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NORMALIZATION
OF SCATTERING STATES,

SCATTERING PHASE SHIFTS
AND LEVINSON’S THEOREM

Nathan POLIATZKY *
Department of Physics, The Weizmann Institute of Science, Rehovot, Israel

(18, XII. 1992)

Abstract We show that the normalization integral for the Schrodinger and Dirac scattering wave functions
contains, besides the usual delta-function, a term proportional to the derivative of the phase shift. This term
is of zero measure with respect to the integration over momentum variables and can be discarded in most
cases. Yet it carries the full information on phase shifts and can be used for computation and manipulation
of quantities which depend on phase shifts. In this paper we prove Levinson’s theorem in a most general
way which assumes only the completeness of states. In the case of a Dirac particle we obtain a new result
valid for positive and negative energies separately. We also make a generalization of known results, for the
phase shifts in the asymptotic limit of high energies, to the case of singular potentials. As an application
we consider certain equations, which arise in a generalized interaction picture of quantum electrodynamics.
Using the above mentioned results for the phase shifts we prove that any solution of these equations, which
has a finite number of bound states, has a total charge zero. Furthermore, we show that in these equations
the coupling constant is not a free parameter, but rather should be treated as an eigenvalue and hence must
have a definite numerical value.

1. INTRODUCTION AND RESULTS

It is a well known fact that the normalization integral of reduced radial Schrodinger
wave functions contains a delta-function. A less well known fact is, that besides the delta-

function, there are other terms. In this paper we shall show that the precise expression
is

/000 dr U (7‘) Url (1‘) =270 (k - kl) + A (k, k’)

(1)
— (~1)" {2x6 (k + &) cos [m (k) + m (¥)] + A (k, =K},
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where

k), k=%

0. kek (2)

A (k, k) :{

nj (k) = dm (k) and n (k) is a phase shift corresponding to the angular momentum ! and
linear momentum k. The corresponding result for the case of Dirac equation is

(278 (k- k') + A (k, k)
~ (=1)" {26 (k + &) 08 [ex (k) + e (¥")]

7 [t10e () s ) + aen () w0 ()] = § A (K}, €=

(3)

L0, e#€

where A (k, k') is the same function as in (2), except that the Schrédinger phase shift
is replaced by its relativistic counterpart ne. In most physical applications (for instance
the elastic scattering cross section) the normalization integrals (1) or (3) appear under
the integral over k or k', and hence the terms additional to the delta-function 4 (k — &)
do not contribute. Yet these terms contain valuable information and can be used for the
calculation of phase shifts or for the manipulation of quantities depending on them. In
this paper we will use (1) and (3) to prove Levinson’s theorem [1] in a most direct and
general way.

This theorem is one of the most interesting nonperturbative results in quantum
theory. It has many potential applications and has been applied recently in atomic physics
[2],{3], in quantum field theories [4],[5], and in solid state physics (where it is known in a

modified form under the name Friedel’s sum rule [6]). In its original form the theorem says
that

m (0) =nyx, (4)

which relates the scattering phase shift n;(0) at threshold (zero momentum) and for a given
angular momentum [ to the number of bound states n; of the Schrodinger equation with
a spherically symmetric potential. If the Schrédinger equation has a zero-energy solution
which vanishes at the origin and is finite at infinity and yet not normalizable (it is called
a half-bound state or zero-energy resonance and is possible only if | = 0) then, as was first
shown by R. Newton [7], Levinson’s theorem is modified to read

70 (0) = (no + %) L (5)

This result is subject to some restrictions on the potential. The most general proof of
Levinson’s theorem was carried out by Ni [9] and Ma [8] using the Sturm-Liouville theorem.
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Their result for higher angular momenta i > 1is (4), but for the S-state, where a zero-energy
resonance is possible, they obtained

1o (0) = nom + %sinzno (0) . (6)

The authors did not try to solve this equation for no(0). However, we point out that this
equation is easily solved and there are only three solutions:

noxw
mo (0) = (""* i) " (7)

(uri)r

The first solution is valid for the case without a zero-energy resonance, the other two if
such a resonance exists. No examples are known for the second solution. In this paper
we will give yet a more general derivation of the above results, which at the same time is
considerably simpler.

The first correct statement of Levinson’s theorem for Dirac particles was given by

Ma and Ni [10]

Tmk (0)+’7—mn (0)= (N:-{-N;)T, (8)
which is valid whenever there is no threshold resonance and
Nt (0) + M- (0) = (NF + NJ) x + (-1)! % [sinﬂq,,m (0) + sin®n_px (0)| , (9)

which is valid for the case with a threshold resonance (which can appear only in the case
x = +1). Here +m is the threshold energy of the Dirac particle, I = |x| -1 for k = —1,-2,...
and ! = k for x = 1,2,...1s the orbital angular momentum, N} is the number of positive and
N the number of negative energy bound states of the Dirac equation and nim« (0) are the
phase shifts at threshold. Prior to the work of Ma and Ni claims were published stating
that Levinson’s theorem is valid for positive and negative energies separately and in the
same sense as in the nonrelativistic case, i.e. nimx(0) = NEx, but later such claims were
found incorrect [10]. However, we shall prove in this paper that in a modified sense these
claims are correct and that

(10)
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now 1=0,1,..
~ . 2 T=0

T-me(0)=¢ \"ot3)* IS (11)
(na—f-%)r 1=0,

where nj and n; are the numbers of bound state solutions of certain Schrédinger equations
which are given in the text and I = I-x/|«|. In (10) and (11) the first case refers to a situation
without a threshold resonance and the other two cases to a situation with a threshold res-
onance. Equations (10) and (11) constitute the stronger statement of Levinson’s theorem
for Dirac particles. As a consequence of (8) and (10), (11) it follows that

N:+N;=n?'+n{, (12)

whereas in general N} #nf and N7 # .

