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Adiabatic charge transport and topological invariants
for electrons in a quasi-periodic potential and a magnetic field
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Abstract

An analysis is made of charge transport induced by adiabatic variations of the

phases appearing in a quasi-periodic potential acting on non-interacting
electrons. It is proved that this charge transport is quantised, when the chemical

potential lies in a gap. The corresponding integers are topological invariants (first

or higher Chern numbers), which label the gaps. Similar results are obtained for
the Hall conductivity and charge transport of electrons in a periodic potential,
under the influence of an irrational magnetic field.
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1. INTRODUCTION

Unexpected topological aspects of quantum theory have been discovered

in recent years.

On one hand, Berry [1] showed that the wave function of a quantum
system, acquires an additional geometric phase, when an adiabatic loop is made in
the parameter space, if the corresponding eigenvalue is separated by a gap from
the rest of the spectrum, during the adiabatic process. The topological meaning of
this phase was clarified by Simon [2].

On the other hand, Thouless et al [3] (TKNN) considering a system of

non-interacting electrons in a periodic potential and a rational magnetic field,
proved that the Hall conductivity is quantised, when theelectronic chemical
potential is in a gap. Avron et al [4] soon proved that the TKNN integers associated

to the Hall conductivity had a topological interpretation. In fact, the topological
aspect of such type of problems was discovered a bit earlier by Dubrovin and

Novikov [5] and Novikov [6] who were discussing mostly the case of a periodic
magnetic field.

The fact that such different looking problems are intimately related, was

clearly demonstrated by Thouless [7]. He considered a one-dimensional electronic

system acted on by a periodic potential, which varies adiabatically and

periodically in time and discovered that the charge transport induced by such a

varying potential is quantized, when the chemical potential of the electrons lies

in a gap.

Later on, Niu and Thouless [8] and Avron and Seiler [9] looked at the

integer quantum Hall effect, in the case of many-body interactions, using such an

approach. More recently, Niu [23] proposed a way to realise experimentally the

phenomenon of quantised adiabatic particle transport, induced by a slow and

cyclic potential variation.

In this paper, we will also consider the problem of adiabatic charge transport,

but for independent electrons under the influence of a quasi-periodic potential

in one, two and three dimensions. We will prove that whereas charge transport

is strictly quantised in one dimension, it is only given by a linear combination

of integers in two or three dimensions. These integers are topological invari-
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ants. They correspond to first Chern numbers in one dimension and two and

third Chern numbers in two and three dimensions respectively. Moreover, these

integers label the gaps, in the sense that a linear combination of them gives the

electronic density (integrated density of states), in the gap considered. Such a

decomposition of the integrated density of states, when the chemical potential
lies in a gap, has been called a gap-labelling theorem. It has already been proved
in the one-dimensional case by Johnson and Moser [10] and in the multidimensional

one by Bellissard, Lima and Testard [11].

In contrast to these proofs, a notable feature of ours is that it allows an

identification of each integer appearing in the decomposition of the density of
states.

We then consider the case of independent electrons, in a periodic potential

and a constant magnetic field, whose flux through the unit cell is irrational in
appropriate units. (The case of a rational flux was already considered by TKNN).
This problem in two dimensions has many features in common with the one-
dimensional problem of electrons in a quasi-periodic potential with two
incommensurable frequencies. We prove that the quantum Hall conductivity and

charge transport induced by an adiabatic variation of a phase in the potential are

quantised. The corresponding integers are first Chern numbers of a certain vector
bundle. The integrated density of states in the considered gap, is given by a linear
combination of these two integers.

This last result was already proved by Avron, Dana and Zak [12], although
no physical interpretation of one of the integers appearing in the decomposition
was given.

The paper is organized as follows :

In § 2, we derive an adiabatic theorem for the density matrix, valid to
second order in the adiabatic parameter, in a form suitable for our subsequent analysis.

In § 3, we apply this theorem, to get general formulas for the charge transport

and the conductivity tensor, in a class of models of non-interacting electrons.

In § 4-7, we discuss quasi-periodic potentials.
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We prove that certain quantities are topological invariants, in fact, Chern

numbers of certain vector bundles. The basic strategy of the proof is to approximate

the potential by a periodic one, of very large periods. For periodic hamiltonians,

however, the corresponding quantities can be shown to Chern numbers of

a suitable vector bundles. We may note that we have therefore constructed

examples of topological invariants associated to an infinite dimensional geometry.
In this sense, there should exist a connection between our work and the C*-alge-
bra approach used in [11], related to the non commutative geometry of A.

Connes.

Finally, the relationship between the topological invariants introduced
and the charge transport, or the density of states is established by purely algebraic

means.

In § 8, we consider the case of electrons in a magnetic field and a periodic
potential. Putting the problem in a form which closely resembles the quasi-periodical

problem in one dimension, we prove the quantisation of the Hall conductivity

and charge transport and establish the relationship between these

quantities and the electronic density.

2. Adiabatic evolution of the density matrix

Consider a quantum system, whose dynamics is governed by a time

dependent hamiltonian H^=^) during the time interval [0, T]. When the time scale

T is large, the hamiltonian changes slowly with time. In this adiabatic limit, we

will be interested by the evolution of the state of the system, described by its

density matrix p(t), when the family of hamiltonians H\f) possess a common

spectral gap. Initially, the system is in a state p(0), given by a spectral projector
associated to this gap.

Such problems have a long history briefly summarized by Avron, Seiler,
Yaffe [13]. These authors have obtained an asymptotic expansion of the density
matrix, valid to arbitrary order in T if the hamiltonian H(t) is smooth enough
in t. The presence of oscillating phase factors in their expansion prevents however

its use in the case we are interested in. We will therefore derive another

expansion valid to order T*2.

We will make the following assumptions on the hamiltonian :
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1) (H(s)}, s e I [0,1] is a family of self-adjoint operators on a Hilbert space
!tf, with a common dense domain D. H(s) is uniformly bounded from
below, i.e. H(s) > c 1, V s e I.

2) For each \\re D, H(s)\y is strongly C3 on I.

3) There exist a bounded real open set A, belonging to the resolvent set of
H(s), for all s e I.

Under such circumstances, a classical theorem [14] shows that there exist a

unique unitary operator i(t) mapping D into D, strongly continuous on D, and
such that the following equation holds on D :

iht (t) h(y) x(t) 2.1

x(0) 1

To any number [ieA, we can associate the spectral projector

P(s) EH(S) (-co, tf 2.2

This projector is three times norm differentiable on I. One can see this by using
the representation :

dz
2tcìP(s) Q ^ Gz(s) 2.3

where

Gz(s) (z-H(s)H 2.4

and r is a s-independent circle in the complex plane, oriented counterclockwise
and encircling the segment [c, u] on the real axis.

Consider the unormalised density matrix

p(t) x(t) P(0) -C+ (t) 2.5
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It is a bounded self-adjoint operator, mapping fiH into D, continuously differentiable

on D and satisfies on D, Von-Neumann's equation :

ilp' (t) [H^l, p(t)] 2.6

Furthermore, this is the unique solution of 2.6. with these properties.

Let us call

V(s) x (Ts) sel 2.7

If we define

B(s) P(0) - V+(s) P(s) V(s) 2.8

then we see that we can write

p(Ts) P(s) + V(s) B(s) V+(s) 2.9

Furthermore, using the differential equation

ilV (s) T H(s) V(s) 2.10

we see that on D :

B' — V [H, P] V - V+ P' V - V+ F V 2.11
ih

-2,Let us now define a bounded operator A1 (s) e C (I), by

A1 (s) (j> ^ G2(s) Gz(s) 2.12
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Using the relationship

Gz Gz H' G2JZ11 ^z 2.13

and

Gz ° 2.14

we see that on D we have

F(s) [G(s), Ai (s)] 2.15

and therefore on D

m
' V+ [H, Ai] V y (V+ Ai V + V+ Ai V)

or

m m
B' y (V+ Ai V)' - y (V+ Al v) 2.16

which shows that B' is of order T"1. We now repeat the process.

Since we also have, from 2.14

^ dz
Ai-5 <P Wl [GZ,GZ] 2.17

then

Aj - j p n k^ 2.18
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Therefore, if we define the bounded operator A2 (s) e Cfl) by

A2(s)
dz
27tiJ Gz(s) G. (s) Gz (s) 2.19

we see that on D :

Al (s) [H(s), A2 (s)] 2.20

from which follows that

iÜ
B y (V+ Ai V)' +

f \
m
T\ J

(V+ A2 V)*

f \
(V+ A2 V) 2.21

Integrating this equation, it follows from the definition 2.9, that

m
p(Ts) P(s) + y [Ai(s)-V(s)Ai(0) V+(s)]

[A2(s) - V(s) A2 (0) V+(s)]

\
m

ds' V(s) (V+ A2 V) (s') V+(s)

tr

2.22

an equation which holds on the full Hilbert space M, all operators being bounded

and D being dense in 9i

We now see that in order to have an expansion in Tfa we need some

condition on Ai(o). We choose H'(0) 0 which gives Ai(0) 0. We have therefore

proven an adiabatic theorem.
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Theorem 1

If the time dependent hamiltonian H(t) satisfies conditions 1), 2), 3) and H'(o) o,

then the density matrix p(t) is given by :

p(Ts) P(s) +

\
m
T\ J

Ai(s) +
m
TV1 J

A2/ t(s) 2.23

where

Ai(s)
dz
2ni "zv<P ^ G,(s) Gz(s) 2.24

and

sup IIA2T(s) II <
T; s e I

where

and

A2/T (s) A2(s) - V(s) A2(0) V+(s)

ds' V(s) V+(s') A2 (s') V(s') V+(s)

A2(s)
dz
27CÌ Gz(s) G,(s) Gz(s)

Adiabatic charge transport

We would like now to apply the adiabatic theorem we have established,

to the average value, in the statistical mechanical sense of some observable B,

which could itself be slowly time dependent, i.e. a function of the rescaled time j.
If the system was confined to a box of volume V, this would be given by :
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<B>(t) ^tr B(;j)p(t) 3.1

We will in fact be interested by the infinite volume limit for which we
can expect that for suitable operators A

M(A) m lim ^tr A 3.2
V->°o

makes sense. Such a mean should have all the properties of a trace and in particular

the cyclicity :

M(AB) M(BA) 3.3.

