/—g(z) R(z) (trace anomaly), this component vanishes asymp-
totically in our context.

If we rewrite (4.6) in terms of derivatives with respect to y~ we have

1

(0-7) = 357 (-2 (£ 6))" + 2020 (£ 67)] - (438)
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The function £~ is the inverse of #~ defined in (2.6). Up to a factor 1/2, ( _-) is the
mean energy density or the mean momentum density of the outgoing right-movers. It has
a compact support such that outgoing mean energy and momentum are strictly localized in
the causal shadow D_ of the curvature. Whereas the expectation value (4.8) is not positive
definite, its integral over y~ is positive because 9,-Q_ has a compact support. The y-
variables being minkowskian in the future, this integral makes sense: it gives the total mean
energy carried by the outgoing right-moving particles produced in the incoming vacuum.

In the case of a type I point-like curvature, defined in Section 2, eq. (4.6) becomes

(0 = g [P -2 (14 [ aupw)) aueste)| . (4.9)

The parameter A in (2.7) has been set equal to —$,/2.

If the curvature strength p is kept constant during some time, the mean energy and
momentum density will be constant and positive over the corresponding y~-interval, inde-
pendently of the sign of p. It will be negative somewhere outside this interval, as an effect
of switching the curvature on or off. As long as the strength p is static it induces a steady
production of momentum and energy. The total right-moving outgoing mean energy is

() = 2j+°° ("))

- - (p(z7))2 R (4.10)

481r\/- 1+f0 du p(u )

If we turn to a type II point-like curvature, equation (4.9) is replaced by

(0__(v7))=- 2i (1+ f dup(ﬂ))3 Do-p(z) ™, (4.11)

and we get a completely new picture. The energy density now vanishes where p is static:
energy emission is no longer a steady process but a transient phenomenon accompanying
the switching on and off of the curvature. This turns out to agree with a result obtained
by Isler et al. [3] if one observes that their “eternal star” is a type II point-like curvature.
Eq. (4.11) implies that the total energy is simply

out 1 Lk — =\ 2 Qo/2
(E )=487r\/§ dzx (p(m )) eflo/2, (4.12)

This formula, taken alone, is misleading: it gives the impression of a steady energy
production.
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In 1 + 1 dimensions, the mean value of the full energy momentum tensor iiw(y) can
be determined completely everywhere from the covariant equation of continuity V,0* = 0
combined with the trace anomaly and suitable boundary conditions [4]. In our case this
computation leads to an asymptotic form which coincides with (4.8). As an illustration we
display the complete mean energy momentum produced by point-like curvatures of type I
and II turned on and off instantaneously (p(u) ou p(u) with rectangular profile, amplitude
p or p). For both types we may write

(am(y)) = 2(5-&—(?/))'*‘(511(1/))
(In@)) = 5= [0 —y)HE) +0(™ —yHHEY)] (4.13)
(Balw)) = 7= [0~y )HW") — 00y~ — v H ()]

If the curvature is of type I :

() = 5= Ty 87 —v)00E — ) "
B = i - D)= 80) + § o2 00(E - )]
where L = n(L) = (1 + pL)*(1/p)log(1 + pL). For a type II curvature we have
(PLW) = g Trir=yy O v = y") -

H(u) = p{é(u—[/)w 1+1§p - 5(u)].

The particular values of the factor exp {1}y appearing in eq. (4.9) have been incorporated
in the formulae (4.13-15). They corroborate our previous results: they lead to the picture
shown in Fig. 2. For both types of curvature (590) contains a term localized on the time
axis, on top of the curvature: it is static for type I whereas its strength increases with time
for type II. Two bursts are emitted when the curvature is turned on and off. The second
burst is opposite to the first one in the case of type I and substantially larger in strength
than the first burst in the type II case, if |p|L > 1. A type I curvature produces a term that
is homogeneous as long as the curvature is switched on: it corresponds to a steady emission
of positive energy. No such emission is observed if the curvature is of type II.
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¥ y

