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Abstract The Dirac operator with a periodic potential has a band spectrum.
We localize these bands in the semi-classical sense, in particular we obtain a

precise asymptotic expansion of the width of the lowest energy band.

I) Introduction et énoncé des résultats

On s'intéresse au spectre de l'opérateur de Dirac sur IR

(1.1) Hh:= h;+V(x)1.
avec un potentiel électrique V(x) périodique,

(1.2) V(x+Tf) V(x). VY€Tet Vxgr";
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r {X k.v.; k (k k )€Z }, où{y v } est une base de IR

j i j j

L'opérateur non perturbé H0 est différentiel, à coefficients constants et de la

forme

H.
1 A*(hDx)

A(hD -1
où A(hD est un système mxm différentiel elliptique.

L'opérateur A(hDx) est homogène d'ordre 1 et vérifie A*(hDx)A(hDx) =-h Al,

A est le Laplacien usuel sur Rn, 1 est la matrice identité mxm

et ä celle 2mx2m).
Le paramètre h est réel >0 et censé être très petit.
On s'intéressera plus particulièrement aux cas suivants:

n 3 avec m 2 et A(hDx) o(hDx) h2^=1 o(Dx

n 2 avec m l et A(hDv) hZfao;Dv
X - 1 X,

i

n 1 avec m 1 et A(hDx) ho2Dx.

Les matrices o. sont celles bien connues de Pauli,

°i
0 f

• a->-
"o -i"

et o
"l 0"

.1 0. 2 .i 0. 3 .0 -1.
On suppose que V(x) est indéfiniment derivable sur IR

Il est alors bien connu que H est essentiellement auto-adjoint sur

26: L (IRn;<rm) et que le spectre de H est constitué de l'union des spectres des

opérateurs de Floquet:

sp(H% U sp(H
8€Rn\r*

où H ' est l'opérateur différentiel défini sur le tore IRn/r, auto-adjoint sur

L (Rn/Y\t?m), et défini comme H en remplaçant A(hDx) par A(hDx+h8).

On a noté T le réseau dual, r ={co e IRn; <o7 £ 2jiZ, W € r}.

L'opérateur H ' est l'unique réalisation auto-adjointe contenant C (IR /r;(L

dans son domaine, il est alors à résolvante compacte, du fait que H est elliptique



194 Mohamed, Parisse and Outassourt H.P.A.

et que le tore est compact. Son spectre est constitué d'une suite de valeurs
propres, chacune étant répétée autant de fois que sa multiplicité:
sp(HM) Uk(h.e);k€Z*},

avec *_k_/h,8)$2l_k(h>e)<0£jlk(h,e)^Jlk+1(h,e), si k>0.
Pour tout k £ Z*on considère alors la bande

(1.3) b.(h) UJL(M);
e

on adone sp(H ^ b (h).
keZ*

Il est facile devoir que les bandes bk(h) sont des intervalles. Si n 3, pour tout
* h S+w

o £ T H ' est unitairement équivalent (par s impie changement de jauge) à

IT' et comme nous allons le voir H ' est aussi unitairement équivalent à H '

" J=JH où J est l'opérateur anti-linéaire, unitaire et défini sur CxGT par

J(z+,z_): (o2F+,<J2iT_). On adone ì.2k_l{h,B) =X2k{h,&) et

X_2k+1(h,6)=?._2k(h,0), si 29er ceci VkelN*, et donc les bandes b2k_,(h) et

b2k(h) se touchent ainsi que celles-ci: b_2k+1(h) et b 2k(h), si k>0.
Nous ferons l'hypothèse suivante,

(1.4) Supv(x)-infv(x)<2,
X X

notons alors

(1.5) u~: -l + SupV(x) et u
+

: l + infv(x).
X X

Il est facile de voir qu'il y a au moins une lacune, un'gap', dans le spectre de H

(1.6) ],r,,i+[nsp(Hh) 0.