Besides the phase shifts at threshold one can also obtain nonperturbatively the phase
shifts in the asymptotic limit of high energies. A well known result is (see ref. [11] p. 352)

m 00
nk) = -7 [ 4V, (13)
0
where V (r) is a spherically symmetric interaction potential, and thus
M (00) =0. (14)

Obviously, equation (13) is only valid if the integral on the right-hand side exists, which is
not the case for potentials with a 1/r singularity or stronger. In this paper we shall extend
this result to the case where the potential at the origin may be as singular as 1/r?~° or less,
including the obviously important case 1/r. At infinity the potential is assumed to vanish
faster than 1/r. The result is

m (k) mkfomdr [ 1——~£§—V(r)—-1] : (15)

which still implies ; (0c0) = 0 and which reduces to (13) for potentials less singular than 1/r
at the origin. In the case of a Dirac particle the Schrédinger result 7 (00) = 0 does not hold
in general. Instead it was shown by Parzen [12] that

nex.(k) — _%-/OwdrV(r)z_ﬁV/owdrV(r), (16)

where ¢ = +vk2 + m2. In general, the right-hand side of (16) is a constant which yields
N+oox (00) = 0 only for a special type of potential. As was the case with (13) the result (16)
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only holds if the integral on the right-hand side exists. This is not the case for vV (r) ~ 1/r
at the origin. In this paper we shall derive (16) more rigorously than was done in [12],
and we shall generalize the result to the case of a potential behaving like 1/r at the origin.
Unlike the Schrodinger case there is no reason to treat more singular potentials since the
scattering wave functions do not behave well in this case. The result we shall prove is

nex (k) mk[)wdr [1/1———2;V(r)—1] , (7)

which reduces to (16) if V is less singular than 1/r at the origin.

As an application of the above results we shall investigate the following set of equa-
tions

W + + ) Uzex =0
lex ; lex — (7n0 6+(‘0 2ex —

- (18)

Ugen = 7 Uaen =~ (Mo — € = P) Urex = 0,

2 1
n 0
o+ 2! 4772_: (0x+0-x) » (19)
S(r—1r) b= Z Uie, i (1) Uje,n (') + E Ui —epn (T) Yj—eon (r)
0<e<mo 0<ex<mo (20)
*® dk " '
G [ () () + e ) e ()]
0+ <7

where i=1,2, j = 1,2, k = £1,42,..., u; 1., « are bound state and u; 1.« are scattering state

solutions of (18), € = ek, 0 < ex < mg, are bound state and ¢ = +e, ¢ = /md + k2, are
scattering state energies and

2 2
Ox = Z (ulGnK- i ugcnn) - E (‘u‘g,—cgu + u‘2,—e,‘n)

0<ex<mo 0<ex<my (21)

* dk 2 2
2 (ulcu + u2¢n ul,-—cn —UQ —ex ) -
0+ <%

For the sake of simplicity we assume that there are no threshold resonances and hence
in (20) and (21) the region of integration excludes k = 0. These equations are subject
to certain boundary conditions which are explained in the text. Equation (18) is the
radial Dirac equation, (19) is one of the Maxwell equations (Poisson equation) and (20)
is the completeness relation for radial Dirac wave functions. Equations (18)-(20) arise
as a spherically symmetric special case of more general equations in a recently proposed
generalized interaction picture of quantum electrodynamics (QED). The derivation of these
equations from QED goes beyond the framework of the present paper and we refer the
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reader to the fortheoming paper [13]. In the present paper, using the above results, we
shall prove that for any solution of (18)-(20), which has a finite number of bound states,
the total charge vanishes:

QU =0 ) (22)

where the charge density is defined by the right-hand side of (19) (in units of —e2). Further-
more, the coupling constant e/4x is not a free parameter but rather must have a numerical
value for which

fmdrtp(r):(l. (23)
0
2. NORMALIZATION OF SCATTERING STATES

2.1 SCHRODINGER CASE

Consider the radial Schrodinger equation

11+ 1)
H
a8 2

- +2mV - kz] U =0, (24)

for a scattering state characterized by the reduced radial wave function uy (r) subject to
the boundary conditions

ug (0) =0, ug(r) —z 2sin (k" - %l +m (k)) ) (25)

where 7; (k) is the phase shift. Here we assume that the potential V (r) is less singular at the
origin than 1/r? and that it vanishes at infinity faster than 1/r. The boundary conditions
(25) determine the normalization of the wave functions:

fo ” dr wg (r)upn (r) = 228 (k= ¥) + A (k, &)