For the sake of clarity, we will first give a formal derivation of the corresponding
adiabatic theorem, we are interested in, by assuming simply that the property 3.3

holds for some "good" operators, and then give a precise theorem for a certain
class of hamiltonians and operators.

We want to compute

f f1

lim J. dt {<B>(t) - <B> (0)) lim T J. ds {M(B(s) p(Ts)) - M(B(0)P(0)))
T->» u T-»~ u

If we assume that

f1

M(B(0)) J0 M(B(s) P(s)) ds

then the adiabatic theorem 1 gives

T 1

lim J dt {<B>(t) - <B> (0)} iu J ds (M(B(s) Ai(s))
T->~ ° °

Now Ai has the following property :

Ai Ai P + P Ai 3.4



274 Kunz H.P.A.

In order to see this, let F be a circle in the complex plane encircling the circle T, in
the resolvent set of H(s).

Then

GZ'P=
dz G^
27ti z'-z if Z' 6 F 3.5

and

dz' GZ'
27CÌ Z'-Z(1-P) Gz= <)r-r -r- if zeT

r

Therefore

3.6

dz'
AiP= Orzr(Gz.)G2.P= O^T27U

dz
2TC1

r r'

dz' Gz-
2;ti z'-z

O-« P^rJ Gz GZ (1"P) Al

Hence, we can write, using 3.3 and 3.4

M (B(s) Ai (s)) M (PBAi P) + M (PAi BP)

- <P ^ {M (PB Gz Gz P) - M (P Gz Gz BP)
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M(P< ^i^K-Gi8^
lr

ï P)

Let us define

B (s) <p || Gz(s) B(s) Gz(s) 3.7

then we have

A
PP'B

dz'
2711

dz pOz-r ()-r -r- [GZH'GZBGZ- GZ'HGZ'BGZ]
27C1 z'-z

r r

-p O^g; bgzp

Similarly

A dz
B FP -P (|)SjGzBGz P

therefore

M(B(s)Ai(s)) M([P',B]P) 3.8

and we have the following

Ouasi-theorem

If H'(o) o

;
and M(B (s) P{s)) M(B(0) P(0))
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then

mIb(|) p(t) I - M (B(0) p(0)) [ m I ds M([(F(s), B(s)] P(s)) 3.9

_ dz
where B(s) <P ^ Gz(s) B(s) Gz(s)

In what follows, the operators and in particular the hamiltonian will
depend on parameters cp which span an m-dimensional torus Tm, given by the

product of m circles, identified in the usual way with the segment [0, 1]. The

Hilbert space will be !H= L2 Rd, dx).

In order to give a precise meaning to the quasi-theorem, it is useful to
introduce the following definitions :

An operator B<p will be called ergodic if :

1) Its domain is independent of (p and left invariant by the unitary transla-
—» —»

tion operator Ua eia • P 3.10a

2) Ua BçU^ B<p(a) (3.10b)

and 9(a) defines an ergodic flow on the torus Tm. The cp(a) we will consider

are of the form

Pj(a) cpj + 2w njhcpj(a) (pj + 2mt njh ah j 1 m (3.11)
h=l

the matrix Q being such that QTn 0 implies n 0if ne Zm.

Note that the product of two ergodic operators is ergodic. We will assume
that the hamiltonians H^fl) are ergodic. From this follows that the density matrix
p<p(t) is also ergodic. Another example of an ergodic operator is the momentum

p. An operator Bq, will be called averageable B e fW if :
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1) Bq, is ergodic

2) Bq, is bounded and has a kernel Bq, (r, r') continuous in (r, r') on Rd x Rd

3) SçP IBq,(0,0)l < -,

For such operators, we can define an average

M(B) d(p Bq, (0,0) d<p Bq, (r, r)
Tm Tm

3.12

The kernel of such ergodic operators satisfies

B<p(a) (r, r') Bq, (r + a, r' + a) 3.13

And therefore, the usual ergodic theorem allows us to conclude that for
such operators :

lim
AÎRd T

1 f
XT JAdr b<p (r'r¦) M (B) 3.14

for almost all <p, A is an increasing sequence of parallepipeds covering R

It is useful to find criteria for an operator to be averageable. With this purpose in

mind, we introduce the following class Cof operators : Bq, e C if

1) Bq, is ergodic

2) Bq, is bounded and possesses a measurable kernel Bq, (r, r') such that

i

3)

IBI

lim
r->s

sup
<p;r lBq,(r,r')l/dr' < oo 3.15

I Bq, I r, s 0
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where I Bq, I r, s IBq,(r,t) - Bq,(s,t)l2dt 3.16

These operators are essentially operators of Carleman type, except for the

supplementary continuity property 3). We recall [15], that an operator T is Carleman

if V f s D(T), 3 k(r) such that

l(Tf)(r)l < if II k(r) a.e.

This is equivalent [15] to the fact that T possesses a measurable kernel T(r, r') such

that

ITI (r) 2 2

\J
lT(r,r')|- 3.17

Moreover, if B is bounded, TB is Carleman and

ITBI(r)< NB Hx ITI(r) 3.18

Let us call 2J, the class of ergodic, bounded operators, Bq, such that

|| B II sup || Bq, II < oo.

then we have

Proposition 1

If Ae C Be«, then AB e C

It is clear that properties 1) and 2) are satisfied for A B, since

IABI < IAI UBI 3.19

On the other hand

IARI 2 -
SUP

IABIrs - f:llfll =1 [A(r,t) -A(s,t)] (Bf )(t)dtl

hence I AB I

r s
< IAI r s

UBI 3.20
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The following property shows the usefulness of the introduction of the class Cof
operators.

Proposition 2

If A e C, andB+e Cthen AB e fWand IM(AB)I <, IAI IB+1. The result follows

simply from the fact that B has also a measurable kernel and Schwartz inequality
which gives

IABI S IAI IB+I 3.21

and

I (AB) (r, s) - (AB) (r', s') I < IAIrr, IB+I + IB+IS IAI

Finally, we note that the operation M(B) has all the properties of a trace. Indeed :

1) M (A) M(A+) if
2) M(AA+) SO if
3) IM(AB) I < M1/2 (AA+) M1/2 (B+B)

4) M(AB) M(BA) if

A, A+e <M

Ae C

if (A, B+) e C

(A,A+,B,B+)e C

The only non obvious result is 4).

We have

M(AB) dep

Tm

dr A(p(o,r) Bq,(r, o)

but

J* IAq,(o,r)l lBq,(r,o)l < IAI IB+I

hence by Fubini

M(AB) dr dtpAq,(o,r) Bq,(r,o) dr d(p Aq,(r,o) Bq,(o, r)

from the ergodicity of A and B. Since
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dr IAq,(r,o)l lBq,(o,r)l < IA+I IBI

we can apply Fubini's theorem again to conclude.

We can now give the precise conditions under which equation 3.9 of the quasi-
theorem holds.

Theorem 2

Suppose that the time dependent hamiltonian Hq, (t) is ergodic and satisfies the

conditions

1) (Hq,(t)} te I [0,1], cp e Tm is a family of self-adjoint operators with a

common dense domain D. Hq, (t) is uniformly bounded from below on I x

Tm.

d*
2) For each y e D, -j-j Hq, (t) y is strongly continuous on I x Tm, for each

k 0,1,2,3.

3) There exist a bounded real open set A, belonging to the resolvent set of

Hq,(t), for all (t, (p) e I x Tm.

4) The resolvent GZ/ q> (t) of Hq>(t) is such that Gi, q> (t) e C and

sup I Gi q, (t) I < oo.

<p;t

5) H it) GXf <p (t) maps D into D.

Let Bq,(t) be an ergodic closed operator, with a domain containing
D, V (t, <p) e I x Tm, such that Bq, (t) \|f is continuous on I x Tm, for each

\|/ e D. Assume furthermore that

6) Bq,(t) Gi;29 (t)e C and sup |B(p(t) q.^ (t) <00

Then, if H^ (0) 0 and M(B(0) P(0)) JQ ds M(B(s) P(s)) 3.22
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in the adiabatic limit

lim Jjdt {M(B Ò p(t)) - M(B (0) p(0)} iTi L A

T-»oo
'(jdt {M(B ij) p(t)) - M(B (0) p(0)} iTi J0ds M ([P'(s), B fe)] P(s)) 3.23

where P<p (s) E H (s) (-°°, u) with p e A 3.24

and B(s)=()^i Gz,<p(s) Bq, (s) GZ)q,(s) 3.25

Proof
In the sequel we will use repeatedly the following property, which is a simple

consequence of the closed graph and uniform boundedness theorems.

Proposition 4

Let CZ/q,(t) be a bounded operator strongly continuous in (t, cp, z) on I x Tm x T, of

range contained in D. If AZ/q,(t) is a closed operator of domain containing D and

strongly continuous in (t, (p, z), on D, then

sup IIAZ/q,(t)CZ/q,(t) II <oo.
(t <p z) e I x Tm x r

Consider now the first term in the adiabatic expansion : B(s) P(s). We can write
B(s)P(s) B(s)G?(s) (i-H(s))2P(s).

From proposition 4, sup || (i-Hq,(s))2 Pq, (s) II < oo.