Fig. 2: The mean energy momentum produced in the incoming vacuum by static point-
like curvatures of type I and II. The thick lines represent the delta function terms in
(4.13-15). For type I there is an additional steady production of energy-momentum. This
agrees with the fact, established in Section 6, that a fermion whose wave function has
a squared modulus as indicated is observed with a finite probability. The corresponding
probability is negligibly small for type II. :

One of the lessons of this Section is that one has to be cautious in dealing with static
sources. It is only in a particular coordinate system that a given source is effectively static
and sources which are static in different coordinate systems can lead to completely different
physical outputs.

5 Inclusive probabilities

As already said in the Introduction, the main advantage of massless fermions over bosons
in 1 + 1 dimensions is that the outgoing particle content of the incoming vacuum state i,
can be analysed in detail, beyvond the expectation values evaluated in the preceding Section.
As we shall see in Section 8, a generic curvature creates an infinite number of particles; the
distribution of these particles can be caracterized by means of inclusive probabilities, the
simplest one being the probability W[f] of detecting an outgoing fermion in a given state,
for instance the right-moving state f (f € L*(Ry,dk), || f]| = 1) [7):

WIST = (Qins Pouel f10) | (5.1)
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Pout[f] is the projector on the subspace of the Fock space of (i, in which the outgoing

state f is occupied. As we are dealing with fermions, Poy[f] is simply equal to alut[f] @out(f]

where a,u[f] = joo dk f(k) aou(k). Using (3.11) we obtain
0

WIf] = K] 112 = 1 - ||&] £ (5.2)

The second expression is a consequence of the unitarity of the matrix formed by the K s.

Detailed properties of the functional W[f] have been derived in 7] for the case of

Minkowski fermions in an abelian gauge field. The kernel of K| is in general non-empty.
This implies the existence of outgoing states occupied with probability 1. Their number is
determined by the winding number associated with the phase w_ appearing in (3.15).

In the present case, the situation is less transparent. For instance we have no exact

result on ker KIT although we believe it to be empty. What we have obtained is a master
formula for W|[f] which allows the detailed discussion of special examples, as will be shown
in Sections 6 and 7. This formula involves the y-Fourier transform of f:

f === [T dk sy, (53

As explained in Appendix B, the fact that f is regular in the upper y half-plane allows
us to transform the definition (5.2) into the formula

W(f] = %; fdyfdy'G(y,y') ) f), (5.4)
with

exp [~—
£

G(y,y') =

e L

(v(v) + 7)) 1
y) —&(y') Y-y (5:5)

The function £ inverts the relation y = 7 (z), = = £(y), and v is equal to a_ written

in terms of y: v(y) = a-(&(y)). Eq. (2.6) implies that (d¢(y)/dy) = e;(p(—'y(y)); as a

consequence, the denominator of the first fraction in (5.5) is equal to j dz exp(—7(z)).
yl

This shows that G(y, y’) is regular in the whole (y, y')-plane.
Finally we observe that, due to the equalities (A.2), an outgoing fermion in a given state

has the same inclusive probability as an outgoing antifermion in the same state. This agrees
with the vanishing of the expectation value of the outgoing current found in Section 4.
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6 Point-like curvatures and occurrence of a thermal
spectrum

In our first application of formula (5.4) we consider a type I point-like curvature in the
static case (L, = 0, Ly = L in the notation of Section 2). We show that a suitable family
of states f leads to an inclusive probability W|f] resembling a thermal distribution. We
take wave functions f which are well localized inside the causal shadow 0 < y < L of the
curvature (L = g(L)). With such a state, we obtain a good approximation of W([f] if we
replace G(y,y’) everywhere in (5.4) by its exact expression valid on [0, ] x [0, L]. According
to (2.11):