Quitte à rajouter à V(x) une constante, on peut toujours supposer que

u <0 <p. dans ce cas b_k(h)c]-oo,n ]etbk(h)c[n + »[, VkelN*.
Si le minimum de V(x) ainsi que son maximum sont non dégénérés, en utilisant

la théorie de Helffer-Sjöstrand [HE-SJ], 2, (voir les adaptations faites à

l'opérateur de Dirac dans [WAN] et dans [MO-PA]), on voit aisément que, pour

tout entier k>0, au voisinage de u la bande b_k(h) est localisée dans un
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voisinage de la k me valeur propre de l'opérateur -[-h A+W (x)], et qu'au

voisinage de n, la bande bk(h) est localisée dans un voisinage de la k valeur

propre de -h A+W+(x), ces opérateurs étant définis sur L (IR^O avec

(1.7) W~(x) l-(V(x)-u")2 etW + (x) l-(V(x)-li + )2.

Plus précisément, on a les résultats suivants.

Proposition (1.1)". Onsupposeque V est C°° etque (1.2) et (1.4) sont

vérifiés. On suppose de plus qu'il existe xQeRn, vérifiant

(1.8)" V(x0) Sup{V(x);xeIRn}et V(x) V(xQ)^ x-xQer.
Si le maximum de V est non dégénéré, i.e. s'il existe s > 0 et oc > 0 tels que l'on

ait

(1.9)" V(x)-V(xöU-a|x-x0|2, si|x-x0l<:£;
*

Alors, pour tout k0 € IN il existe h0 > 0 et C > 0, tels que, pour tout h, 0 < h < hQ,

et tout k e IN, o <k <jk0, on ait

(1.10)" b_k(h)c]-h3/2C-hek + n",li"-hek + h3/2C[,

où e ' )j > 0 est la suite croissante des valeurs propres de l'oscillateur harmonique

^[-A-xV"(x0)x]sur L2dRn;<Cm),

V"(y) désigne la matrice du hessien d'ordre deux de V au point y).

Proposion (1.1 )+. Onsupposeque V est C etque l'on a (1.2) et (1.4). On

suppose de plus qu'il existe x^elR" tel que l'on ait

(1.8)+ V(Xo) inf{V(x);xeRn}etV(x) V(Xo)^ x-x^er.
S'il existe a>0 et £>0 tels que

(1.9)+ V(x)-V(Xo)^a|x-Xo|2, silx-x^e;
Alors, pour tout k0e!N ilexiste ho>0 et C>0, tels que, pour tout h, 0<h<ho>

et tout k e N, o <k ^ k0, on ait
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(1.10)+ bk(h)c]-h3/2C + he; + Li
+

,n
+
+he; + h3/2C[.

où (e). 0 est la suite croissante des valeurs propres de l'oscillateur harmonique

i[-A + xV"(x0)x]su/- L2(Rn;Cm).

Les hypothèses (1.9)" peuvent être affaiblies, mais dans ce cas les localisations

(l.lO) sont différentes.

Notre résultat principal est de donner, dans l'esprit de ce qui s'est fait pour

l'opérateur de Schrôdinger par [SIM]2 et par [OUT],, un comportement

asymptotique, quand h est très petit, de la taille de la bande du spectre de H la

plus proche de n et la plus proche de u

Soient les métriques d'Agmon W (x)dx et W+(x)dx on designed (x,y) et

d (x,y) les distances associées entre deux points x et y de R Suivant que

(1.8) ou (1.8) est vérifié, on considère

(1.11) S*: infd*(x*p<*+7).
y € r*

On considère les cellules élémentaires K" centrées en x",

+ ± x-i 11
(1.12) K : {x+2- t.v; avec te] ,—[}.

o i i i 2 2

Théorème (1.2). On se place sous les hypothèses de la proposition (l.l)".

On suppose en plus que si 1 £T est tel que d±(x* ,x*+7) S*,

+ 2
alors il existe un nombre fini de géodésiques, pour la métrique W"(x)dx reliant

XgàXg+7,ef que deux telles géodésiques sont soit confondues soit d'intersection

réduite aux deux points x* et x*+7.