It follows therefore from assumption 6) on B and proposition 1, that B(s) P(s) e C

and

(|UP IBq,(s)Pq,(s)l <oo 3.26

Now, the second resolvent equation and proposition 1 shows that properties 4)

and 5) of Gi,q,(s) are valid for Gz,q, if z e Y. Therefore, P<p(s) e C and
sup | p,p(s) | < oo. SinceP2(s) P(s) P+(s) we conclude from proposition 2 that M

(B(s) P(s)) is well defined.
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Let us now look at the second term in the adiabatic expansion : B(s) Ai(s). We

have seen that in fact Ai Ai P + PAi. On the other hand, we have

/•

(BAi) (s) - O^ (B G \ (s) (H Gz)(s)

r
The second resolvent equation, combined with assumption 6) on B shows that

sup lBq,(s) GJfas)
(cp; z; s)

I < oo 3.27

Using assumption 2) on the hamiltonian, we can conclude from proposition 4

that

sup IH^fe) GZ/q,(s)ll <oo 3.28

s;(p;z

3>k>0

Proposition 1 allows us to deduce from these properties that

sup I Bq,(s) Ai,q)(s) I < »o

(<p;s)

and therefore M(BAi P) is well defined, from proposition 2. Since (BAi P)+ e C,

we see by writing BAi P (BAi P) P that M(BAi P) M(PBAi P), by proposition
3. The result 3.28 shows that Ai^fe) given by

Ai/(p(s) - <p2^r Gz<<P(s) Gz;ç(s)e C

and sup IAi;q,(s)l < oo. Using the fact that BP e Cand 3.26, we conclude that
(<p;s)

M(BPAi) is well defined. Writing BPAi (BP) (PAi), and using the fact that
(BP)+= P (BP)+ and A| - Ai, we can apply proposition 3 to write

M(BPAi) M(PAiBP). We have therefore proved the formally established result

M (BAi) M (PAi BP) + M (P BAi P)
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The remaining steps leading to the final formula 3.23, for this expression, can be
justified in a similar way by noting that sup II Bq,(s) Gz,q>(s) II <~ as a conse-

(s;<p;z)

quence of proposition 4.

It remains to prove that all terms of order T-2 can be neglected in the adiabatic

limit.

Let a(s s') _ (z-H(s)) x(s s') G (s.) 3.29
z;(p;T j <p;T Z/<P

where tq,(s,s') V^T(s) V*r fe') 3.30

we will prove that SUp la T fe,s') II < oo 3.31

zeT
<pe Tm

0<s' <s<l;T>0

and that a, m T(s,s') maps D into D.

We will also prove that the operator

ßz,(|>,Tfe,s') (z-Hq,(s)) az,q,/T(s,s') Gz,q<s') (z-Hq,(s))2 tq,,T(s,s') ^ fe') 3.32

is bounded and satisfies

sup
U ßz,(p/rfe,s') Il < o« 3.33

Z6 r
<pe Tm

0<s'<s<l;T>0

On the other hand, let KZ/q,(s) (z-Hq,(s)) G^' (s)

KZ/q,(s) 2 (H Gz)2 (s) + H^ (s) G2/(p (s) 3.34
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It follows from 3.28 that

SUP {IIKZ/q,(s)ll, HK'Z/q,(s)ll]<oo 3.35

Since we can write

dz
Bfe) A2(s) -2 O^î KB G2)(s)Kz(s)} (G^fe)}*

we see that M(B(s) A2(s)) is well defined

;
and lim

T-> «
ds M(B(s) A2(s)) 0

Writing

dz
Bfe) Vfe) A2(s) V+(s) y O^j {(BG2)(s) ßz(s, 0) Kz(0)} (Gz»(s) az* is, 0)}+

it follows from 3.31, 3.33, 3.35, by proposition 1 and 2 that M(B(s) Vfe) A2(s) V+(s))

;
is well defined and lim ~

T->~ (f

ds M(B(s) VT(s) A2(0) V+(s)) 0.

Finally, a simple computation shows that

Bfe) t(s, s') A2 fe') T+(s, s') -j O^î Az (s, s')
dz

where
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Az (s, s') {(BG2)(s) ßz(s, s') [(H Gz) Kz + K^ + (z-H) H' G2] (s')J

x { Gz»(s) az»(s, s')}"1

+ {(BG2)(s) ßz(s, s') Kz(s')} { Gz»(s) az»(s, s') H (s') Gz*(s')}+

From hypothesis 5) of the theorem and proposition 4, follows that

2«P)l(».Hf(.0)^«qJ,Wl<. (3.36)

This result, combined with 3.31, 3.33, 3.35 again, proves that
M(B(s) t(s, s') Aj (s') x+fe, s'))

is well defined and lim ~ ds ds' M(B(s) TTfe, s') Aj (s') -cf is, s')) 0

To summarize, we have proven that

;
lim

1

ds M(B(s) A2/r(s)) 0

tf

and therefore theorem 2.

It remains to prove however the announced properties of az (s, s') and ßz (s, s').

First of all, note that by proposition 4, for any T : SUP II (ctZ/ <p (s, s') II < oo.
\Z,(p,Sy

On the other hand, the evolution equation for Vfe) shows that az(s, s') satisfies

the integral equation

ccz(s, s') t(s, s') + dt az(s, t) Rz(t, s')

where Rz (t, s') - H (t) Gz (t) x(t, s')

(3.37)

(3.38)
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We have r sup
II (RZ/ q,(s, s') II < oo

(z;<P)

0 < s' < s < 1

T

Therefore, the operator given by the convergent series

oo

az (s, S') xis, S') + 2«r dtl - dtn t(s, tn) Rz(tn, tn-l) R(t, s')
n=l

s' ^ t. < < t < s 3.39
1 n

is the unique solution of 3.37, such that SUP II (rxz (s, s') II < oo. it coincidesn 0<s'<s<l
therefore with the operator defined by 3.29.

3.39 shows that II a (s, s') II < exp r 3.40

Since t(s, s') and RZ/(p (t, s) maps D into D, the series 3.28 shows that rxz(s, s') maps
D into D. We have proved therefore the stated properties of a. We can prove
similarly that ßz(s, s') obeys the equation

ßz, cp (s, s') rxz, q,(s, s') + ßz, q, (s, t) QZ/ q, (t, s') dt 3.41

s'

where

Qz, cp (t, s') - (z-Hq,(t)) Hy it) G2 (t) az, q,(t, s') 3.42

The result 3.36 and 3.40 allows to prove that

sup
" Qz, cp (t, s') II q < o°,

(z;(p)
0 < s' < t < 1

T

and proceeding as for a to conclude that

sup
I' ßz, <p (s, s') II < exp r + q

(z;<p)

0<s'<sSl
T
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This ends the proof of the theorem.

In the applications we will consider the following situation. Our system
will be made of independent electrons interacting with ions by means of quasi-

periodic potentials, depending on some phases 9 and in the possible presence of a

magnetic field.

The electrons will be at zero temperature. The parameter u is their chemical

potential, assumed to be in a gap of the one-electron hamiltonian Hq,. Initially,
these electrons are in their ground state, described by the Fermi projector P(0)

EH(0)<-~'^-

The first situation to be considered is that where only one of the phases, let us say

(pj, changes by 1 in the adiabatic process :

(pj (s) tpj (0) + \|Ks) 3.43

with v'(O) 0 and y(0) 0 \|/(1) 1 and y(s) e C3 (I)

The other phases are supposed not to change.

We note that in such an adiabatic process, the system follows a loop in the

parameter space, so that interesting topological effects can be expected if we
choose for B an observable sensible to the phase of the wave functions. Such

operators exist; they are simply momentum or velocity operators associated to
currents. We will look therefore at the adiabatic charge transport in the space direction

a generated by this process. This is defined by the quantitiy

f
Q(jct) lim e JQ dt [M(vop(t)) - M(v<xp(0))] 3.44

T —» 00

_> 1 _» -»
where v — (p - e A (r)) 3.45

is the velocity operator.
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To call such a quantity charge transport is justified by the fact that the

charge going througe a surface element da pointing in the direction k, at the

point r, during the time interval (t, t + dt) is given by

e(v.dap(t))(r,r) dt

so that Q(jcx) measures the space average charge transported through such a

surface element during the adiabatic process. It has the dimension :

charge/ (length)«1"1.

If we now apply formula 3.23 of theorem 2, we get :

- Q(ja) Q(aj) ffie M(P[Va, Pj]) 3.46

where

\T — rt\
2jciva <Pö^ GzvaGz 3.47

^ dz dP
Pi= (p2^GZ^H<pGz â- 3.48

In doing this, we made the change of variables (p(s) to (p (of jacobian 1), (p being the

variables appearing in the mean. Because of this, condition 3.22 of theorem 2 is

automatically satisfied and there is no more any time dependence of the operators

appearing in 3.46.

The second case we will consider is that of an electric field Ei applied in
the direction 1 on our system and adiabatically switched :

El(t) | g CJO (3.49)

with g(0) 0 g (s) eC3(I)

Choosing to represent it by a gauge potential - a(j) in the direction 1, given by
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afe) ds' g(s') 3.50

the average current generated in the direction k will be given by

jk(t) eM((vk + ej a (£)) p(t)j

The time dependent hamiltonian in this case is of the form

H(t)
1 ^ 5k;l -
2 m 2-t (vk + e —— ait))z +

k=l m

3.51

3.52

3.53

Introducing the unitary operator Sa(t) eiea^ xl we see that

H(t) Sa*(t) H(0) Sa(t)

and the same unitary equivalence holds for Pfe), Gz(s).

Since M f(vk + e -jjp- a(s)) Pfe) j m( Sa*(s)vk P(0) P(0) Sa(s)), if vk satisfies the

conditions of the operator B of theorem 2, we can use the cyclicity of M

(proposition 3) to conclude that

ds MI (vk + e ~ afe)) Pfe) J M (vk P(0))

0

Therefore, if there is no current initially, theorem 2 tells us that

J

(3.54)

lim
T->°°

jk(t) dt -ifie2a(l) M(P[Vk,V]]) 3.55

the time dependence of the right-hand side of the equation being eliminated by
the same argument that lead to 3.54.

Now note that we can write :
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f jk<*>dt
a(l) ¦

1

T
(f

1

T

jk(t) dt

J

E,(t) dt

(3.56)

We are therefore naturally lead to interpret

ou =-iB M(P[Vk,Vi])

as the conductivity tensor, when the chemical potential u is in a gap.

It might look surprising at first sight that this expression does'nt contain a

correction non linear in the electric field, but with the form choosen for the electric

field, it remains always infinitesimally small, during the adiabatic process.

In any case, this expression can be derived from a Kubo formula, which is

a perturbative computation of the conductivity (See [16], for a computation in the

case of a random hamiltonian, for which an average like M(.) can be defined).