W) = (- 1) 1

1

— log(1 + pL), (6.1)
Y(y) = —Poy — 'é’ﬂo Po

eq. (5.5) gives

(AN ﬁO _ 1
G(y,y") = N (s R (6.2)

for (y,y’) € [0,L] x [0,L]. We have set po = |p| exp(£/2) and j is the constant value of
the effective curvature strength. With this substitution, the integrand of (5.4) becomes a
meromorphic function of 3’ in the upper half-plane. The integral over y' is a sum of residues:

win= 3+ a7 (s+iZn). (63)

n=1

If we observe that the remaining integrals are equal to / ” dk [f(k)]?
0
exp (—(27/po)nk) we may rewrite (6.3) as

_[® |f (k)2 /
W{f]—fo dk1+exp((27r/p0)k)' ()

We see that W[f] < 1 and that W[f] ~ exp (—(2x/po){k)) if the mean value (k) of k is

large.

To go beyond the asymptotic form of W{[f] for large mean energies, it is convenient to
choose a specific state:

RO R e —— (6.4)

Yy —Yo+1i6
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0<yo<L,0<8< Min (yo,f/ — ), w > 0. The ugly factor v/2 in the exponent ensures
that w is an energy (remember that /2y~ = y° — y'). The mean energy of this state is
w + (2v/268)7!: it is close to w if & is large. Under these conditions, the sum in (6.3) is close
to a geometrical series and one has

1 1 1 _a.
O R b ) ’ (¢9)

with 8 = 2v/2n/p,. If the strength po and the time V2L during which the curvature is
switched on are large, we may have poL > 1 and the half-width § of the wave function f can
be chosen such that peé > 1. Under these circumstances, the first term in the right-hand
side of (6.5) dominates and we are left with

1
eF f 1

W(f.] ~ (6.6)

for all values of w, w being a good approximation of the mean energy of the state f, at the
scale 1/3. Equation (6.6) gives the announced thermal-like distribution, with temperature
1/8 and zero chemical potential. Notice that any dependence on the parameters yo and 6
which fix the shape of f has disappeared.

The validity of (6.6) is not restricted to the special form (6.4) of f,. If this function is of

the form g(y) exp (i\/iwy) where g is suitably localized, regular in the upper half-plane and

slowly variable at the scale w™!, w is close to the mean energy and it follows from eq. (6.3)

that W is approximated by (6.6).

As already experienced with the energy-momentum density, a type II point-like cur-
vature leads to inclusive probabilities which differ dramatically from the probabilities of a
type I curvature. Instead of (6.1) we now have from (2.12)

E(y) = y e [1 —~ %poy]“1

for0§y§E:

(6.7)
1

1 2
v(y) = log [1 - 5/’0?}] - EQO

with po = p exp({o/2). Insertion into (5.5) shows that G(y,y’) is now identically zero on
[0,L] x [0,L]. This implies that a state f which is well localized inside [0, L] has a negligibly
small probability W, vanishing in the approximation used before.

Our present findings corroborate entirely the results on the mean energy obtained in
the previous Section. The steady energy production by the type I curvature is in agreement
with the fact that W[f] does not depend on the location and shape of f as long as it is
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well localized inside the region where this steady energy emission is observed. Similarly, the
circumstance that no particles are detected in the shadow of the static strength p of a type II
curvature, fits perfectly with the fact that the energy release by this curvature is a transient
side effect.

Although it is tempting to identify the pairs created by a type I curvature as a sort
of Hawking radiation [5], it is not clear whether this is really justified. A thermal distri-
bution is normally defined in terms of exclusive probabilities whereas equation (6.6) gives
inclusive occupation probabilities for a special sample of states. The correct interpretation
of equation (6.6) deserves further investigation.

For the time being, we may observe that (6.6) is a direct consequence of the fact that
the outgoing variable y~ depends logarithmically on the incoming variable z~. A thermal-
like distribution will appear as soon as y~ exhibits such behaviour over a large part of the
causal shadow of the curvature; this does not require a singular curvature. In this respect,
our results illustrate the ubiquitous character of thermal spectra which has already been
noted [9].