— (~1)" {28 (k + &) cos [m (k) + m (¥")] + & (k,—k") }

where

2n(k), k=K
A(k.k’)={0"’() o (27)
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and nj (k) = 9;m (k). Notice that in the physical region where both k and k' are positive the
last two terms in (26) vanish identically. Moreover, when integrated over positive values
of k or k', only the first delta-function contributes. Thus in most cases one could drop all
terms except the first. Then, however, one has lost the valuable information about the
phase shifts 5 contained in the A (k,%’) term. Therefore it is especially desirable to look
into situations where only the diagonal terms in (26) are essential and the delta-functions
do not contribute. For instance, subtracting from (26) its noninteracting counterpart the
delta-functions cancel and we obtain

[ ar [ )=k )] =20 () + (-1 oxb ) sinm ), v () = 2k (), (29)

where j; (kr) are the spherical Bessel functions. This equation turns out to be quite useful,
as will be shown below. Also notice that the extra terms on the right-hand side of (26)
cannot be cancelled by changing the normalization in (25).

To derive equation (26) we multiply (24) by uzq and the corresponding equation for
Ugy by ug. Subtracting the resulting equations from one another and integrating using
Ukl (0) =Urpy (0) =0, we obtain

/(;R dr Uy (r)ug (r) = i () u;“ (fz) : :.;;I (R) i (B) i (29)

where uj; (R) = 8gruy (R). For large enough R one can evaluate the right-hand side of (29)
using the asymptotic expression (25) and obtain

R = ! b _ r
';: _/0 dr g (r) g () =~ [ik_ ,:f VA cos [0 (k) — m (R1)] + = b ikl k:m BN co [(k - &) B]
(- {Sin L cos iy +m () + 2N o a0 m

(30)
Using n; (—k) = —m; (k) (see ref. [14] for a proof), equation (26) follows as R — oo.

It is instructive to consider a somewhat different derivation. Taking the derivative
of (24) with respect to k and multiplying the result by u;, then multiplying (24) by 8,u,
subtracting the resulting two equations from one another and integrating, we obtain

R
[ ar i) = 5 [k (R) s (R) — s (R) iy (B)] (31)
0

For a large enough R we can use the asymptotics (25) to evaluate the right-hand side of
(31). The result

jo ® 4 u2, (r) = 2R + 20! (k) - (=1) % sin [2kR + 27 (k)] (32)
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was first obtained by Liiders [15]. Equation (32) is exact if the potential V (r) vanishes for
r > R and is valid asymptotically otherwise. From (32) one easily recovers the diagonal
terms of (26).

2.2 DIRAC CASE

Consider now the reduced radial Dirac equations

K
'u.'m‘+ —ulm—(e-l-m—V)'u,gm:O
r 33)
! K (
Ugep — ;—ugm+(e—m—V)u1m=0,

where ¢ is the energy, V (r) is the time component of a vector potential and « = £1,42,....
The quantum number « is the standard parametrization of the total angular momentum j =
|k|—1/2 and of the relative orientation between the spin and the orbital angular momentum.
The appropriate boundary conditions are

+ 3 l
Uren (0) =0, Unex(r) — 1/6 2€m 2s1n (kr - % + Nex (k)) ; (34)

_ e+ m Kok ; xl
Uzen (0) =0,  Uzen (1) —° \/ 5 e_§_m25111 (kr—?+nm(k)) ; (35)

where k = v/ — m?, ko = &/|x|, I = || = (1 = ko) /2, I =1 — Ko, and ne (k) is the phase shift.
To ensure the consistency of (34) and (35) with (33) we assume that Vv (r) behaves like
or less singularly than 1/r at the origin and that it vanishes at infinity faster than 1/r.
Thus the Yukawa potential e~#7/r is allowed but the Coulomb potential is excluded. The

normalization of the wave functions resulting from the boundary conditions (34) and (35)
is

(278 (k— k') + A (k, k)
—(-1)} {216 (k + k') cos [nex (k) + nex (k)]

(36)
+A (k, ~—k')} , e=¢€

7 [t () a0 () + en () 20 ()] = 4
0

0, e#£¢

where A (k, k') is the same function as in (27), except that the phase shift 5 is replaced by
nex. Notice the similarity of (36) to the corresponding Schrédinger case (26). As in that
case we can extract the information on the phase shifts 5, by subtracting from (36) the
corresponding equation for the noninteracting case, and we obtain

7 (e )+ e ) = Ve () = vhan (7] = 2 (8) + (-1) 2B () sinr (), (3)
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where

€+m €E+m

2¢ e+

Viex (7) = 2kr 3 (kr) , Va2 (r) = 2kr]l (kr) (38)
is the regular free-particle solution of the Dirac equation (33), which obeys (34), (35) and
(36) with nex (k) = 0. Contrary to the case of the Schrodinger equation the energy can now
be either positive or negative and we can use u; _ instead of v, to extract the diagonal

terms in (36). The result is

7 [ ) + )~ 9 0) — 9 e )]

= 2[nle (k) — e (k)] + (=1)" 228 (k) sin [7ex (k) + n—ex (k)]SI [ner () — 7—ex (k)] -

(39)

To derive (36) we multiply the Dirac equation (33) by (—ujex, u1¢«) and the Dirac
equation for € by (—uj., U1ex) and subtract the results. Upon integration we obtain