The two quantities we have introduced, i.e. the adiabatic charge transport
and the conductivity tensor will be the only one for which the result of theorem
2 could be interpreted in physical terms. During the analysis of the adiabatic

charge transport for multi-dimensionnal quasi-periodic potentials, we have been

lead to introduce other quantities which appear to be topological invariants. The

relationship of these quantities to an adiabatic process remains mysterious, but
we suspect that they are related to higher order terms in the adiabatic expansion.

Finally, we can note that there is a mean like M(.) which appears in the

study of other ergodic hamiltonians, namely random hamiltonians and all the

analysis presented here can be extended to such systems (See [16], for a study of
the quantum Hall effect).
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4. Quasi-periodic potentials

We consider a system of independent electrons, at zero temperature, in
interaction with a quasi-periodic potential in d dimensions. We choose as unit of

length a, a typical length scale associated to the variation of the potential and as

unit of energy ^

The potential V<p(x) will be assumed to satisfy the conditions

1)

Vq>(x) 2* a(n) exP 2îI i (°/ ß x) + 2jc i (n, (p) 4.1

ne Zm

where Q is an m x d matrix, defining the basic frequencies of the potential.
In order to define a quasi-periodic potential, Q will be assumed to be such

that flTn=0 implies n 0, for all n e Zm. The phases (p e Tm, the m-
dimensional torus

2) a* (n) a (-n), so that V<p(x) is real

and

£ la(n)l! SUJ Imi [ <oo 4.2
neZm (I* is m J

Under this condition Vq,(x) defines a bounded multiplication operator on
9(= L 2 (Rd, dx), which is in norm C3(Tm).

The associated one electron hamiltonian will be given in these units by :

Hq, -\a + Vq,(x) 4.3

which is a self-adjoint operator on the dense domain
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D {v|/eL2 k4|v(k)l2ddh<oo} 4.4

which is simply the domain of the laplacian.
This domain is left invariant by the unitary translation operator Ua exp i a* p?

and we have

UaHq, U;1 Hq,(a) 4.5

where (p(a) (p + Q a 4.6

The condition imposed on Q guarantees that (p(a) defines an ergodic flow on the

torus Tm. We see therefore that the hamiltonian Hq, is ergodic.

We also have (a known result, see for example [17])

Lemma 1

p(H<p), the resolvent set of Hq, is independent of (p.

Proof

Consider the functions Fz ((p) { o if z « p(H

4.5 shows that Fz ((p) Fz (q> + Qa)

The ergodic theorem then implies that Fz (cp) is almost surely constant in cp. On

the other hand, the norm continuity in cp of Hq,, implies that p(Hq,) is continuous
in 9. This shows that Fz (cp) is continuous in (p. Indeed, I Fz (cp) - Fz (cp') I 1 if
ze p(Hq>), zt p(Hq,-), or ze p(H<p'), z <t p (Hq,). But if ze p(Hq>), 3 8(z, cp), such that if
I (p' - (p I > 8, z e p(Hq,0, hence I Fz (cp) - Fz ((p') I 0 if I <p' - <p I < 8.

Consequently, Fz (cp) is constant, which proves the lemma.

As we mentioned before the time dependent hamiltonian associated to the adiabatic

process in this case will be H(t) H<p(t)

where (pk (t) ^ + \ \|f(t) 4.7

with \|/(0) 0 y(1) 1 V (0) 0 and y(t) e C3 (I)
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We see that conditions 1) and 2) on the hamiltonian in theorem 2 are satisfied as

a consequence of property 4.2 of the potential and the definition of (p(t). Lemma 1

shows that condition 3) is also satisfied. The remaining conditions will force us to

consider only the case where the space dimensionality d 1, 2, 3.

Proposition 5

If l<d<3 Gi,„.e C and SUP IGj,«.! < °om q>; t vt

0 ^nOIndeed, the first resolvent equation G^q, G" + Gy Vq, G^q, with

-o r 1
GV =(i + fAH 4.8

and the fact that SUP II Vq, II < oo will give the result, by proposition 1, if we prove

it for G?.

G? has a kernel given by :

"

ddk
G^ (r, r')

(2jc) d k2
i- T"

exp i k (r - r')

therefore Ig9|2 IG?(r,r')l2dr'
ddk 1

(2ît)d k*
1 +4

< oo if d < 3

and

IG?I sfr
ddk
(2jc)c

| i_e ik(s-r) 12

k4
1+T

tends to zero, if d < 3, when r -» s. Therefore, G? e C

We also have



294 Kunz H.P.A.

Proposition 6

H_ (t) Gj,q, (t) maps D into D.

We have to prove that (9q>. Vq,) G^q, maps D into D.

But
2

[p Ocpj VqO G°;(p V] (r) (-A d^ VqJ (r) (G° V) (r)

+ 2i(V3q,jVq,)(r)(pG9 V)(r)

2

+ (ôcpjVq^fe) (p G? y)(r)

Since II -A 3q* Vq, II „ < oo and II V9q>. Vq, II
o= < oo from condition 4.2 on the

2
—^ n 9 —^ n 9 9

potential, and p Gy y) e L as well as p Gy y) e L for any yeL we see

that 3q>. Vq,Gj \|/ e D for any y e L2. The result follows by using the first

resolvent equation.

We now look at the conditions for the operator B(t) that we take as B(t) pk.

It is clear that it is an ergodic operator, closed with a domain containing D.

We have moreover

Proposition 7

2If d<3 ,pk Gi;2t e Cand sup |pk G.2^ <

The first resolvent equation gives

2 ,7-0x2
Pk G,£ Pk(G^[l+Vq,Gi,q,] + Gy pkVq,Gi;^

Pk(G°)2 is bounded. Since pk Vq, Gj,q, pk Vq,) G^q, + Vq, (pk G^q,) and

SUP II pk Vq, II « < °o from 4.2, and II pk g9 II < oo, we have from the first
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resolvent equation SUP II pk Vq>Gj2 II < oo. From proposition 1 follows therefore

that suPlpkGj.2 I <oo if lpk(G9)2l <oo but

0\2 i 2lpk(GV)faz -j^d Pk2 <~ if d<5.
(27C) <l+£2

We can therefore conclude that theorem 2 is valid in the case considered. We

summarize the results in the

Theorem 3 Let Hq, be the hamiltonian

Hq, -j A + Vq, (x)

If the quasi-periodic potential satisfies the conditions 1) and 2), the adiabatic

charge transport corresponding to the adiabatic change of (pj from 0 to 1 is given in
e

units of —^ by the expression - Q(ocj), with

Qtaj) i M (P[Va, 3^P])

•v.
dz

where Va (|) ^ Gz paGz

if the space dimensionality d 1, 2, 3.

We will not consider in this case, the conductivity tensor, since it will be

zero in most cases, because we have not applied a magnetic field on the system.

5. The topological invariants and the periodic approximation

We will see that in one dimension, charge transport is quantized, because

it is a topological invariant. In analyzing the multi-dimensional situation, we

were led to introduce other quantities, whose physical interpretation remains

elusive, but which are also topological invariants. They are defined in the following

way. If we denote the generalized velocity operator Va of § 4 by Pa and grby

Pj, then charge transport Q(a j) is given by the expression
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Q(ctj) iX <-D*M(P P„(a) P«(p) 5.1
n

where jc is a permutation of a and j. It is antisymmetric in a and j. We then
define the two quantities

Q (a j ßk) - X <-l>*M (P PÄ(a) P«(j) P*(ß) P^k)) 5.2

and

Q (a j ßk yl) jr X W M (P P«(o) P*(j) P*(ß) Ptfk) P*(y) Pjrti)) 5.3

n being a permutation of the indices appearing in the sum. The Greek letters

designate velocities, whereas the Latin ones correspond to phases. These expressions
are fully antisymmetric in all their indices. They make sense, since we proved in
§ 4 that Pa P*, Pj P{ belong to C The operator Pa can also be regarded as the

derivative of the projector P with respect to some variable. This can be seen as

follows.

a=i
Let S\ exp i A Xa x« 5.4.

If A is an averageable operator (A e fW), we define

A(X) S'J A Sx 5.5

which is such that

M (A(Â)) M (A) 5.6

On D the unitary operator Sx transforms the hamiltonian H in the hamiltonian
H(X):

H(X) S-^HSx | X (pa + Xa)2 + V 5.7

and since
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g^ p« + Xa 5.8

the operator Va is transformed into Va (X) :

V«(W ^S GziX)ipa + Xa) GZ(W =3^P(X) 5.9

Property 5.6 shows then that Q(a j), Q(a j ß k), Q(a j ß k y 1) can be written in the

form 5.1, 5.2, 5.3 in which Pa gx^ and the expression for these quantities is

independent of X. This fact will appear useful later on.

We are now going to prove that these expressions are topological invariants.

More precisely, in one dimension Q(a j) is an integer, whereas in two
dimensions this is the case for Q(a j ß k) and in three dimensions for
Q(aj ß ky l).The general strategy of the proof is simple, but perhaps obscured by
the technical details. We will approximate the quasi-periodic potential by a

periodic one. The approximation will be such that the gap is preserved and the

quantities like Q(oc j), Q(a j ß k)... are given as the limit of the corresponding ones

for the periodic potentials. Finally, for the periodic potentials, they will appear as

Chern numbers of certain unitary vector bundles. This will prove their

quantization in the quasi-periodic case.

We approximate the potential Vq, by a periodic potential V of period L,

in the following way. If we call Al the d-dimensional cube [0, L]d, then we take

Vm M V<P M when x e Al, and extend it periodically, i.e. vjr (x + n L) V^ (x)

for all n e Z d. Note that v|r is uniformly bounded, so that

HVII sup (iy (x)| (| v^(x)|) < oo 5.10
(p;x v f

The corresponding periodic hamiltonian HJ-j is defined as

t£ 4 A + \£ 5.11
cp 2 cp
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One easily sees that H q, is the strong limit of H but this property doesn't

guarantee that a gap of H q, corresponds to a gap of H ^,when L is large enough.

This will be the result of the following lemma, in which p(H) designates the

resolvent set of a hamiltonian.