Alors la bande du spectre de H la plus proche de n *, qui est b h u b+2 h si

n 3 et seulement b+,(h) si n <3, est de la forme [r±_(h)+a.u(h),a.D(h) + r±+(h)]>
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Certains résultats partiels de ce travail ont été établis auparavant dans la thèse

de l'un des auteurs, A. Outassourt [OUT^.

Nous tenons à remercier vivement B. Helffer pour l'intérêt porté à ce travail.

Ii) Démonstration des résultats

Dans toute la suite, C désignera toute constante >0 ne dépendant que de V(x).

Le produit scalaire sur HT sera noté |. et la norme associée |. |.

L'opérateur gradient sur Rn sera noté V, V iDx p(Ç) désignera le symbole

principal de H0, H0 u p(hDx+h8)u+(u+,-u Pour tout ouvert Q de R

< I. >n désignera le produit scalaire sur L (fl;<i et II ||n la norme associée,

w (ß;<L désignera l'espace de Sobolev d'ordre k sur ß et ||. ||k Q sa norme, les

références an seront omises quand il n'y aura pas confusion.

§2.1 Preuve de (1.6)

Soit Xe]\i~,\i+[, alors -l<V(x)-a.<l, VxeRn.

Par conséquent l'opérateur C^=A*(hDx)[l+?.-V(x)]"*A(hDx)+[l+V(x)-^]

est un isomorphisme de w'(Rn;(Cm) sur W"'(Rn;Cm) et l'image de W2(Rn;Cm)

est L2(Rn;<Cm). Pour tout f (f+,f")€^e L2(Rn;(Cmx(Cm), on détermine

u (u
+ .u")eSepar u" =[l+^-V(x)]"'[A(hDx)u+-f"] et

u+ (cJ)"'[f++A*(hDx)(l+^-V(x))"1f"].

Onau€#6et(H -X)u ï .On vérifie aisément, grâceàl'ellipticitédeH queu

est dans son domaine, u e D(H W (Rn;CmxCm), ce qui prouve que?. sÉsp(H
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S2.2 Preuve de la proposition (l.l)

On a (cf [WAN] ou [MO-PA]) l'égalité d'energie

(2.1)

||h(Dx+e)(e*/hu)||2 +
2*/h 2 2 2

e [l-|V<t>(x)| -(W(x)-X) ]|u(x)| dx

2o/hr h,e h,e
Re(<e [H0 +(V-3L)]u|[H0 -(V-Jl)]u>)-

2ò/h h,e
2lm(<e [H0 +(V-3l)]u|p(V0)u>),

ceci pour tout réel X, pour toute cellule K', pour toute fonction réelle et

lipschitzienne 0(x) sur R et vérifiant des conditions sur le bord de K périodiques,

et pour tout ue W K'iUfxC"1) vérifiant des conditions au bord périodique sur

K', (on prendra par exemple K' K ou K' K3: x0+3(K-x0).
L'égalité (2.1) est encore valable sur un ouvert ß en imposant à u de vérifier les

conditions au bord de ß du type de Dirichlet, (on n'impose aucune condition au
bord pour 0).

L'estimation (2.1) avec K'=K3 et 0(x) (l-£o)d(x), 0<£0<1, permet aisément

d'établir la Proposition en suivant par exemple la démonstration du théorème
(2.6) de [MO-PA]; la distance d(x) est définie par

d(x): infd(xo+7,x);
ver

dans (l.lO), C est une constante >0 ne dépendant que de K'.

En effet si X \i+Ö(h) est une valeur propre de H ' et si u(x) est une fonction

propre associée, alors u(x) a toute son énergie concentrée dans un petit voisinage

de x0, i.e. il existe C>0 tel que, pour tout h assez petit, on ait

J j[h2|(Dx + 8)ef/hu|2 + (|x-x0|2|e*/hu|2]dx^cJ |u|2dx.