R - ’
/ dr [um () Urerm (7) + Uzen () Uger (r)] _ Uien (R) Ugerx (R)_ ::'lcu(R)u2m (B) (40)
0 €

For a large enough R the right-hand side of (40) can be evaluated using the asymptotic
wave functions (34) and (35). The result is

R
f dr [ulm (1‘) Uieln (‘l‘) + Ugen (1) Uzery (r)]
0

= { SR [0 =K B o P () — e (8] + 2t B e (] o Rl} (41)
- { SRRl o 1, 1)+ n () + S22 P o .49 1}

where
_{ e e€+m e+m e+¢
A el ee’ (e+m) |€"| e’ (¢ +m) | k+ k'’

- e€+m __e_’k, €e+m exfp!
T\l Ve (e+m) e ee'(¢+m) | k—k' "~

Equation (36) is now easily recovered as R — co.

(42)

As in the Schrédinger case the diagonal terms of (36) can be obtained somewhat
differently. We derive the Dirac equation (33) with respect to ¢, multiply the resulting
equation by (—%gex,U1ex) and subtract from the result the Dirac equation multiplied by
(—BeU2ex, Oe1ex)- Upon integration we obtain

R
fo dr (U () + Uhen (7)] = Unox (B) Bettzan (B) — tren (B) Betizen (R) - (43)
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Taking R large and inserting the asymptotic wave functions (34) and (35) on the right-hand
side, we obtain

jo " ar [Bex (7) + W (r)] = 2R+ 21l (k) = (~1)" T 5in [2KR + 200 (k)] (44)

From (44) one easily recovers the diagonal terms of (36). Notice the close similarity of (44)
to the corresponding result for the Schrodinger case (32). In particular for small energies
(m/e — 1) both results coincide.

3. HIGH ENERGY LIMIT

3.1 SCHRODINGER CASE

It is a well known result (see ref. [11] p. 352) that

m (k) el % f0°° dr V(r) (45)
and thus
mi(00) = 0. (46)

Obviously, equation (45) is only valid if the integral on the right-hand side exists, which
1s not the case for potentials with a 1/r singularity or stronger. In this section we want to
extend this result to the case where the potential at the origin may be as singular as 1/r2-°
or less, including the obviously important case 1/r. At infinity the potential is assumed to
vanish faster than 1/r. The result we shall now prove is

m(k)mkjowdr [ 1_%’5‘—V(r)—1], (47)

which still implies (46) and which reduces to (45) for potentials less singular than 1/r at
the origin.

We introduce a new variable 7 and a new wave function x, (7)

ug (r) = Xut (7) F= for dr’' F (r') , F(r)=4/1- i—?—-V (r): (48)

Putting this into the Schrodinger equation (24) we get

. Ii+1 1 m 3m
th—[ = )(1+EA)‘mB'mC—k2]th=0a (49)
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where
=2_.2 . - 2
kr —1 + 2mV V
1-%2V 1-53V 1-52V

and where the dots mean the derivatives with respect to the new variable 7. Consider now
a sphere of radius 7 = /m/k around the origin, k being large, and assume the case of the
strongest allowed singularity V ~ 1/r2-°, Then everywhere outside of the sphere the terms
proportional to 4, B and C in (49) are bounded by certain positive powers of m/k. Hence
as k — oo, we obtain

Xkt — [1(1;2- . kz] Xk =0, (51)

of which the physical solution is x4, (7) = 2k77; (k7). Therefore as k — oo, from (48) we have

ukl(r)m28in(kr—%l+k./‘;wdr [‘/1—%V(r)—1]) (52)

and hence (47).

3.2 DIRAC CASE

In the case of a Dirac particle the Schrodinger result (46) in general does not hold.
Instead it was shown by Parzen [12] that

noe®) G~ 5 [ v =— [Tarve), (53)

where ¢ = +vk? + m?. In general, the right-hand side of (53) is a constant which yields
N+oox (00) = 0 only for a special type of potential. As was the case with (45), the result (53)
only holds if the integral on the right-hand side exists. This is not the case for V (r) ~ 1/r at
the origin. In this section we want to rederive (53) in a more rigorous way than was done
in [12] and to extend the result to the case of a potential behaving like 1/r at the origin.
Unlike the Schrodinger case there is no reason to treat more singular potentials since the
scattering wave functions do not behave well in this case. The result we shall prove is

e () m»kLmdr [\/1_§V(r)-1] , (54)

which reduces to (53) if V is less singular than 1/r at the origin.
Eliminating 4y from (33), we obtain

!