7 In search of high probability states

The inclusive probabilities we have evaluated up to now are all smaller than 1/2. This
is a general trend for states of the form (6.4) and it is not restricted to point-like curvatures.
One may wonder if there were states with probability larger than 1/2, possibly close to 1.
We notice that the states we have considered so far are localized inside the shadow D_ of
the curvature. Although the mean outgoing energy-momentum has D_ as support, this does
not exclude the detection of particles outside this shadow. It turns out that large values of
W|f] are precisely obtained for those states whose extension is large compared to D_.

We illustrate this in the limiting case where the Liouville field of the incoming variables
is constant, equal to )y inside the future light-cone of the origin and zero on and outside
this light-cone:

Qy for z2>0, z°>0
Qz) = (7.1)
0 for z2<0, and 22> 0, z°<0.

Referring to eq. (2.2) we see that such a field is produced by a curvature pulse in the limit
where the pulse is concentrated at z = 0: formally R(z) = —2Qe6®)(x). If A is set equal to
—/2 in (2.7) the ingredients of the kernel G(y,y’), eq. (5.5), become

E(y) = e "Wy, 1(y) = %G(y) . (7.2)



396 Gallay and Wanders

Consequently, the definition (5.5) shows that G(y, ') vanishes in the first and third quadrants
of the (y,y’)-plane. In the fourth quadrant it is equal to

. o 1
Gly,y') = ay‘/__y, -—  ¥>0y <0 (7.3)

with o = exp(—£). G(y,y’) being antisymmetric, (7.3) fixes its value in the second quad-
rant.

The wave functionf being regular in the upper half-plane, its real part is the Hilbert
transform of its imaginary part. Consequently W|f] is determined by Im f alone. If f, and
f- are the restrictions of Im f to R, and R_ respectively, one finds, as shown at the end of
Appendix B,

Wifl = Wefi] + W_[f], (7.4)
with

1
y—y

Wil == [T v [ —— L [10) - v fulow)] 12t0) (1.5)

and a similar expression for W_[f_]. The functions f, and f_ being independent, we may
take f_ = 0 and ask for an f, producing the largest possible W,. The form of (7.5)
suggests that one should choose f; such that the two terms in the square bracket interfere
constructively:

Vo frloy) = —fi(y). (7.6)

The function

o(y) = % cos (- 1og (£)) 60, (1.7)

where a is a constant length, fulfills equation (7.6) but fails to be square integrable. In fact,
this equation has no solution belonging to L?(R;). The best we can do is to choose a square
integrable function that satisfies (7.6) over a large interval [I, L], L 3> I > 0, for instance:

_J Ca(y) for I<y<IL,
frly) = { 0 for y<landy> L. (7.8)
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The normalisation of fy is ||fi|| = 1/v2  (||f]] = 1 implies ||Im f|| = ||Re f|| = 1/v2
because f is regular in Im y > 0). This condition fixes the constant C; if L/l > exp 2 one
finds

C = (log(L/1))"*[1 + O(Q/ log(L/1))] (7.9)

Inserting (7.8) into (7.5) we arrive at

Wilf4) = —ggres + O(1/ log(L/1)) + O (] log(L/1)).. (7.10)
ch

(7*/€0)

As L > [, we see that the outgoing state (7.8) has an occupation probability which is
close to 1 if the strength Qg of the curvature pulse is large. Notice the highly non-perturbative
behaviour of ¢ and W, as functions of {5. We have achieved the goal set at the beginning
of the Section: if Q is large we can exhibit high probability states. Admittedly, these are
rather exotic states, poorly localized and exhibiting peculiar oscillations.

8 Existence of the outgoing vacuum and the vacuum
persistence amplitude

In this last Section we discuss first the implementability of the in-out automorphism (3.11),
i.e. the existence of a unitary operator U such that

tou(k) = Ut ain(k)U, bour(k) = Ul bin()U. (8.1)

In this case there is an outgoing vacuum state Qg in the Fock space of Qin: Qoue = U Tﬂ;n.

