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Abstract

We define resonances for N —particle Hamiltonians with pair potentials
which are not dilation analytic.

1 Introduction

We consider in this paper N —particle Hamiltonians

N
H = Z ! A, +ZV.'J'(26 - zj)
=1

2m; i<j

on L2(RN"). A rigorous mathematical theory of resonances for such Hamilto-
nians has been developped in the pioneering papers by Aguilar-Combes [Ag-Co]
for 2-particle Hamiltonians and Balslev-Combes [Ba-Co] for arbitrary N. In
this approach resonances are defined as complex eigenvalues of some non self-
adjoint deformation of H. However in these two papers it is essential that the
pair potentials are dilation analytic, which roughly means that the V;;(y) have
to extend holomorphically in a cone {|Imz| < C|Rez|}. For some applications
(like for example N —particle Hamiltonians where some particles have infinite
mass) it proved necessary to extend the class of potentials in order to accept
potentials which are analytic only near infinity. This was done for 2—particle
Hamiltonians by a number of authors (see [Si], [S], [Cy], [Hu]), by introducing
variants of the dilation method.

However it seems that no such results are known for N —particle Hamilto-
nians when N > 3. For example there is no definition of resonances in the
literature even when the pair potentials have compact support.

*Permanent adress: Centre de Mathématiques, Ecole Polytechnique 91128 Palaiseau Cedex
France.
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The goal of this note is to fill this gap by defining resonances for N —particle
Hamiltonians when the pair potentials are analytic only near infinity. This is
done using the analytic distortion method of Hunziker [Hu] with a vector field
which respects the N —particle structure of the potential. This vector has been
originally introduced by Graf [Gr] to prove propagation estimates for N —particle
Hamitonians and is now a fundamental tool in the scattering theory for such
systems.

Let us now describe more in details the class of Hamiltonians which we will
consider. We study a straightforward extension of N—body Hamiltonians called
Agmon Hamiltonians (cf [Ag]). One considers a finite dimensional real vector
space X with a positive definite quadratic form g(z,z), and a finite familly
{Xa}, a € A of linear vector subspaces of X which is closed under intersection
and obeying Nae4 Xs = {0} and X € {X,}. One denotes by X*° the space X,
by #%, 74 the orthogonal projections on X2 and X,.

On A one puts a partial ordering by saying that b < a if X* C X°. With
this ordering A is a lattice and one gets that X, . = {0} and X,_,, = X. Let
D, = }0; and let (z) = (1 + g(z,z))/2. For a € A, one denotes by fa the
maximal number k such that a; = a < as--- < ax = amax.

If N = §amin, one defines a (generalized) N—body Hamiltonian by :

|
H = Eg(Dts Dt) + V(J")r

where : V(z) =3 c 4 Va(7%2) and § is the dual quadratic form on X' associated
with g. For simplicity of notations, we will simply denote §(D, D) by D2.
For a € A, we denote by H, the Hamiltonian H — I,(z), where I,(z) =
2 bga Vi(z®). One has also H, = D2 + H®, where H® is the Hamiltonian
acting on L?(X?®) defined by H® = 1 D% 4+ V(z®) for V2(2%) = T 3¢, V(=)
We will assume that the potentials V, satisfy the following hypotheses :

H1)V, € L*(X*°).
H2) V, extends holomorphically in
{z € C™" | |Rez| < R, |Imz| < €| Rez|},
for some R, €0, and satisfies in this region :
H3) 21_1*130 Va(2) = 0.

The condition that V, € L*°(X?) is purely for illustrative purposes. The exten-
sion to singular potentials is easy.

Let us now give the plan of this paper. In Section 2, we recall the definition
of the Graf’s vector field and prove two important properties. In Section 3 we
define resonances as eigenvalues of the distorted Hamiltonian and prove that
they coincide with poles of the meromorphic continuation of the resolvent.
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2 The distortion vector field

To define the complex distortion, we will use a vector field originally introduced
by Graf [Gr] to prove propagation estimates for N—body Hamiltonians. For the
reader’s convenience, we will briefly recall its construction.

Let us first introduce some notations. For a < b one defines :

:r:fI = wlz, = 2% — 2% = w2t
Note that :
(22)? = 22 — 22 = 2%% — 22,
One puts then :
(2.1) Jo(2) = [ F((=))* > o)) [T F((=9)* < 4,
alf g<a

where F(z € A) denotes the characteristic function of A. The constants ¢j are
chosen equal to :

g =q¢*—-¢,

where

¢® =

. ¢'*~ ! if @ # amin
0if a =amin-

For a mollifier ¢ € C§°(X) with :

6> 0, ] b(z)dz =1, j zé(z)dz = 0, suppé C {|z| < o},

one then defines :
Ja(z) = Jg % d(z).
We will use the following properties of j, (see [Gr]) :

Lemma 2.1
i) EaeA Ja(z) = 1.
i1) 3Cy such that |z°%| < Cy on suppj,.

i11) AC, such that Vb ¢ a, |z°| > C1, on suppj,.