Lemma Let A be a compact subset of p(Hq,) n R, then there exist a L0(A) such that
Acp(HJ-;)n R, for all (p.

Proof If Aq, is a bounded operator of kernel Aq>(X, x'), we will call

/.

lAli SUP IAq>(x,x')l dx' 5.12
x;(p J v

then we have the inequality

lABIi < I Ali IB Ii 5.13

In order to prove that for all ze p(Hcp) we have I Gz 11 < <*>, we note that it follows
from Schwartz inequality that :

IGzl2<c(e) sup II Gz(a) I (5.14)
1 Ial se

where

Gz(a) exp (a, x) Gz exp - (a, x) (5.15)

On the other hand, one can show that

laTIe IIG*(a)"^-e(d + l)b <516>

where

b l!]!d (|IGzPj«falGzU

Let us now assume that there exist an energy e e A in the spectrum of

HJ". By Bloch theorem, there exist a solution of the equation HJ^ \j/L e \|/L, such
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that sup( I \|/L(x) I, IV \|iL(n) I < oo. This function \yL is also a solution of the equation

VL(x) Gz (x, x') (VL - V) (x') y GO d x' 5.17

-¦xr
Indeed let (pn (x) \|/L (x) fn (x), where fn (x) exp — and en (e - HL) (pn Since

£n (x) 5(âfn) (x) yix) + Vfn (V \|/L) (x), we see that en eL2n L« and

lim en (x) 0. As Çn e L2n U» the equation en (e - H) cpn - (VL - V) cpn can be
n -» »o

solved in L2.

9n(x) Ge(x,x') en(x')dx' + Ge (x, x') (VL - V) (x') Cn (x') dx'

As I Ge 11 < oo, this equation holds pointwise. Taking the limit n going to infinity
gives 5.17.

On the other hand from 5.17, follows that

HyMoo < 2 II VII f(e,L) lyM

Iwhere f(e,L) sup Ji dx' IGe(x,x')l
x;cp Rq\Al

5.18

5.19

If we can show that there exist an L0(A) such that if L > L0(A), then

f(e,L) <2|V| Vee A, (5.20),then «v1-!!«, 0, which would contradict the

assumption and therefore prove the lemma.

The second resolvent equation gives

lf(e,L) -f(e',L) I < le'-el IGe11 tGe-11

There exist therefore for all e, a 8(e) independent of L such that
lf(e,L) -f(e',L)l Seif le'-el <8.
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On the other hand, there exist a finite covering of A by balls of center ej and radius

8, such that for every ej, there is a Lj such that f(ej Lj) < e. Since 5.19 shows that

f(e, L) is decreasing in L, we have

f(ej, L) S e

if L > S"P Lj and therefore 0 S f(e, L) S 2 e

which proves 5.20 and ends the proof of the lemma.

We are now able to define the expressions corresponding to charge transport
Q(ocj) and the other quantities for the hamiltonian H For any z e T, we can
define

<$,-<*-"ir1

if L>Ln and sup
z e r
(peTm
L>L0

lc^V <oo

5.21

5.22

The projector PL is defined by PL 5-7 Gz
dz

5.23

and Pa "O
dZ T T

tr-? Gt Pa Gt
Z7T.1 z z

5.24

3c* PL- >L_ O 27ii Gz a<Pj VÌ Gz 5.25

The equation

G,L Gz+ GZ(VL-V)G^ Gz+ G^ (VL-V) GzjL 5.26
z * z

and equations 5.22 allows us to deduce from the corresponding properties for the

resolvent Gz, q, that
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a= sup {i qt I,I qL i, i q^pa», i q>«i, i q^vj i qL<^ vj i) 5.27

ze r
(peTm

L >L0

is finite. And we conclude that if we call Ply P we have

pL =(pL)+e Cfor s 0, ex orj. 5.28

and

sup pL y ^
cp;L>Lo 8*

5.29

We can therefore define the quantities

QL(aj) i X W m(pL P,Ja) p^) 5.30

QL(ajßk) ftX <-D"m(f«. pLa) P^ jjfa .P^) 5.31

QL(ajPkYl)=ftX (-1)*m(pL pLa) P^ PjJß) .^k) P^ PjtL})

5.32

where now we understand by M(A :

m(aL) Lw Ld(p a* (x-x) 5-33

Note that this definition for an operator A related to the quasi-periodic hamiltonian

coincides with the old one.

We can now prove that these expression converge to those of the quasi-periodic
hamiltonian, when L -» oo.
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Let us call m (A) M(AA+)1/2

We first prove lim m (ps - P^) 0
L -» oo

for s 0, a or j.

5.34

5.35

This will result from the following property

If A«, (z) e 1 and I AmCz) I < oo
T sup Y

zeT
<P

then lim ([) d I z I m (A(z) (V - VL)) 0
L-

5.36

5.37

L -> oo

and lim C) dlzl m [A(z) id^ (V<p-Vfa] 0
Cpj Wq,-V(p; 5.38

Indeed

m2 [ACV - VL)] J dx

AL IALI

r r
dep

2 nr _ "uL\2dy IAq,(x,y)lz(V-VL)z(y)

so that by the ergodicity of Aq,

m2[A(V-VL)] < 4 II VII2 J dx

AL IAlI dep dy lAq, (0,y-x)l2
Rd\AL

Let g(x) dep (j) dlzl I A(^ (0, x) 12. From 5.36, we know that g e Li, therefore

O dlzl m [A(V-VL)1 < ITI172

r

V/2
J dx

al IAlI dy g (y-x)
Rd\AL

tends to zero, when L tends to infinity. The same proof goes for 5.38, since

sw »a<Pjv; «~ < -•
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Proposition 1 gives :

m (AB) S m (A) sup || Bq, I

Using equation 5.26, we see therefore that

5.39

m(P-pL) S O dlzl m [GZ(V-VL)] SUP I Gt«, I

(p;z ;L T

r
which tends to zero by 5.37.

Since

dz
PJ-pJ'SBC,äd ^J^ç-Vj) GzL+GzOq,j(Vq,-Vj))GzL + Gz(Vq,-vL)GzLj)

~ ^ ~ *~"
cpj V<pGzwhere GZ/j d^ Gz Gz3«,: V„G

and the corresponding expression holds for G~? ¦

We get, using 5.39

mffj-P1}) < a Odlzl (m[Gz,j(V-VL)] + m(Gz3,pjCV9-vj)} +

r

+ a2 Odlzl m(Gz(V9-v{;))

But since Gz,j and Gz both satisfy condition 5.36, we see that
lim m (Pj - PL. 0, by 5.37 and 5.38.

L-> oo

Finally, we note that

dz
Pa- PLa Caa {Gz,a(Vq,-VL) GZL + Gz V„ - v£ G^a

r
where Gz,a=GzpaGz and GzLa GLzpaGLz.
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Since both GZ/ a and Gz satisfy condition 5.36 and I q,2 II S a2, we conclude

that lim m(P - P\) 0
L-»oo a a

Consider now the difference between any of the quantities Q(ct j...) and QL(oc j...).
It will be made of a sum of terms of the form

M(PL P\,~. Ps^5Ptk PSk+1... PSn)

¦"ffpVw-PHpL1- P4-l)

where 8 P Ls Ps - P Ls-

By proposition 3 I M(AB) I < m (A) m (B+) so that each term in the difference

is bounded by

m(8 P\)m( PsLkl... P\ PSk... PSk+1)

which tends to zero, from 5.35, 5.29 and 5.39.

We have therefore proven that :

Proposition 8

1) lim M(PL) M(P)
L-> oo

2) lim QL(ocj) Q (aj) lim QL(ajß k) Q(ajßk)
L —» oo L -» oo

lim QL(ajßkyl) Q(ajßkyl).
L -> oo

6. Chern numbers

The usefulness of the periodic approximation will appear by expressing
the quantities related to adiabatic charge transport we have introduced, in a more

transparent way.
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The hamiltonian HL commuting with the abelian group of translation

T(n L), Bloch theorem tells us that it is unitarily equivalent to

11 dka HL (k) 6.1
a=l

where H (k) is the operator

HL(k) =\ £ (Pa + rka>2 +
a=i

VL(r) 6.2

defined on L (Al), with periodic boundary conditions.

The quantities PL, PL p\ commuting also with the translations, they admit the

same integral decomposition, so that in the expression for the topological invariants

5.30, 5.31,5.32, we can simply replace PL by

dz
PL(k) O 2^y Gk(k)

r

pa by

6.3

pa(k) 4 â G* (k) (P« + T ka) G*(k)

r
3PL(k)

and finally P\ (k) by -^
The average M(AL) of such observables meaning now :

U dka J d(pTrAL(k,cp)
r»=l lm

M(AL) rL̂ a=l

6.4

6.5

This is possible, because GL(k) is compact and PL(k) is trace class, as is easily seen.
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Now since

2jc L
Pa + T ka 2^ 9ka HL*) 6.6

and G\ is C2 in k, we can write 6.4 more simply as :

Pa<k>= 2i^apL(k> 6.7

This allows us to get a more compact expression for the invariants using the

language of differential forms. Considering PL(k, cp), as a 0-form, let dP (j a k ß...) be

the exterior derivative of P with respect to the variables (cpj, ko, epk/ kß,...).

For example

dPL(j a k ß) d^ PL dep) + 3ka PL dk« + d^ PL dcp>< + 3kß PL dkß 6.8

Let Q(j a k ß) be the associated 2-form

a (j a k ß...) PL dPL (j a k ß...) A dPL (j a k ß...)

Since P is a projector we have

PL dPL dPL (1 - PL)

6.9

6.10

Using these quantities we can write the invariants as

QL(ja)=^ (3kc3epTrßL(ja) 6.11

QL(jakß)=-^2 dk d(p Tr (A ßL (j a k ß )2 6.12

QL(jakßly) =t^3!(2jt)3 akaepTr(AQMjakßlY)3 6.13

The symbols elk, dep meaning all the differentials which are not included in the

form QL.
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At this stage however, the variables k and ep are not quite on the same footing,
because the projector P is periodic in the ep variables but not in the k variables. The

projector P (k) is however unitarily equivalent to a projector F (k) periodic in the

k variables. Indeed, let H (k) be the hamiltonian

6.14

6.15

HL(k) -\a + VL

defined on L (Al) with the k-dependent boundary conditions

VC...L,...) ei27tk«V(...0,...)

grad\|/(...L,...) ei2,tk« grad y(...0,...)