Implementability holds iff the non-diagonal kernels K, and K3 of the Bogoliubov trans-
formation (3.11) are Hilbert-Schmidt [10, 11]. In our case, K; and K3 have the same Hilbert-
Schmidt norm and it is sufficient to check if

Tr(KaK]) = I dkjooo dp |Ka(k, p)? < 0. (8.2)

We prove in appendix C that this is fulfilled iff Qo = 0, that is if  vanishes between
the two future shadows of the curvature. Referring to (2.3) this means that the space-time
integral of the curvature has to vanish:

/dzx\/—g(z) R(z) = 0. (8.3)
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This condition can also be phrased in terms of the spin connection. As R(z) =0 if z
belongs to D¢, the complement of D, w, is locally a pure gauge there:

w,(z) = S7Y(z) 9, S(z). (8.4)

We may take

S(z) = exp [/I:(z) dz“wy(z)] , (8.5)

the integral being taken along a curve in D¢ connecting a fixed point Py to P(z). This matrix
is diagonal and it is single-valued in D¢ if

fc dz*w,(2) =0 (8.6)

for a closed contour C surrounding D. According to the expression (3.4) of w, this condition
is equivalent to (8.3). Consequently, the automorphism (3.11) is unitarily implementable iff
the spin connection is globally a pure gauge outside the support D of the curvature.

Finally, at fixed z, 5(z) is the spinor representation of an element A(z) of the Lorentz
group SO(1,1) and (8.5) defines a mapping D° — SO(1,1). The group SO(1,1) being
simply connected, this mapping has a differentiable continuation in the interior of D. The
resulting S(z) defines a gauge transformation on the whole space-time which brings w, to
zero outside D. The existence of such a gauge transformation is another necessary and
sufficient condition for the implementability of the in-out correspondence.

Quite a similar situation prevails for massless fermions in a non-abelian gauge field on
flat space [12]. The condition (8.3) is very restrictive. Generically it is not satisfied, an
infinite number of fermion-antifermion pairs is created and there is no outgoing vacuum
state 1oy 1n the Fock space of the incoming vacuum ,. The origin of this phenomenon is
clearly the infrared behaviour of our massless fermions.

We assume from now on that condition (8.3) is satisfied. If ker K IT = @, the Bogoliubov

transformation (3.11) is weak, Qoy exists and (Qoue, Qin) # 0 [11]. This scalar product
defines an effective action A:

exp(lA) = (Qout, Qin)- (87)

The automorphism (3.11) defines the operator U up to a phase ¢, and only the modulus
of the right-hand side of (8.7), i.e. the vacuum persistence amplitude, is explicitly determined
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by means of the Bogoliubov transformation. Therefore our approach gives only the value of
the imaginary part of A. The outgoing vacuum is a coherent pair state given by [13]:

i o0 (e o]
Oy = €19 (det(mfd )) R i ( jﬂ dk jo dp L(k, p) al. (k) b:rn(p)) i, (8.8)
whese L = —FG 1K, = KL&) . This smplies

T A = -% T (det(KlK:[ )) . (8.9)

Finally we want to check the consistency of this result with the relation connecting the
functional derivative of A with respect to the metric to the energy-momentum tensor:

6A 1 (Qouta Bquin)

s (@) ~ 2V 9@ (o, ) (8.10)

Here 8, is the full energy-momentum tensor. We restrict ourselves to the component 6__:
o —— ylo g — (a_zpi) Yo i+ (0-_). (8.11)
V2

The fermion field 1 _ is given by (3.5) and (0__) = (%n,0-_ ). This expectation value
does not enter into our test because it is real. Using (8.9), (3.5) and (8.8), one finds that
the imaginary parts of both sides of equation (8.10) are equal if

i
., 8K: o SKT O\ 1 3
Tr (Kl 5a—(2) + K, W) = i\f—g(m) Re (0, — 0,) L(u,v)