14
_V2+2eV—k2]u1m+———-———-— t.=0. (55)

k(ck+1) & V' "
=Y

"
u - B
lex r? re+m-V
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Eliminating %1 from (33) leads to

K.(K.—l)+rc V! V!

u’z’“w[ 2 re—m——VmV2+2€V“k2 Uex + uh, =0. (56)

e—m-—-V

Equations (55) and (56) are equivalent to the Dirac equation (33) provided the boundary
conditions (34) and (35) are imposed. Actually it is not necessary to solve (55) and (56)
simultaneously. For instance, if (55) is solved for u;.. one gets ujex through the first of
equations (33). In order to get rid of the last term in (55) and (56) we introduce the new
wave functions (wiex, Waex) defined through

e+m-—V(r) ek [e—m—-V(r)
=) s = 3 57
‘U,lm(f') % wlm(r)’ uzm(") |€”k“f€] % wzm(r) ( )
Putting these in (55) and (56), we obtain
10+1) &« V' 1 v 3 V! 2
"o _K 1 S(_ VN _ye g2 _
hex r2 re+m——V+2£+m—V+4 e+m—-V Vi42eV -k Wi =0, (58)
i+1) « Vv 1 v 3 vio\?
e — = = “——=) - V*+2eVv-k? =0, (59
Waen l r2 +re—m——V+2e—m—V+4(e—m——V) + e Waee =0, (59)

where we used x(k+1) = I(I+1) and x(k—1) = 1(I+1) which are readily obtained from
l=|k|—(1-Ko)/2 and T=1— ko, ko = x/|x|. Equations (58) and (59) are of the Schrédinger-
type except that the potential depends on the energy. Solving (58) and (59) is equivalent
to solving the original Dirac equation (33) provided the boundary conditions

Wien (0) =0, Wiex(r) o 2sin (kr - %l + Tex (k)) " (60)
Warex (0) =0, Waek(r) e sin (kr - %I + Nex (k)) (61)

are met. We now turn to the limit k — co. To perform this limit we can use either (58) or
(59), the result will be the same. As in the Schrédinger case, considering a small sphere
of radius (m/k)'/*, we observe that everywhere outside of the sphere the second, third and
fourth terms in the parentheses of (58) and (59) are bounded by positive powers of m/k as
k — oo and hence can be neglected. The term V? behaves as 1/r? at the origin and vanishes
faster than 1/r? at infinity. Hence it does alter the form of the wave function at the origin,
but at large distances it contributes only to the phase of the wave function, which remains
a Bessel function. However, V2 is of order zero in k so that, according to the preceding
section, it does not contribute to the asymptotic limit 7 (o0) and, in particular, cannot
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compete with the term 2¢V which is of order one in k. Hence as k — co we neglect it and

obtain from (58)

w,, — [’('f D 4 gev - k]wm:o, (62)

which is subject to the boundary condition (60). Thus the high energy limit of the Dirac
equation is dominated by the Schrédinger equation (24) in which the mass m is replaced by
the energy e = +vk% + mZ. It is easy to check that, despite this alteration of the Schrodinger
equation, the arguments of the preceding section are still valid and we can apply (47)
replacing m by e. The result is given in (54).

4. ZERO ENERGY LIMIT. LEVINSON’S THEOREM

4.1 SCHRODINGER CASE

The set of all physical solutions of the Schrédinger equation (24) constitutes a com-
plete set in the sense that for each 1 =0,1,..

Z Ugi (1) uq; /‘°° g—f_—uu (r)ux (r’) =§ (1' — r') 4 (63)

<0

where u,,; are bound state solutions of (24) normalized according to

/oo dr 'u.fﬂ (r) =1 (64)
0

and uy are scattering state solutions (25). With respect to the completeness relation we
have to distinguish two cases. In the first case, if there exists a zero-energy solution of the
Schrodinger equation (24), which vanishes at the origin and is finite at large distances (we
will call it finite), it is not normalizable in the sense of (64). Such a solution, clearly, is not
a bound state (it is called a half-bound state [11] or a zero-energy resonance [16] since it
becomes a bound state after an arbitrarily small increase in the strength of the potential).
It is part of the continuum and is responsible for the delta-function in (28). Hence the sum
over bound states on the left-hand side of (63) does not include the zero-energy solution
and the integral over k is understood as including the value k = 0. This is the meaning of
the completeness relation (63). In the second case, if a finite, zero-energy, solution exists,
it is normalizable. Such a solution is a bound state and must be included in the sum
over bound states on the left-hand side of (63) and, consequently, the integral over k is
understood as excluding the value k = 0. The completeness relation for this case is

Z qu 'qu + '/-0+ % Upl (1‘) Ukl (1") =6 (1' - r') : (65)

<0
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Notice that, if no finite zero-energy solution exists, then one can use either one of
the completeness relations. In case a finite zero-energy solution exists, it is necessarily a
zero-energy resonance if =0, and a bound state if I > 1. This is easily seen by examining
the Schrédinger equation (24) at large distances for potentials which vanish faster than
1/r%, and noticing that a finite zero-energy solution behaves as 1/r!. If the potential does
not vanish faster than 1/r? at infinity, then finite, zero-energy, solutions do not exist.

Obviously the completeness relation also holds for a free particle, except that in this
case there are no bound states and hence (63) and (65) are identical. We now proceed
with the second case above using (65). Subtracting from (65) the corresponding equation
for the noninteracting case the delta-functions cancel and we obtain

Z Ug,l (7‘) Ul (7") + /j

0 % [us (M) i () = o (1) o ()] = 0, (66)
<0 ;

where vy are the free particle solutions. Thus the diagonal part of (66) reads

Sudym+ [ 5 [l - k)] =o. (67)

€ <0 O
Integrating over r and substituting (28), we obtain
1 (0) = m (00) + myx (68)

where n; is the number of bound states having angular momentum I (not counting the 2i1+1
degeneracy). Finally substituting (46), we get

n(0) = myr. (69)

Equation (69) is known as Levinson’s theorem [1]. It is valid whenever there is no zero-
energy resonance and this, as explained above, is the case for all 1 > 1. This is, of course,
a well known result.