We then define the distortion vector field :

ve(z) = Zja(%):ca.

acA

A.
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the constant C will have to be chosen large enough later. For ease of notations
we will usually forget the subscript C and write simply v(z) for vc(z). We
remark that if N = 2, then V(z) is identical to the distortion vector field of
[Hu]. Note the following estimate, which follows directly from Lemma 2.1 :

(2.2) 10z ve(2)| < Co, Va € N.

Let us now recall the definition of the distortion associated with vc given in
[Hu]. Since V,vc(z) = O(1), the mapping

X3z z+40vc(z)

is invertible for # € R, |0| < ¢o. So we can define the unitary transformation
Us on L*(X) by

. Usu(z) := Jo%u(z + bvc(z)),
for Jg = det(8;x + Oxv'). One then puts
"Hy := UgHU; ' =
3Us D2U; ! + Vio(2).

Here .
Us D2US = J; ¥ Dyt gy d DIy %,
Vo(z) = V(z + Bvc()),

where (J§*) is the inverse of the matrix (Jp);x and summation over repeated
indices is understood.

The goal is now to extend Hy to complex values of 8. The first important
property of v is the following :

Proposition 2.2 Assume that :
V(z) =) Va(z®),
a€A

where V, satisfy the conditions H). Then for C large enough, there exist co, 1
such that :

6 — Vy(z) := V(z + Ovc(z))

ertends from 6 € R as a function holomorphic in
{6 € C||Reb| < co, [Imf] < 1}

with values in L*°(X).
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proof. it suffices to consider a potential V;(z%). For # € R, we write :
Vo(a® + 0r0(2)) = Vo(e® +0 e u dal5)7°0) =

Vb("f'b +6 EaeA,bga ja(%)“b"’a)s
b

since 7'z, = 0 if b < a. Next we observe that on suppjs(%), one has :
(2.3) |z%] < CoC, |2b > C1C, Vb £ a.

So :

(2.4) |7%2,| = |xbz — xz,| < |2b| + CoC.

By (2.3), we see that
E : ja(i)ﬂ'bza
C

a€A bLa
is supported in {|z}| > C,C}, so that
;&
Vb(zb + 6 Z Ja('é')’rbza)
a€A bLa

is clearly analytic in 8 for |z*| < C,C. By H), we can now pick C large enough
such that if |z%| > C;C then

0 — Vy(z® + 0y°)

is holomorphic in |Imf| < ¢y for some ¢p > 0, uniformly for |3*| < ca|z’|. But
using (2.4), we have :

| ja(ﬁ)ﬂ'b‘nal . c2|zb':
2 g
a€AbLa
in {|z*| > C1C}, so that
0 — Vi(2® + 07 v(2))
is holomorphic in @ as claimed.O

To state the second property, we introduce another partition of unity. It is
well known (see for example [C.F.K.S]), that there exist a partition of unity :

(2.5) 1= ) qu),

ja<2

with the following properties :
Qamax € C3°(|2] £ 2),
for fa = 2, suppga C {z € X | |2 > 1, 2| > €o|z], Wb £ a},
for fa = 2, g5 € C°(X), |V.qa| < C(z)~1.

A.
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We will denote by g, r(z) the scaled functions ¢;(%). In the next proposition,
we will denote by v (z?*) a vector field on X ¢ defined exactly as vc, replacing
X by X° and the set of indices A by the subset {6 € A | b < a}. Accordingly
in the definition of the constants ¢f for b,d < a, one has to replace b by §%b
defined as the maximal number k such that :

bi=b<ay---< b =a.
Note that by the Jordan-Dedekind chain condition, one has :
(2.6) ib+ 1 = §%b + fa.

Proposition 2.3 For any C > 0, there ezist R > 0 such that Va with fa = 2
one has :

vo(2) = 24 + v8(2%)
on suppqa'R.

proof. let us consider
ve(z) = ;jb(-é—)xb.