U=V=x

(8.12)

where L(u,v) is the Fourier transform of the kernel L(k, p) appearing in the expression (8.8)
of Qoue- The validity of this equality is by no means obvious. We sketch in Appendix D how
one can show that (8.12) is an identity although the inverse K;' is not known explicitly.
This substantiates the consistency of our treatment of fermions on a curved space as an
external field problem with the functional integral approach.
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Appendix A. Computing expectation values

We start with the right-moving current ( j_(y) ) defined in eq. (4.3). The definition (4.1)
of the outgoing current and the Bogoliubov transformation (3.11) give

(i-(v)) = —/ dk[ dp{[(Ksz) (KaKl)] (k, p) elk=P)v
+ [(K4K2) (k,p)el-+rlv _ (KIK:I) (k,p) e—i(k+p)y]}
(A.1)

The expressions (3.12-13) of the kernels K; imply
Ki(k,p) = K{(k,p),  Ka(k,p) = K5 (k,p), (A2)

and, as a consequence, the first square bracket in the integrand of (A.1) is identically zero.
Eq. (A.2) implies that the two terms in the second square bracket of the integrand are
complex conjugates. The expectation value { j_ ) being real, the difference of their integrals
has to vanish; this can also be checked explicitly. We conclude that (j_) = 0.

The expectation value (5__ (y)) of the outgoing energy-momentum component o
defined in eq. (4.5) is obtained from (A.1) by changing the sign of the second term in both
square brackets and by multiplying the first bracket by (k + p)/2 and the second one by
(k — p)/2. Inserting the explicit forms (3.12-13) of the kernels and performing the k and p
integrations one ends up with a sum of four integrals over variables ¥’ and y”, each of them
containing a factor (y' — y &+ i€)~*(y" — y & ie)~2. These factors combine together in such a
way that, finally,

oo -2 (")
(6--(y)) = -—/_J; dy/ e W Y -8 - ),

(A.3)

where v and ¢ are the functions defined after equation (5.5). The evaluation of the remaining

integrals gives eq. (4.6) where we have used the fact that the derivatives of _ and a_
coincide.

If one goes through the successive steps of the lengthy calculation we have just outlined,
it is impressive to observe how a sum of nonlocal functionals of a_ turns into a local function
of a_ and its derivatives.
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Appendix B. Formulas for inclusive probabilities

We rewrite the definition (5.2) of W{f]:

Wifl = [ ak [ dp s(k) (KoK (k)" 0). (B.1)
The form (3.12-13) of K, gives
1) = Ltk—p)+ =P [T [T
X exp [ikn“(x) —ipn~ (') + %a_(a:) o %a_ (:c')] :
(B.2)
Switching to variables y = n7(z) and y’ = 77 (z’) and using the identity
—p) = _L oo too L iky—ipy’
Sh=p)=—5zP [ dy [y e, (B.3)
we find:
1) = ._l._ oo Teo iky n —ipy’
(kD) k= o5 [ dy [ dy'et Gla,y)e, (B4)

the kernel G(y,y’) being defined in (5.5). Eq. (5.4) is a direct consequence of (B.4) and
(B.1).

We show now how formulas (7.4) and (7.5) follow from (5.4). Using (7.3), eq. (5.4)
becomes

Wifi=3 oy [ av |22 - ] [L60Re f) - Futo)Re i)

7 Jo oy —y

(B.5)

because, by definition, Im f(y) =0(y)f(y)+0(—y)f-(v). On the other hand, the regularity
of f in Im y > 0 implies that Re f is the Hilbert transform of Im f . Inserting the resulting
expression of Re f into (B.4) one discovers that the terms depending on the product fi f_
cancel and one is left with the form (7.4-5) of W{f].
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Appendix C. Condition for the implementability of
the Bogoliubov transformation (3.11)

We show that ||K;|lus. < oo iff Qo = 0 and if Q is sufficiently regular. First we prove
that |K;(k,p)|? is locally integrable. K, is defined in (3.12) and (3.13). As 8(k + p) = 0 for
(k,p) € Ry x Ry, we may write

1 o

— (k) 6(p) |

—00

dz (eikr;_(x)+%-a.~(z:) _ eik:c) eip:t:. (C].)