We now return to the first case where a finite zero-energy solution, if it exists, is not
normalizable and where we have to use (63) instead of (65). Since a zero-energy resonance
can occur only for | = 0 we do not need to consider higher angular momentum states.
Because the region of integration in (63) contains the value k = 0, the steps preceding
(69) remain the same except that now the delta-function on the right-hand side of (28)
contributes, and we obtain

10 (0) = ng (00) + nor + %sinzno (0) . (70)

Substituting (46), we get

70 (0) = nox + gsinzm) (0) . (71)
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This version of Levinson’s theorem was first derived by Ni [9]. Equation (71) can be solved
for 70 (0) and there are only three solutions:

no«®
1
wo={ (m*3)7 (12)
1
(no + 5) .
The second and third solutions correspond to the case with a zero-energy resonance,
whereas the first solution corresponds to the case with no such state. The third solu-
tion is a result obtained by Newton [7]. Equation (72) is the most general statement of
Levinson’s theorem possible. The only input in our derivation is the completeness relation

(63) and the boundary conditions (25). Although we do not have an example for the
second solution in (72) there is little doubt that it can be realized.

Levinson’s theorem (69) can be proved in a number of different ways (see ref. [17]
and [18], for instance). The present proof has the advantage of being very general and
extremely simple and also allows us some additional insights.

4.2 DIRAC CASE

A further advantage of the above proof is that it can be taken over to the case of
the Dirac equation almost without change. In this section we will first rederive the result
of Ma and Ni [10], which is the original correct statement of Levinson’s theorem for Dirac
particles, and which is valid for the sum of positive and negative energy phase shifts. Then
we will prove a stronger statement of Levinson’s theorem, valid for positive and negative
energies separately.

The zero-energy resonance of the preceding chapter is now called threshold resonance
(its meaning is still the same: k =0). As in the Schrodinger case we distinguish two cases:
with and without threshold resonance. However, there is now a slight complication - the
threshold resonance can have either a positive or negative energy, or there could exist two
resonances simultaneously, one with positive and the other with negative energy. For the
sake of simplicity we will consider only two cases; the gap will be filled at the end of this
section where we consider the positive and negative energies separately. In the first case
any finite threshold solution (which does not necessarily exist) of the Dirac equation (33)
is a resonance and not a bound state. The completeness relation in this case reads

6(r—r')b;;= Z Uieen (1) Ujern ()
—m<eg<m

% dk (73)
+/; o {uizn (r) Ujex (7") + Uj—en (r) Uj,—en ("")] )

where i = 1,2, j = 1,2, u;,, are bound state solutions of (33), ¢ = v&? + m? and where
the region of integration includes k = 0, so that a term with a delta-function & (k) would
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contribute. The bound states are normalized according to
* 2 2
| e [ (1) + 0o ()] = 1. (74)

In the second case any finite threshold solution (which does not necessarily exist) is a
bound state. The corresponding completeness relation is

§r=r)8ii= D0 ticun (") Ujeun (')
—-m<ee<m

© dk (75)
+ ./0+ o [uien (r) Ujex (r') + Ui, —en (r) Wit (1"')] ’

where the region of integration does not include k = 0, so that a term with a delta-function
(k) would not contribute. The rest of the derivation is identical to the Schrédinger case,
except that equation (37) has to be used instead of (28). The result following from (75) is

Nme (0) + 7-mx (0) = (N: o N:) L (76)

whereas the one following from (73) is
o (0) + 7-my (0) = (NF + W)+ (—1)} 7 [si0n (0) + sin-rme (0)] | (77)

where | = |x| — 1 for k = —1,-2,... and | =« for k= 1,2,... is the orbital angular momentum,
N} is the number of positive and N is the number of negative energy bound states of (33).
In deriving (77) we used neox (00) = ~f—oox (00) Which follows from (54). Equation (77) 1s
Levinson’s theorem for Dirac particles first obtained by Ma and Ni [10]. Above we derived
equations (55) and (56) which, if subjected to the boundary conditions (34) and (35), are
equivalent to the Dirac equation (33). An inspection of these equations at threshold (k = 0)
and for large r, shows that a threshold resonance can occur only if x = £1. Therefore (76)
is valid for all x = +2,43,... and for x = £1 if there is no threshold resonance, whereas (77)
is valid for x = -1 (l=0, 1= 1) and k=1 (1: 1,l= 0).