Si X0(x) est une fonction de troncature à support dans K et égale à 1 dans un

voisinage de xQ, i 1 existe donc n> 0 tel que

(2.2) ||(Hh-iOxou|| =0(e"Vh) sif|ufdx l.0 jK,
1/2

La dilatation (x- x0) — h (x- xQ), puis la formule de Taylor appliquée en x0
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et on a les développements asymptotiques
¦>

n +2 -S /h±. ±. 2 0 V-1 ± J ± ± - V ± J

r+(h)-r (hfah e 2-,v. h avec r0>0, etXD(hfau +2*p.h.
j>0 jjl J

(/c/ ±ï-u(h) désigne la plus petite valeur propre ^+^ du problème de Dirichlet

surunouvert ß contenant {x; d^Xg.xJ^S*} etassociéà H

Le problème de Dirichlet est l'un des deux suivants définis par l'opérateur Hn'+

associé à H sur ß, de domaine

D(H^±)={u (u+,u")eW1(ß;CmxCm);u±/aß=0}.
L'ouvert ß doit être choisi connexe, borné, à frontière assez régulière, contenant

{x; d"(Xg,x)^Sg} et ne rencontrant pas Xg+r\{o}.
Remarquons que l'on passe d'un maximum pour V(x) à un minimun pour

-V(-x) par la transformation unitaire 3(f)(x) (f (-x),f+(-x)), si

f(x) (f+(x),f"(x))€L2(Rn;Cm)xL2(Rn;Cm).

En effet on a 3*(H*+V(x)i!)3 -(h£- V(-x)Ë);
par conséquent nous démontrerons seulement le cas du minimum pour V(x),

celui relatif au signe +, nous omettrons en particulier ce signe + quand il n'y aura
pas confusion.

Dans le chapitre II, nous démontrerons les résultats annoncés et dans le

chapitre IV, nous traiterons le cas des potentiels à singularité de type
Coulombienne qui ont été étudiés, auparavant dans le cadre de l'opérateur de

Schrôdinger, par [KNA] et [MOH]. Au cours de la démonstration du
théorème (1.2), il apparaît que les deux premières valeurs propres positives

a.,(h,8) et X2(h,8), de l'opérateur de Floquet H ' sont asymptotiquements

proches quand h —0. Une question naturelle se pose, à savoir si génériquement

X,(h,8) est une valeur propre simple. Nous repondrons partiellement à cette

question dans le chapitre III et nous donnerons un exemple de potentiel V(x)

donnant lieu à un A.,(h,8) simple pour tout (h,8) dans un ensemble dense, en

utilisant les techniques de [MO-PA]. Un problème semblable se pose pour les
états exités de l'opérateur de Schrôdinger, cf. [COL].
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dans l'égalité

(2.3) CJV 0,

CJ[1'e [l-V(x)+X]A*(h(Dx + 8))[l-V(x)+À]"lA(h(Dx + e)) + l-(V(x)-X)2,

permet de voir que

(2.4) ||[^(-A±(x-x0)V"(x0)(x-x0)-h"1a-lr)]X0u|| 0((h1/2).

Mais u"=[l-V+?.]"1A(h(Dx + 0))u+,

alors (2.1)- - (2.3) montrent que

||X0u-|UC,(h||DxX0u+|| + e"Vh)^C2(||X0u+|| + e",,/h);

où C, et C2 sont deux constantes >0, indépendantes de h.

On peut donc déduire de (2.4) qu'il existe une valeur propre ek de l'oscillateur
¦3/2

harmonique, telle que \X-\i-hej 0(h
X est proche d'une valeur propre de l'oscillateur harmonique de la Proposition.
La réciproque est beaucoup plus facile compte tenu de la décroissance

exponentielle des fonctions propres de l'oscillateur harmonique.
On vérifie de même l'égalité des dimensions des images des projecteurs

spectraux respectifs, sur un intervalle convenablement choisi et de longeur de

l'ordre de h

S2.3 Preuve du théorème (1.2)

On supposera que x0 se trouve à l'origine de R

Dans toute la suite on écrira
(s0+c)/h.

f(h)%g(h), s'il existe£>0 tel que f(h) g(h)+0(e quand h -*0.