We set A = 0 and a= = 0 in (2.7), then a_(z) = Q_(z). lf z < 0, _(z) = 0 and
n”(z) = =z whereas Q_(z) = Qp and 7 (z) = pz + ¢, p = exp(§y), for £ > b~. The integral
b~ 0
in (C.1) is the sum (A 4 B) of two integrals: A = (l/?w)] dz...,B = (1/27r)/b dz....
o -
A(k, p) is bounded and

Bk eib™P itk ﬁei(ub‘+c)k ©2)
(k. p) = 2 k+p+ic_ pk+p+ie | '

If % =0 (u=1), B is bounded and K, is locally square integrable. If Q4 # 0,

1
[B(k,p)| > 5

1 N/
- ’ C3
k+p pk+p (€3)

and B(k,p) is not square integrable at the origin. Consequently K, is not Hilbert-Schmidt.

We assume now {Jp = 0 and show that ||K;||us. is finite. The same manipulations as
those described in Appendix B lead to the following expression for the Hilbert-Schmidt norm
of I{Q:

1Kallys. =~z [ v [ dv' ——Glw) (C.4)

the kernel G being defined in eq. (5.5).

If we assume that v(y) belongs to C*(R), G(y,y') ~ (y—y’) for y ~ y’ and the integrand
of (C.4) is bounded. It is easy to construct upper bounds for G which imply the convergence
of the integral in (C.4).
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Appendix D. Equation (8.12) is an identity

We have to find an expression for 6 K /6g~~(x) and show that this expression turns eq. (8.12)
into an identity. The variation of K requires some care because this kernel depends on the
metric in its conformal form. Our coordinates z# are no longer conformal if the metric
9uv = (exp Q)1 is changed into g,, + 6g,.,. The variation of the metric must be combined
with an infinitesimal change of coordinates such that the new coordinates are again conformal
and the variation of Q can be identified. On finds

Using (3.12-13) an ( ) with A = Qp = 0, this leads to

SKi(k,p) \/

5g“(:c) == exp [1kn T)—ipzT + —;—Q_ (:c')]

(ike“-(”_) +ip+ % Bx—ﬂ_(m_)) . (D.2)

Now we transform the right-hand side of (8.12) so that it becomes identical to its left-

hand side when (D.2) is taken into account. Inserting the explicit form of K, into the
definition L = —K['K, one finds
= 1

L(u, 'u) = ﬂ [)mdk ]Ooodp L(k’p) e—i(kutpv)

b % e T X -1 ign= (=
= —-4—71_—2-/(; dke [_w dz/0 dg K7'(k, q)e"™ )

X -/(;oodpeip(z_”) e72-(2) (D.3)

We write foodp exp(ip(z —v)) = 2n8(2 — v) — /oodp exp(—ip(z — v)). The second term
0 0

produces a K;(g,p) in (D.3) which, in conjunction with K;'(k,q), leads to a §(k — p) after
integration over g. This transforms eq. (D.3) into

L(u,0) = —— [ dk j dq (K7 (k, g) e™ile-0m) 30-() o
1 1 :

27 u—v —1€

If we operate with -i-\/—g(:c) (8 — 0,) on the first term in the right-hand side of this

equation and set u = v = z~, we get an expression which, according to (D.2), is identical to
the first term of the left-hand side of eq. (8.12). If we derive an expression similar to (D.4)

for L* from L = K;‘ KI ~! the second term in the right-hand side of (D.4) is canceled in the
sum L + L* and right- and left-hand sides of (8.12) coincide.
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