This hamiltonian is periodic in k.

If F (k) is the projector, defined by

FL(k) (J) ~ (z-H^k)'1 6.16

It is related to the old one PL(k) by the unitary transformation

t 27t t 2jc
PL(k) exp -i-jjk.r FL(k) exp+i^k.r 6.17

Considered as a function of the variables k and 9, FL(k, ep) can be seen as defined

on the d + m torus [0, l]d+m. We are now going to prove that the invariants given

by equations 6.11, 6.12, 6.13 take the same value if we replace PL(k) by FL(k) in the

corresponding expressions. This fact already points to their topological nature.

2jc
Let ß(k) - i -7- k r and consider the family of projectors

Pt e*ß FL(k) e -*ß 6.18
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where t e [0, 1].

Defining as before the exterior derivative dPt and the 2-form Qt Pt dPt A dPt, let

Ck (t) Tr (A Qt)k 6.19

we have

Ck kTrQA(A Q)k"1 6.20

but Q P [dP, dß] P + [ß, Q] 6.21

therefore

C^ k Tr d (P d ßA fi1'-1) + k Tr Pdß AfdQ*-1 + [Qk-1, dP]} 6.22

Using the fact that dQkl (AdP)21'"1, we see that dCikA P + [Qk_1, dP] P 0 and we
can conclude that

Ck(l) -Ck(0) dp 6.23

where

;

&

ïk-ldtTrPdßA O*'1 6.24

Since dß -i^ X ^dk" 6-25

and dP e*ß {t [dß, F] + dF) e-'ß 6.26

we see that u is periodic in k and ep, therefore when we integrate 6.23, on a 2k

torus, we get, using Stokes theorem

J Ck(l)= J Ck(0) 6.27
™2k T2k
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The case k 1, 2, 3 corresponds to the invariants 6.11,6.12,6.13 and we can replace
in these expressions the form Qh by that defined on a 2k torus

ÖL Cj a k ß...) FL dFL (j a k ß...) A dFL (j a k ß...) 6.28

We are now going to show that the quantities appearing in the expression 6.11,

6.12, 6.13 for the invariants are characteristic Chern classes of a vector bundle.

Consider the following situation. Let P(x) be a family of projectors of
dimension N in a Hilbert space, M, x being a point of a manifold M. Assume that

Pe C2 (M). If 0a is a coordinate neighborhood of M, a theorem of Kato [18] en-
N

sures that there exist an orthonormal set of N vectors in 9{, {VfGO) which
1 Jj=i

span the subspace corresponding to P, when x e 0H, and which are C2 in x. Let
gan (x) be the N x N matrix whose elements are given by :

g^ (x) (<(x),Vß(x)) 6.29

when x e 0a n Oß. It is easily seen that

gaß(x) e U(N) 6.30

and

goß(x) Sß^ - SotyW 6-31

when x € 0a n Oß n Oy, the gao (x) being C2. We thus see that the set of ga» constitute

a system of coordinate transformations with values in the group U(N), in
the sense of [19]. A theorem [19] ensures that there exist a vector bundle
E(M, Cn, U(N)), with base space M, fiber Cn and group U(N) and coordinate
transformations gttß.

Let us define now the matrix valued one-form Aa in Oa, of matrix elements :

A«(ij) (V*,dv?) 6.32
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d being the exterior derivative with respect to the local coordinates x in Oa- It
follows immediately from 6.32 that Aa belongs to u(N), the algebra of U(N).

Using the definition 6.29 for gao, we see that

A« (x) gaß (x) Aß gap (x)"1 + gaß (x) d gap (x)"1 6.33

when x e 0a n Op

A theorem [20] ensures from these properties that there is a unique connection

form A on E, corresponding to the locally defined Aa.

The associated curvature two-form F is locally defined by

F" dAa + Aa A Aa 6.34

we have the following representation for F a

F« (ij) =rV«| [dPAdPlv^ 6.35

Consider now the following quantity

ck= k!1(27t)k tr(AQ)k 6.36

where Q P dP A dP 6.37

From the representation 6.35, it follows easily that we have :

* -kïïb; *(AF)k 6-38

the trace being now in Ck-
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Equation 6.38 shows that Ck is the k-th characteristic Chern class of the bundle E.

A beautiful theorem [20] tells us that Ck is an integer, the kth Chern number of

the bundle, when M has dimension 2k and is without boundary. Thus we have

proven that

M2i
Tr(AQL)k ake Z 6.39

k!(27c)k Nî2k

In order to apply this result to our situation, note that we have a projector FL(x),

defined on a T torus, C2 on this torus, where x denotes the d Bloch vectors k

and the m phases cp. Consider the invariant QL(j a) for example. In the expression
(6.11) appears QL(j a) FL (epj, kg) dFL (epj, ka) A dFL (epj, ka). In one dimension,

we look at the projectorFL((epj, ko) as defined on a 2-torus(epj, ka). (6.39) then tells

us that

2* t2
Tr QL (çj, kj) na e Z 6.40

is the 1st Chern number of the associated bundle. Since 6.40 is continuous in the

other phases ep, we see that QL (jl) m, is the 1st Chern number of the bundle.

Similarly, in 2 dimensions, QL(j a k ß) is the second Chern number of a bundle
with basis a 4-torus, and QL(j a k ß 1 y) is the 3rd Chern number of a bundle, with
basis a 6-torus, in three dimensions. And of course, since these integers have a

limit as L tends to infinity as we have shown, we have the

Theorem 4

a) In one dimension, the adiabatic charge transport Q(jl) is an integer. Q(jl)
is the 1st Chern number of a unitary vector bundle with basis a 2-torus.

b) In two dimensions, Q(j a k ß) is an integer, the 2nd Chern number of a

unitary vector bundle with basis a 4-torus

c) In three dimensions, Q(j a k ß 1 y) is an integer, the 3rd Chern number of

a unitary vector bundle with basis a 6-torus.
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7. The relationship between charge transport, density of states and the

topological invariants

We are now going to prove that there exist some algebraic relationship
between the topological invariants that we have introduced, the adiabatic charge

transport and the density of states.

Lemma The following relationships holds between the topological invariants :

1) M(P) X "(ja)Q(aj)

2) Q(kß) X n(ja)Q(ajkß)
I

3) Q(kßly) =X ßCja)Q(ajkßly)
j

Proof Let us introduce the following forms :

a (ja) i M (P [A dP (j a)]2) 7.1

a (j a k ß) |"i M (P [ A dP (j a k ß)]4) 7.2

i3 rtcr(jakßly) Yi M(P[AdP(jakßly)]6; 7.3

where

dP(ja) PjeUPae2 7.4

dPCjakß) PjeUPae2 + Pke3 + Pße4 7.5

dP (j a k ß 1 y) Pj e1 + Pa e2 + Pk e3 + Pß e4 + Pi e5 + PYe6 7.6

The notation dP is intended to mean that d acts like an exterior derivative

on forms so that d2 P 0 for example. These forms are naturally related to the

quantities we have introduced, namely :
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o(j a) Q(j a) e1 A e2 7.7

oCjakß) Q(jakß)e1Ae2Ae3Ae4 7.8

CT(jakßly) Q(jakßly)e1Ae2Ae3Ae4Ae5Ae6 7.9

We now note the relationship

S Q(^>Ü ^ =itPM,H] 7.10

on the dense domain D. Hence

X 0(ju)Pj i[pn,H] Cn 7.11

j

On the other hand, it follows easily from proposition 7 that

PjiP (Ppn)+e C 7.12

so that we can write :

X Q(jcc)o(ja) =iM(P[A(CaeUPae2)]2) 7.13

j

X ß(ja)CT(jakß) jyMCPUCCaeUdPCakß))]4) 7.14

X Q(j a CT(j a k ß 1 y) ^, M(P[a(C« e1 + dP(a k ß 1 y))]6) 7.15

Consider first the expression 7.13

M(P(CaeUPae2)2) M(P[Ca,Pa]P) e1 A e2 7.16

But
M(PCaPaP) =-iM(PpaPaP) =-iM(PpaPa)
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Since P pa P 0, and the cyclic permutation in the average M(.) is justified by

property 7.12 of P pa, and the similar one for Pa.

Consequently,

M(P[C«, PflJP) i M (P pa Pa + Pa Pa P) - i M Qa (P p« P)) 7.17

If we define

R« (X) P iX) ipa + Xa)P iX) S^1 R« (0) Sx 7.18

then we see that

X "(j«) <*(ja) MOaRa) - MOa(AaP)) 7.19
j

since the left hand side of this equation is independent of X, we can integrate both

sides on Xa- Since (Ra, da Ra) e fWwe have

;
dX« MOaRa) M(R« (Aa D) - M(Ra(Aa 0)) =0 7.20

0

and

;
dXaMOcAxP)) M(P) 7.21

so that equation 7.19 becomes

X "(j a) o(j a) - M(P) e1 A e2 7.22

j

which proves the first part of the lemma.

Consider now the expression 7.14. If we call



Vol. 66, 1993 Kunz 315

X Pv<dg dP (a k ß) 2, Pv ev 7.23
v=2

we have

M(P[A(Ca e1 + dg)]4) X M(P{[Ca Pv] dg A dg + dg Adg[C«, PV]J) e1 A ev 7.24

v

But

Pdg dg(l-P) 7.25

and consequently

PdgAdg dgAdgP 7.26

Using the cyclicity of M, we get therefore

M(P[A(Ca e1 + dg )]4) 2 X M(P[Ca, PV]P dg Adg) e1 A ev 7.27
v

But P[Ca,Pv]P -iP(paPv + PvPa)P 7.28

Using again the cyclicity of M and 7.26, equation 7.27 becomes

M[P[A(CaeUdg)]4) =-2iX M@v(PpaP) dgAdg) e1 Aev

v

2i M(d(R« - AaP) A dg A dg) A e1

2i M(d[(Ra - XaP) dg A dg]) A e1

since d2g 0.