Soit£0, 0<£Q<—, choisi assez petit. Soit ß un ouvert vérifiant

Ql-2£ cßcQl-£ avec Qr:={x; d(x0,x)<rS0}.

Soit le sous-ensemble borné der,
X:={7er; (7 + K)nßfa0).

Soit x(x) une fonction de troncature qui vaut 1 dans un voisinage de Qi_2s et

à support dans ß.

Rappelons que J commute avec l'opérateur de Dirichlet Hn, sur ß.
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Soit X(h) la première valeur propre ^0 deHn,

X(h) est telle que Mh) n + he,+C(h2).

La valeur propre X(h) est de multiplicité deux, l'espace propre admet une base

orthonormée de la forme {u ,Ju }. On considère comme dans [OUT], les fonctions
h,9, -i8xx- i9Y h, h,6, -iexv «OY h,

v (x) e 2.e X(x-7)u (x-7) et v (x) e L. e x(x-7)Ju (x-7);
y e r ' ver

ce sont deux fonctions périodiques sur K.

Si pour tout£, e]o,l[ fixé, on utilise (2.1) sur ß avec 0(x) (l-£,)d(xo,x),

on trouve qu'il existe C£ >0, indépendant de h, tel que l'on ait
i

(2.5) ||hDv(et/huh)||2+||de'/huhH%C. ; avec d(x) d(xn,x).

Comme dans [OUT],, en utilisant la théorie de Helffer-Sjöstrand [HE-SJ],2 et

(2.5), on montre aisément que les valeurs propres ?-,(h,8) et ?-2(h,8) de

l'opérateur de Floquet H ' sont celles de la matrice 2x2

(2.6) M(e)=Jl(h)l + + R(h),avecR(h) 0(e
-<W/hfa,(h) b(h) s

b(h) a, (h)
v.

*¦ r

pour untio>0 indépendant deh, ti0 S0(i-£,), £, étant celui choisi dans (2.5).

Les a(h) et b(h) sont donnés par

aj(h) i(ajj(h,8)+äjj(h,8)), b(h) i(«21(h.e)+ä,2(h,8)) et

v ie(Y-p) Y, Y, p pa..(h,8) -ih 2, e <p(VX )u.|x u. >;'¦ Y.peSC
J

on a noté u,(x) le spineur u (x), u2(x) celui Ju (x) et si f est une fonction et

7G r, fY est la fonction fY(x) f(x-7).

Remarquons que oc22(h,8) a, ,(h,-8).

Etudions d'abord les a(h). On a

(2.7) a.(h) hlm{ Y e'^'^ptVxWu^}.
J Y.Pe3t J J

Le fait que u? Ju et que p(Ç)J= -Jp(Ç) pour tout réel Ç, permet devoir, en
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utilisant la propriété (Jx|y) - (Jylx),

que les aj(h) a|(h,8) vérifient a2(h,8) a,(h,-8).
Remarquons que

d(x0,x) + d(x0,x-7)^d(x0,x0-7) et d(xQ,x-7)+ d(x0,x-p):> d(x0-7,x0-p).

Comme p(VX est hermitienne, les termes relatifs à7 =p dans (2.7) sont à

contribution nulle. Pour estimer (2.7), il suffit donc d'estimer

(2.8) ai(h.7,p):,eie(Y-p)<[Hh;Xï]u;iXpuf>+e"i6<7-p)<Xpuj>|[Hh:XY]u;>,

pour un 7et p e ÏK tel que 7 xp.
-<vV/h

(2a(h) est la somme des a.(h,7,p) modulo un 0(e

Soit £)y la partie du support de VX contenue dans K, alors on a

d(x0,x-7)^(l-2£0)S0, Vxe£>Y;

par conséquent, si £0 est choisi assez petit, on a

d(x0,x-7)+d(x0,x-p)>S0, Vxe£>Y, si p et7er\{o).
L'estimation (2.5) montre alors que

(2.9) aj(h,7,p)sî0, si 7*0 etp*0.
Comme d(x0,x-7)+d(x0,x-p) S0 implique l'existence d'une géodésique, gy de

longueur SQ reliant 7 à p et passant par x, s'il n'y a pas de géodésique de longeur

S0 reliant 7 à x0, alors a(h,7,o)^0.