On suppqq r one has

|z| > R, |z°| > €olz|, if b £ a.
So for R large enough, one has :
ve(z) = ZbSa (E)zy =
2 b<a BB(E)T5+
(Zbga jb(‘g’))xa =
2 bca Jb(E)2s + Za

on suppqq r- For b < a, we write :

(2.7)

WE) = [ WG +ueway

and replace Jy by its expression given in (2.1). If z € suppqa r, y € suppo, and
f £ a, one has :

221
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since |z/| > €oR and |£C: + 4| < Co if Jy(% + y) # 0. If we put

JE(z%) = Mhcy<aF((z])? > o] )M, F((22)? < @),

we obtain that on suppg, g, js(z) is equal to
a za a
] To (5 +¥*)e(v)dy,
which is a function similar to j; if we replace X by X2, the mollifier ¢ by
¢%(z%) = / é(z)dz,,
X

and (see (2.6)) the constant C by Cq'~#. Using (2.7), this completes the proof
of the Proposition. O

3 The resonances

In this section we describe the spectrum of the distorted Hamiltonian Hy and
define the resonances as the discrete eigenvalues of Hy. We show that the
resonances are the poles of the meromorphic continuation of matrix elements of
the resolvent (¢, (z — H)~1¢) for suitable analytic vectors ¢, %.

As in [Hu], we denote by F the space of entire functions in C"® which decay
faster than any power of (2) in some cone

{z € C | |Imz] < e(Rez)}
for some € > 0. We define the set A of analytic vectors by
A = {f € L*(X) | f(z) = ¢¥(z) for some ¢ € F}.
As in [Hu], one has :
Lemma 3.1 i) for any f € A, the map
0+ Upf € L*}(X)

is analytic in K := {# € C | |Ref| < €g, |Imb| < 1 }.
ii) for any 0 € K, the image of A under Uy is dense in L?(X).

We first analyse the spectral properties of Hy.
Theorem 3.2 i) Hy with domain H?(X) is closed and one has :

llullaaexy < CUIIHoull + |lull), Yu € H*(X).
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it) Hy is m-sectorial with a sector :
S={z€C||arg(2)| < b< 7/2}.
i11) the essential spectrum of Hy is equal to

1

— nt
axor

ess(Ho) = | o(HS) +

ja=2

Definition 3.3 The points in 0(Hy)\Cess(Hy) are called the resonances of H.

proof. let us first prove i) and ii). Since Vj is a bounded operator, it suffices
to prove the corresponding statements with Hy replaced by Hp g = %Ua DU; o
The Hamiltonian Hp g is a second order differential operator with principal
symbol equal to :

T(z,£) = (A(z), ),
where A(z) = B~!(z), B(z) = YJ, and J = 1+ 6Vv. So A is diagonal in a
basis of eigenvectors of the selfadjoint matrix Vv with eigenvalues :

(3.1) 1+ 20X +20%)7,
where Ay < --- < ), are the eigenvalues of Vv. So we see that for |6] < ¢p :

IT(z,€)| > €17,

which proves i) by standard elliptic theory. To prove #i),we remark that by (3.1)
the principal symbol T'(z, £) takes its values in a convex cone strictly included in
S. Then 1) follows from this observation using for example Garding’s inequality
(see [HE]).

Let us now prove iii) by induction on the number of particles. For N = 2,
i11) is proven in [Hu]. Let us assume that Theorem 3.2 holds for all M —particle
Hamiltonians with M < N —1. For a # amax, let us denote by Hj the distorted
Hamiltonian on Lz(X %) obtained with the vector field v®, and by H a,0 the

Hamiltonian : {

Hap = Hj + D?

2(1+0)2 %
Using the partition of unity defined in (2.5) and Proposition 2.3, we obtain :

Hy = Eﬂa=2 Qa,Rga,ﬂ'*'

QGm.,,,RHB + ZIa:Z Ia,ﬂQa,R-

Using the fact that HJ is m-sectorial by the induction hypothesis and Ichinose’s
lemma (see [R-S]), we get that :

1

e nt+
(1+9)2R'

o(Hae) = o(Hg) +
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By the induction hypothesis we also have :

(3.2) llullzracx)y < C(l|Ha,oull + [lull), Yu € H*(X),
which shows as in [Hu] that :

1

— —mnnt
(1+0)2R'

Ceu(Hs) = | J o(H)+

fa=2
This completes the proof of the Theorem. O

Finally we can identify the resonances of H with poles of the meromorphic
continuation of the resolvent.

Theorem 3.4 For any ¢,v € A the quantity (¢,(z — H)™'¢) eztends mero-
morphically in z from {z € C | Imz > 0} to C\0ess(Hs) with poles at the
resonances of H. One has :

a'disc(HO) 7= U { pOIes Of (d’a (Z - H)—1¢)}-
o YEA

If A is a discrete eigenvalue of (Hg,), and @ varies continuously, A remains a
discrete eigenvalue of Hy as long as X stays in C\oess(Hp).

proof. the proof is exactly the same as in [Hu, Thm 4]. O
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