The left hand side of this equation is independent of X so that we can integrate
both sides on Xa and X$. Now, if A(X) S"jJ A(0) Sx e fWand da A(X)e 94.

y

dÂaMOaA(W) 0 7.30
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and

;
dXaM(daiXaA)) M(A)

On the other hand, if A9 e M and 39. A9e fW we have

MO9jA9) 0

Indeed

Kunz H.P.A.

7.31

7.32

MQ9. Aq>) depj MOq,. Ac) lim j^ dr (A9j=1(r, r) - Aq>.=0 (r, r)] 0
J A I K J

:-iSince (Ra dg A dg) iX) S ^ (Ra dg A dg) (0) Sx, all these properties allow us to

write equation 7.29 in the form

M[P[A(C« e1 + dg)]4) + 2i M(P dg A dg) A e1 A e2

or

M[P[A(Ca e1 + dg)]4) 2i M(P [a dP(kß)]2) A e1 A e2

which gives for equation 7.19

X Q(j a) o(j ce k ß) =-e1Ae2ACT(kß)

7.33

7.34

which proves the second part of the lemma.

Finally, if we call df a dP (a k ß 1 y), then

[A(Ca e1 + df)]6 X «Ca, Pv] [A df]4 + [a df]4 [C«, Pv]

+ [Adf]2 [Co, Pvl [A df]2) A e1 A ev

v=2
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Using the relation P df A df df a df P and the cyclicity of M, we see that

M[P[A(Ca e1 + df)]6) 3X M[P[Ca, PV]P (a df)4) e1 A e* 7.35
v

From 7.28 and cyclicity of M, we can rewrite this expression as

M[PlA(CaeUdf)]6) 3iX MOv(PpaP) ev A (df)4)) Ae1

3i M (d [(R« - X« P) (A df)4]) A e1

Proceeding as before, using 7. 30,7.31,7.32, we get

M[P[A(Ca e1 + df)]6) 3i e1 A e2 M[P [a dP (k ß 1 y)]4)

so that equation 7.15 becomes

X ß(j a) o(j a k ß 1 y) - e1 A e2 A a (k ß 1 y)

which proves the third part of the lemma.

We can now combine all the results we have derived, for the electronic

density (or integrated density of states) p M(P), the adiabatic charge transport
Q(ex j) and the topological invariants Q(cx j ß k), Q(a j ß k y 1), in various space
dimensions d. We summarize them in the following theorem, which is our main
result.

Theorem 5 If the quasi-periodic potential V9 defined by

Vq, (x) JL* a(R) exP 2lti (n, fix) + 27ti (n, (p)

satisfies the two conditions :

1) The m x d frequency matrix Q is such that QT n 0 implies

n 0, V n e 7lm

2) a*(n) a(-n) and
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X la(n)K SUP Inil)3 <

then, the following properties hold, when the chemical potential p is in a

gaP-

a) In one dimension, the adiabatic charge transport Q(l j) is quantized, i.e.

Q(l j) e Z and is the 1st Chern number of a vector bundle. The integrated

density of states p is given by

p X Q(JDQ(1 j)

b) In two dimensions, the adiabatic charge transport Q(rx j) is weakly quan¬

tized, i.e. it is given by

Q(ctj) =X n(kß)QCßkaj)

where Q (ß k a j) e Z and is the 2nd Chern number of a vector bundle.
The integrated density of states can be expressed as

p X ß(ja)Q(kß)Q(ßkaj)
kj

c) In three dimensions, the adiabatic charge transport is again weakly quan¬

tized, i.e. it is given by

Q(cxj) =X 0(kß)Q(ly)Q(Ylkß(xj))
k l

where Q (y 1 k ß a j) e Z and is the 3rd Chern number of a vector bundle.

The integrated density of states is given by :

P X "(j «) "Ck ß) ß(ly) Q(y 1 k ß a j))
jkl
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In one dimension, our theorem gives a new proof (with more restrictive
conditions on the potential) of a theorem of Johnson and Moser [10]. They
showed that the integrated density of states p as a linear combination of integers,
when the energy (or our chemical potential p) is in a gap

-I £2(j 1) nj with nj e Z

In their approach, however, they could not identify, individually, each of the

integers nj appearing in the decomposition. A clear advantage of our approach is to

allow the identification of each of the integers with the charge transport Q(lj).

The decomposition of the density of states in a linear combination of

integers, in the multidimensional case, was proven by Bellissard, Lima and Testard,

using C*-algebra techniques. Once more, no identification of the integers was

made, although there should be some connection between this approach and

ours.

Finally, we may note a useful consequence of the density of states when it
is non vanishing, at least one of the topological number is non zero, so that the

associated bundle is not trivial.

8. Periodic potentials and magnetic field : the Hall conductivity

The discovery of the quantum Hall effect in some two dimensional
electronic systems has stimulated a renewed interest in the old problem of non
interacting electrons moving in a periodic potential in the presence of a magnetic
field. The Hall conductivity has been analyzed in [3] when the flux of the magnetic

field through a unit cell is rational. Our approach will be used to discuss this

problem in the case where the magnetic flux through a unit cell is irrational.

We will mainly be concerned by the two-dimensional situation, electrons

moving in the (x, y) plane and the magnetic field being applied in the z-direction.

eB _a/.H
We choose as units of energy Ti —-, and of length of 1 V "to. The one electron

hamiltonian is given by

1 A ^ Ì „2Hq, 2 v£ + 2 vy + Vq, (x, y) 8.1
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where the velocity operators vx are defined by
y

vx px + y

Vy Py

in the Landau gauge.

As a periodic potential we take

8.3

¦^i na x n2 x
v9 <x' y) 2*t c <ni ' n2) exp 2 Tt i \— + -j— + n2 cp]

n.x n, x
[-J— + -~

ni vq_
ax ay

8.3

and impose the technical condition

X le(n,n2)l (1^1 + l(n2l)3 < <» 8.4
n n2

making the potential three time differentiable.

The usefulness of the introduction of the phase cp will appear later on. The

domain D of the hamiltonian will be that of the non interacting one

Ho I v2 + \ v2 8.5

The hamiltonian commutes with the magnetic translations operators

T(n a) exp i [ny ay x] exp i [nx ax px + ny ay py] 8.6

If we make successive translations along a loop we get however a non trivial
result :

T(nx ax 0) T(0, ny ay) T(nx a*, 0)"1 T(0, ny ay)"1 exp i 2 it 0 nx ny 8.7

where

0 %? 8.8
2. Jt
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is the flux (in our units) of the magnetic field through a unit cell. If this flux is a

rational number 0 Jr, the group generated by T(ax, 0) and T(0, qay) is abelian and

commutes with the hamiltonian. It is then possible to apply Bloch theorem. This

is the situation considered first by Thouless et al [3] where they could prove
quantization of the Hall conductivity in a gap. We will however discuss here the other

case, 0 is an irrational number. In this case we are still left with an abelian group
{T(nx ax, 0)} commuting with the hamiltonian. We can therefore apply Bloch

theorem in the x direction, to reduce the problem to that in a band.

There exist a unitary map U of L2 (R2) onto

d0 L2([0,ax]xR]) 8.9

[0;"i]

such that

UHq,U
io rn

de H<p,e 81°

where H ft is the hamiltonian restricted to 9{= L2([0/ ax] x R)

H<p,e= |v2(9)+ \ v2 +V9(x,y) 8.11

where

vx (9) px (0) + y 8.12

1 3
Px(8) being the operator j g~ on the domain

xiKa^y) ei2lte\|/(0,y)

Vx(ax,y) e12*e¥x(0,y)

8.13

This hamiltonian is an operator valued function on the 2-torus (9. 0), since

Hep+1,9 Hep,e+1 Hcp,9-
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On the other hand, let t. exp i t (py + a), t e R. This is also a magnetic translation

operator in the y direction, which is such that

^ H9,e W H^e, 8-14

where
t

<Pt <P + Tay
8.15

8t 0 f g t

We now see that if the magnetic flux 0 * y is irrational, magnetic

translations in the y direction induce an ergodic flow on the 2-torus.

We are now essentially in the same situation as in the one of quasi-periodic

potentials, in fact in the case where two frequencies are incommensurable.
As in this case, the ergodic theorem tells us that the resolvent set of H 0

is

almost surely independent of ep and 8. An adaptation of the proof we gave in the
quasi-periodic case shows that the resolvent set of H is independent of cp (this

follows essentially from the norm continuity of H with respect to cp). In physical

terms, the gaps of H do not depend on ep.

We are now in position to adopt the same strategy as before. We will be

interested by self-adjoint operators A9, commuting with T(nx ax 0), so that we
can apply Bloch theorem in the x direction. We will also require that the
corresponding operators A „ satisfy

Tt A9/9 x"t1 ¦ A9t,9t 816

and we introduce the corresponding notions of averageable operators A e e 94.

The average being given by

dep A9/ e (x 0 I x 0) 8.17M(A9) dx d9
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There are two quantities of interest for us in such a system. The Hall conductivity,

measuring the current in the x direction resulting from an adiabatically
e2

switched electric field in the y direction. In the units of —, it is given by

cth =-iM(P[Vx,Vy]) 8.18

with

Vv 0-^[Gz vxGz 8.19

yr
The charge transport in the direction y resulting from an adiabatic increase of ep by
one, is given in units of r, by :

o9 Q((p y) - i M (P[Vy, P,,]) 8.20

with
dP

Pep Bep
8.21

Before analyzing such quantities, it remains to see that they make mathematical

sense and to check that their derivation from the adiabatic theorem is justified.
These technical conditions will now be verified.