Dans le cas contraire, on peut trouver un point y€gyQnK, y*x0, tel que, dans

un voisinage de ce point, l'hyperplan FY normal à la géodésique, sépare le support

de VX du point xQ. On peut donc trouver un ouvert ß,, tel que ß, soit contenu
y

dans K et dans le demi-espace contenant le support de VX de frontière FY, et

tel que FYndßy soit un ouvert non vide de la frontière de ßy, aß,, contenant y.

L'ouvert ß, étant choisi de façon à ce que l'on ait

(2.10) ^(11,7,0)^(11,7,0^), avec
Ì9Y _ h Y, Y 0 -i9Y 0 ,_ h Y, Y

a.(h,7,0;ß ): e <[H ;X ]u. u. > -i-e <u. [H ;X ]u>j r j j n j j n/
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Soit n la normale à FY dirigée vers l'extérieur de Q/. On a alors facilement, compte

tenu de (2.5) et (2.10), que

(2.11) a.(h,7,0)*ih[-e
i9Y Y Y 0 -Ì9Y

(p(n )u.|u. )ds+e
0 Y Y

(u. |p(n )u )ds],

où ds désigne la mesure de Lebesgue sur FY.

On peut donc écrire que

(2.12) aj(h,7,0)a;2h[ßj(h,7)ceo(87)-aj(h,7)ü'n.(87)],

aveca.(h,7) + iß.(h,7)
Y Y 0

(p(n )ulu )ds.

v y y "Y

En utilisant les propriétés Jp(n )J=p(n et u2=Ju,, on voit que

cc2(h,7) -a,(h,7) et ß2(h,7) ß,(h,7).

Comme u. (u^,u[). avec ufo) [5L(h)-V(x)+ir'A(hDJuta),fill x I

on a sur FY, (p(nY)uY|u^ [?.(h)-V(x) + l]",-1
1 1

{(A(nY)u^Y |A(hDJu^ + (A(hDx)u^Y |A(nY)u^}.
Soit ^li l'ouvert, ensemble des points x tels qu'il n'existe qu'une géodésique

reliant x0 à x. Dans [WAN], voir aussi [MO-PA], on montre que la méthode

B.K.W. fonctionne sur li, i.e. il existe une suite de spineurs (Uj k(x))k)0, telle que

ur(x).c(h)e"<p(x)/h2k?0hku^k(x),

(c(h) étant une constante de normalisation et <p(x) d(x0,x)).

On peut choisir ß, de façon à ce que 7 + ßyCll etßYc<rLL Comme dans le cas

du "splitting" étudié dans [MO-PA], on montre, en utilisant des estimations

établies dans [HE-SJ],,, que a(h,7,0) admet un développement asymtotique
-s /h

(2.13) aj(h,7) + ißj(h,7)^c2(h)5(h)e ° 2kä0h'zYk, avec

z\:=--{([A(n7)u;n)]V(V<p)u")-([A(V<p)u;ilA(nY)u+n)}v_v,
j.o J.O' J.O' J.0J J.O x y
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etô(h):
-[d(x0,x) + d(xQ.x-Y)-S0]/h

ds.

FYnfiy
Y Y n Y Y Y

Soient m et k deux vecteurs de R tels que {n ,m ,k } soit une base

orthonormée et directe. On écrit que

V<p(x) Vd(x0,x) =<p,(x)n +<p2(x)mY+<p3(x)kY.