One may ask oneself whether (76) and (77) are perhaps valid for positive and negative
energies separately. In fact, in some of the initial work (see refs. [19] and [9]) this was
claimed to be true but later was found incorrect [10]. Yet, intuitively, by a number of
reasons we expect that an extension of (76) and (77), for positive and negative energies
separately, should be possible. We now show that this is indeed the case. The basic
observation which we need is the fact that the set of Schrodinger-like equations (58) and
(59) subject to the boundary conditions (60) and (61) is fully equivalent to the original
Dirac equation (33) subject to the boundary conditions (34) and (35). Equations (58)
and (59) are useful because they are not coupled and hence the phase shift ne (k) can be
computed using any one of them, without reference to the other and for each of the positive
and negative energies ¢ separately. Certainly we cannot apply Levinson’s theorem to (58)
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r (59) directly since the potential in these equations depends on the energy and hence
the completeness relation does not have the form (63). However, consider the following
equations

v 3l vo\?
+Z(2m—v) —V2+2mV—k2]w2}=0, (78)

[10+1) « v 1 v"  3( v \? _
" - - = Vi omVv -k} |lw>=0 79
Y 2 ram4V 22m+V+4(2m+V) V- 2uil - B W=D, (79)
which are subject to the boundary conditions
; xl
w}c", (0) =0, 'u'.UZ_l (7‘) —;_:;* 2s1n (kf‘ = ? + 1)l+ (k)) s (80)
w; (0)=0o0, W () =t B sin (kr - —+n (k)) (81)

At threshold (k = 0) (78) and (80) coincide with (58) and (60) for ¢ = m, and similarly (79)
and (81) coincide with (59) and (61) for e = —m. Moreover, both sets of equations and
boundary conditions are analytical near the threshold. Therefore

’I?' (0) = 7mx (0) , s (0) =n-m,x (0) . (82)

Actually one would expect an ambiguity in both equations (82), each in terms of an additive
integer multiple of 2. However, it is easy to see that both integers (say n; and n;) must
be zero. This follows from the fact that the simultaneous change of m to —m and « to —« is
a symmetry operation, which implies n; = n,. Equation (76) (or (77)), on the other hand,
implies ny = —nj, and hence both integers are zero. Equations (78) and (79) are just usual
Schrodinger equations, so that we can apply Levinson’s theorem (69) and (72) and obtain

nr 1=0,1,
1

" i =0
Nmx (0) = (no * 4) i (83)

(nb*‘-{-%)r =0,

nr 1=0,1,

‘+1 x I=0
T-mux(0)=4{ \" T} - (84)
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where nf is the number of bound state solutions (k¥ < 0) of (78) and n- is the number
of bound state solutions of (79). In (83) and (84) the first case refers to a situation
without a threshold resonance and the other two cases to a situation with a threshold
resonance. Equations (83) and (84) constitute Levinson’s theorem for Dirac particles. As
a consequence of (76) and (83), (84) we have

NY+N;=nf+n-, (85)

whereas in general N} # nf and N7 #n>. It is an interesting fact to notice that (78) and
(79) do not correspond to the usual expansion based on the Foldy-Wouthuysen scheme
(see [20]). The above trick of "freezing” the energy of the second order Dirac equation was
used for a different purpose in ref. [21].

5. APPLICATION TO A NONPERTURBATIVE QED

Consider the following set of equations

. K —
1m+;u1m_('m'0+€+(|a)u2m—o

oo (86)
Uzen — 7 Uen — (mo—e—p)U1ex =0,
2 eg L o
P e = e (ectend). (87)
K=
5 (r - r’) 6lj = E uitu”— (7') uj‘nn (TI) + Z ui.—tgﬂ (T) ujl""l“ (r')
0<ex<mo 0<ex<mo
<iek " (58
+ / E_ [uitn (T) uJEK- (r’) + ui»_zu (r) ujn_"‘ (T')] !
04 <7
where i =1,2, j = 1,2, x = £1,42,..., U; 4., . are bound state and u; 4., are scattering state

solutions of (86), ¢ = +ex, 0 < ex < mg, are bound state and e = +¢, ¢ = {/m2 + k2, are
scattering state energies and

p— 2 2 2 2
Ox = Z (ule,n + uz:.cn) - Z (u‘l,—c,‘u + uz,-e,‘u)
0<ex<mo 0<ex<myp

* dk uz ,u2 u2 2
+ D) lex T Ulen — 1,—ex u2,—zn
0+ <™

(89)

For the sake of simplicity we assume that there are no threshold resonances and hence in
(88) and (89) the region of integration excludes k = 0. The boundary conditions are

e (0)| < o0, p(00)=0 (90)
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for the field ¢, and the usual boundary conditions

Ui tenn (0) =0, Ui te,.x (°°) Ci,tenn g " ) (91)

r—oo

hold for the bound states, where c; 4., . are real constants and v, = /m3 —¢2 > 0, and

+ . xl
Urex (0) =0, Upex(r) — - 2:"0 2s1n (k" Y + Nex (k)) (92)
_ . [e+mo Kok . xl
Uzen (0) =0,  Uzex () Y 2sin (kr =3+l (k)) (93)

for the scattering states, where I = |x| (1 — ko) /2, I = I — ko and xo = x/|x|. The bound states
are normalized according to

7 [0 e () 4 e ()] = 1. (94)

Notice that (86)-(88) is a closed system of equations. Also notice that any solution of
this system constitutes a complete orthonormal set of functions and, therefore, Pauli’s
exclusion principle is built in. Equations (86)-(88) arise as a spherically symmetric special
case of more general equations in a recently proposed generalized interaction picture of
quantum electrodynamics (QED). This generalized interaction picture is useful, since it
allows for a new nonperturbative approach to QED. The derivation of these equations
from QED and more details on their properties will be given in a forthcoming paper [13].
Here we want to apply the results of the preceding sections to the investigation of self-
consistency of equations (86)-(88). We shall prove in this section that for any solution of
(86)-(88) with a finite number of bound states the total charge vanishes: Qo = 0, where the
charge density is defined by the right-hand side of (87) (in units of —e?). Furthermore, the
coupling constant e3/4x is not a free parameter but rather must have a numerical value for
which [f°drp(r)=0.