Consider the hamiltonian

Ho(6) =|v2(6)+ \ v2 8.22

Defining the creation and annihilation operators

a -j= (vx (9) + i vy) 8.23

a+ -^=(vx<e)-ivy) 8.24

satisfying the commutation relation

[a,a+]=l 8.25
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We see that

Ho (6) a+ a + \ 8.26

so that the spectrum of Hq (6), ct(Ho (9)) is that of an harmonic oscillator

9(Ho (6)) {n + \ n 0,1,2,...} 8.27

The corresponding spectral projectors Pn are given by operators of kernel

Pn(x y; xy) ^ X exP i ff (j+e> C***) <Pn[y + 0 (j + 9)J epn fy' +^ (j + 9)J 8.28

where

.1 2

epn(y) =[^2"n!]2 Hn(y)exp-^- 8.29

Hn(y) being the Hermite polynomial of order n. With the help of this representation,

we can prove the following properties.

Proposition 9

Gi,e,9e C and SUP IGi,e,9 I < ~
o,ep

The first resolvent equation and the fact that the potential V9 satisfies
SUP I I Vq, I I < oo, shows that it is enough to prove these properties when V 0.

And in the latter case, the second resolvent equation allows us to reduce the

proof to the case where we take z 0, instead of z i.

The identity

e" 2ep„(y) =(27tshA.r2 exp -y^hj 8.30
n=0



Vol. 66, 1993 Kunz 325

and the spectral decomposition give the following identity for

Kx= e->-Ho

K^( xy ; xy (27tax shX)" 2 X e*P ~ y + ^- (j + e) J th I

8.31

8.32

From this representation, we can get the bound

K^(r'r)^sWC 8.33

where c is some constant.

Using the identity

H2
0

dX X Kx 8.34

we can conclude that S"P I G0°Q 12 < <

since

;o,2: dr' iH^r')!2 suPH"2(r,r')
0 r 0

8.35

On the other hand, we have

IGg 12r,s H^2 (r, r) + rff (s, s) - H~n'(s, r) - HQ' (r, s)ï2(
0

8.36

Using the identity 8.34, this gives

0 |2IGU0 I'r; d?t X [Kx (r,r) + Kx (s, s) - Kx (s, r) - Kx (r, s)] 8.37

But Schwartz inequality applied to the expression for Kx (r, s) obtained by using
the spectral representation of Hq gives
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I Kx (r, s) I < [Kx (r, r)]1/2 [Kx (s, s)]1/2 8.38

Combined with 8.33, this inequality shows that the integrand in 8.37, is bounded

X g(X) dX < oo. We can therefore

apply the dominated convergence theorem, to conclude that lim IGJj lr/S =0.

by a function g(X) uniformly in r and s, with
tf

r-» s

8.39

Proposition 10

vx Gi;e,q> and 39 V9 Gi,e,9 map D into D.
y

First of all, we note that the following properties of Pn

a PN PN-i a

a+PN PN + ia+

imply the identities

aG9 =(i-ì)-1[(i-ì) G°iA - G°1/2]a 8.40

a+G? I Gi°+l - TTm P°] a+ 8.41

This shows that a G? and a+G9 map D into D. On the other hand, the first resolvent

equation gives

aGi aG? + aG9 V Q 8.42

Using the identity 8.40 and the fact that aV Gi maps D into D, from the assumed

properties of V, we conclude that a G; (and similarly a+ Gj) maps D into D.

One can prove similarly that 89 V9 Gj maps D into D.
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Proposition 11

vx G* e C and SUP I vx G2
.,„

I < »ox i;9;<p 9;q, x i;6;ep
y '* y

First of all note that aGj°e e # and a+G1?.
Q e "B

indeed
oo

I aG°Q II2 I aG00 ll2%:sup i X ~^ (cp,P„(0)ep) < oo 8.43

I a+G0e II2 I a+G°0 l.2%sup ]
£ ^^ (ep,Pn(0) ep) < oo 8.44

It follows therefore from the identities 8.40, 8.41 that

vx K;/ e C
y

The result follows now from the equation

vx G? =vx [G?]2 [1+VGJ +vx G 9 VGj 8.45

y y y

using again the identities 8.40, 8.41 and the fact that vx V G, e 2?.

y

We can now check that all the conditions of theorem 2 are satisfied for
the operators considered and that the expected formula hold. We can now adopt
the strategy followed in the case of quasi-periodic potentials. We approximate the

potential V9 by a periodic potential vMn the y direction of period L chosen in

ax L
such a way that the flux through a unit cell 0 -^r is integer for example. We

can prove that o^ and cfa converge when L tends to infinity to oH and ct9

respectively. The needed technical estimates are given basically in propositions 9

and 11. In the periodic case with integer flux we can apply Bloch theorem and

repeat the computations made before. The Hall conductivity is given by

1 1

CTH "(Ì^2 ^ d9
0

d9' Tr [9e FL' 9e FL)] 8M
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and the charge transport

°9 iàt od8 K d<p Kd8'Tr pL [a«FL' a<pFL)] 8-47

9ir ft
The angle 9' corresponds to the Bloch momentum —r— in the y direction. FL is a

projector periodic in (6, 6', ep).

From this follows, as before, that :

CTH=^nH 8.48

and

°9=^n<P 8.49

where the integer nH, is the first Chern number attached to the 2-torus (6, 9'),

whereas n9 is the first Chern number attached to the 2-torus (9', ep).

As in the case of quasi-periodic potentials, there exist an algebraic relationship
between the electronic density p M(P) and the two topological invariants found.

We now derive it.

The result will be basically a consequence of the following relationship

i [py, H] vx + — 39 Vq, 8.50

valid on the dense domain D. We used in the derivation of 8.49 the equality

ay dy V9 3q, Vq,.

From 8.50 follows that

Cy i [py, P] vx + — P9 8.51

But

PyP =(Ppy)+e C 8.52
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as an easy consequence of proposition 11, so that we can write

— Q (y ep) + <*H i M(P[Vy Cy] P) 8.53

Using the fact that

PVyP 0 8.54

we get

M(P[Vy Cy] P) i M(Vy Py P + P Vy Py) 8.55

Note that in deriving 8.55, we could use the cyclicity property of M, because of
8.52 and the fact that Vy V+ e C.

If we now introduce the operator

Sx exp i X y 8.56

which is such that if

AiX) S',J A Sx 8.57

then MiAiX)) M(A), for all X, when A e 94.

3P
Since py(X) and WyiX) gx we can rewrite equation 8.55 in the form

M(P[Vy, Cy]P) i MOx (P py P)) 8.58

If we define

RiX) P(X) (py + X) P (X) S-jJ R(0) Sx 8.59

we can rewrite 8.58 as

M(P[Vy, Cy]P) i MOx RCA)) - i MOx »P)) 8.60

Since the left hand side of the equation is independent of A., we can integrate both

sides on X. Since (R(a), 3x R(A.)) e fWwe have
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dXM0xR(A)) =0 8.61

dA. MOx (A P)) M (P) 8.62

Combining equations 8.61, 8.62 with 8.53, we see that we have proven the desired

result

— Q(yep) + cth M(P) p 8.63

A priori, we should also look at charge transport in the x direction

Q(epx) =-iM(P[Vx,P9])

but this vanishes identically, as could be expected physically.

Indeed, from 8.51 follows that

— Q(9x) =-iM(P[Vx,Cy]P)

But proceeding as before, we can see that

x

MtPtVx, Cy]P) i

if
where now

dA MOx (P PyP» 0

(P pyP) (A) exp - i A. x (P py P) exp i A x.

We can now summarize the results obtained in a theorem.
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Theorem 6

Let H be the hamiltonian of an electron moving in the plane (x, y), submitted to a

constant magnetic field in the z direction, in the presence of a periodic potential

V9(x,y).

H=2(Px + y)2 + 2 Py + V9(x,y)

If the potential Vq, (x, y), defined by

V9 (x, y) 2-1 a (n) exp 2 Tt i f—- + —^ + n2

8.64

-r ii, ep] 8.65
h—Z2 * cx ay 2

satisfies the two conditions

ax ay
1) 2jr * Q» i-e- the magnetic flux through a unit cell is irrational

2) afan) a (-n)

and

X ia(n)l f SUP Inili3 < oo 8.66

Then when the chemical potential p is in a gap, the following properties hold :

a) The Hall conductivity is quantized, i.e.

oH =CTxy -Oyx Yt nH nn e Z 8.67

The integer nn is the first Chern number of a vector bundle.

b) The charge transport in the y direction induced by an adiabatic change of ep

by one unit is quantized, i.e.

o9 QCepy) — n9 n9 e Z 8.68

The integer n9 is the first Chern number of a vector bundle.
c) Charge transport in the x direction vanishes
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d) The electronic density p (integrated density of states) is given by

p =- -^CTq, + cth 8.69

Dana, Avron and Zak [12] had already proven that the density p in a gap should

be given by a linear combination of two integers, when the chemical potential is

in a gap

P ¦ 77^ n<P + & nH

Whereas the integer nn was shown to be the one expressing the quantized Hall

conductivity, the physical interpretation of the second one, was left undecided.

Recently, Tesanovic, Axel and Halperin [21] have computed the integers nH and

n9 in some two-dimensional model.

The three dimensional situation has been considered by Halperin [22], who
showed that the conductivity tensor is quantized.

In fact, it is not difficult to treat this case with our method. If we keep the magnetic

field in the z direction, and take a periodic potential of the form

V9 (x, y, z) 2-1 a (n) exP 2 7C i f— x + —- y + r1 z + n, y]
he Z3 x y L

Then the Hall conductivity is given by

1 1

CTvz ^zr nv

when the integers ny x and ny z are first Chern number. The charge transport

along the y direction Q(y, ep) is again quantized, i.e. Q(y ep) n9, the integer

n9 being again a first Chern number. The electronic density is again given by

P ^Q<y<p) + °xy
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Conclusion

This work could be continued in various directions. On the mathematical

side, the results could be extended to more general quasi-periodic elliptic operators,

lattice models and hamiltonians describing a particle in a quasi-periodic
potential, submitted to a constant magnetic field.

On the physical side, it would be quite interesting to find a direct physical

interpretation of the higher topological invariants (the second and third Chern

numbers appearing in two and three space dimension). And of course, it would
be very helpful to find two or three dimensional models with quasi-periodic
potentials, of interest for describing electronic motion in quasi-crystals, and to show

that there exist gaps in the energy spectrum for which the corresponding topological

invariants could be computed.
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