Firstly we notice that there exists at least one solution. In fact, if we assume that
there are no bound states then

Uler = Viex U2ex = V2en (95)
is a solution of (86)-(88), where

€E+m .
Vien (1) =y 2k i (k) Vaes () =

e+m Kok
2¢ e€+m

2kr J7 (kr) (96)
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and j; (kr), j;(kr) are the spherical Bessel functions. In general, however, a solution of (86)-
(88) will contain a number of positive and a number of negative bound states. While the
possibility of an infinite number of bound states cannot be ruled out on simple grounds,
we want to examine the consistency conditions for a finite number of bound states.

If we multiply (87) by r? and integrate the resulting equation we obtain

ez QO 82 1 oo o0
)= gt~ g k) 4 len () e (] (97)
where
= * ! [ !
Qo==2_x [ d'loc(r) +eo_ ()] - (98)
x=1
At large r we have
(2 (1‘) pr— (c%cnn + Cg;,‘n) e~ YrT _ Z (c%l_cu,c + cg._,“,c) e "
USC)‘STHO - dk 1 0<c~$m0 (99)
- (1am | G 7 €08 e (k) = 1 ()OS 28 + i () + 7-ex ()]
and hence
/Oo dr'g,‘ (r') e c%cgn + c%enn e—TnT _ Z cg.—e,‘u 5 cg.—e,‘n =T
r 0<ex<mg e 0<e,<mo L (100)
L [®dk 1 .
+(-1) 2m/ o T COS [Mex (k) — N—cx (k)] 810 [2k7 + ey (k) + N (K)] .
o+ X E
It now follows from (97) and (100) that
ed Qo
pr) — —-2 2= 40(€™*), a>0. (101)

T-—+400 4r r

Now, if Qo > 0 then ¢ acts as an attractive potential for the positive energy states and
as a repulsive potential for the negative energy states. Similarly, if Qo < 0 then ¢ acts
as an attractive potential for the negative energy states and as a repulsive potential for
the positive energy states. Consequently, in both cases ¢ supports an infinite number of
bound states, like any attractive potential, which vanishes at infinity not faster than 1/r2,
Thus Qo > 0 and Qp < 0 are inconsistent with a finite number of bound states. On the other
hand, if Q¢ = 0 then there will be at most a finite number of bound states, since ¢ acts
as a short range potential with nonvanishing repulsive and attractive parts. The repulsive
part is due to the electrostatic self-interaction of bound states, whilst the attractive part
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is provided by the scattering states, which fully compensate the repulsive part. Thus the
consistency condition for the existence of a finite number of bound states is

Qo =0. (102)

This consistency condition implies a restriction on ¢. Combining (98) and (89), we
obtain

Qo= 3 W{m -0t [T [ e [ulen ()4 0den () 0] en ()~ 0 en ()]} - 09

KR=—00

where N} and N are the number of positive and negative energy bound states of (86)
respectively. Substituting (39), we get

Q=- Y x| {N: ~ N7 = [mx (0) — 71— (0)] ;1; + [Moor (00) = N—oox (00)] %} . (104)

K=—00

Since the boundary conditions for ¢ prohibit a singularity at the origin, we can use (53)
for 7400 (c00) and obtain

oo _ 2 oo
Q=- ), IA-.I{N,:“~-~1\f,;~-n,++nT +;j0 drtp(r)}, (105)

R=—00

where we used Levinson’s theorem (84), and where ;' and n- are the number of bound
state solutions of (78) and (79) with V = — ¢ and m = mq respectively. Since the last term
in (105) is independent of x it must vanish, otherwise @y would become infinite. Hence we
conclude that

fmdrtp(r)z{) (106)
0

must hold for any solution of (86)-(88) having a finite number of bound states. Notice
that if all of the bound states have either positive or negative energies, then (106) implies
(102), which follows from (85). Also notice that [°dry(r) is a dimensionless quantity
and therefore does not depend on the bare mass parameter my and is a function of the
coupling constant e2/4r only. Hence, due to (106), the coupling constant e?/4r becomes
an eigenvalue of (86)-(88), i.e. we expect that (106) holds only if e3/4x acquires one or
more specific numerical values. To illuminate this point we consider the following iteration
procedure. As the initial step we make a reasonable guess of @, which satisfies (106) and
which we denote by ¢,. Then we solve the Dirac equation (86) with ¢ = ¢, and obtain a
complete set of bound and scattering states. At this stage e2/4x is a free parameter. Now
we fix it by requiring that with this complete set the solution of (87), which we denote by
©,, satisfies (106). If there is no value of e3/4x for which (106) is satisfied, then we start
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again trying to make a better choice of . If, however, there is such a value of e3/4x, then
we have completed the first iteration and can start the second one, now with ¢, instead
of ¢,. Assume that this iteration procedure is convergent, then it is clear that, as a result
of (106), the coupling constant will emerge, fixed at one or several numerical values.
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