Comme d(x0,x) + d(x0,x-7) S0, Vxeg^, et d(x0,x)+d(x0,x-7)>S0, six^gY0,

(x restant dans un petit voisinage de g, 0), on a

(2.14) <pk(y)+<pk(y-7) o, pour k i,..,3.
Mais A(V<p(x)) V<p(x)o est une matrice hermitienne, on a donc

zIo=-i<[(v<p(y)o)(nYo)-(n"o)(v<p(y-7)<j»u^y-v)iuÌ',o(y))-
Par conséquent, en utilisant (2.14), on trouve

(2.15) zY0=-i<p,(y)(u^(y-7)|uro(y)).

Mais y appartient àlagéodésiqueg^ety^XQ, comme n est parallèle en y à

cette géodésique et de direction, de 7 vers x0, on a donc

(2.16) <p,(y) nYVd(x0,x)i -|V<p(y)| -[l- (V(y)-ti)2]<0.
I U lX_y

On remarque maintenant que u^0(x) est solution, (cf. [MO-PA]), de

Xv+(x)+q(x)v+(x) 0, avec (par exemple) v+(xo) (l,0):

X est le champ de vecteur tangent àgY0, X 2V<p(x)V, et

q(x) A<p(x)+2p1(V(x)-n)-2(VV(x)|V<p(x))-2i[VV(x)xV<p(x)]a,

(p, est celui du théorème (1.2) choisi tel que q(xo) 0).

Mais on a VV(x)xV<p(x) 0, VxegY0.

En effet, si on prend par exemple x=y, en remarquant que V<p(y) -|V<p(y)|n

on a VV(y)x V<p(y) |V<p(y)|(VV(y)|mY)kY-|V(p(y)|(VV(y)|kY)mY.

Comme |V<p(x)|2 l-( V(x)-n)2;
Y Y__ 2

le terme |V<p(y)|(VV(y)|m est un multiple de m V(|V(p(x)| /x=y,

et comme le champ de vecteur m V est tangent à la 'sphère d'Agmon'
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I0={x; d(x0,x)= d(x0,y)}, on en déduit la nullité du terme considéré.

L'autre terme se traite de la même façon.

Il existe donc une fonction réelle et >0 sur gï0, u*(x) telle que

u^o(x) (Uq(x),0) etu2O(x) (0,iUg(x)), Vx€gY0.
On en déduit alors facilement que

(2.17) (U*0(X-Ï)|U*0(X)) (U*0(X-Y)|U*0(X)) >0, Vx€gY0.

De plus, dans un petit voisinage de y, les ensembles I0 et

IY={x; d(xQ,x-7)= d(x0,y-7)} sont deux sous-variétés ayant un unique point

commun, y, et l'hyperplan Fy comme tangente commune en y. Dans la formule

(2.13) on aurait pu faire le raisonnement en remplaçant FY par IY, comme

d(x0,x)+d(x0,x-7) admet sur IY en y un minimum non dégénéré, (pour s'en

convaincre il suffit de voir que dans le voisinage de x0, Q^. on peut trouver un
0

222système de coordonnées {v,,v2,v3} tel que d(x0,x) =v,+ v2+v3 et

v(x) (v,,v2,v3) soit normal à I0 ceci si £0 est assez petit). On a donc sur FY,

d(x0,x)+d(x0,x-7)-SQqui admet un minimum nul et non dégénéré en y, par
conséquent, on a dans (2.13),

(2.18) ô(hfah2k>0h\, avec60>0,
de plus on a

(2.19) c(hfah~" 42k>0h ck, avec c0>0.
Les propriétés (2.12), (2.13), (2.16)- - (2.19) montrent aisément que

n
2~- -SQ/h

(2.20) a.(h) h e Y [ß(h,Y)ce*(8Y)+ha(h,Ybi/n.(8Y)],

le signe - étant relatif à j l et le + àj 2; ïj désigne l'ensemble des ter tel

qu'il existe une géodésique entre 7 et 0 de longueur SQ.

Les a(h,7) et ß(h,7) de (2.20) vérifient les propriétés suivantes:

(2.21) a(h,7faZk>0hkak(7) et ß(h,7fa2k>Qhkßk(7),

avec ß0(7)<0, pour tout 7 G X$.
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Le terme b(h) se traite de la même façon. On utilise les propriétés u2 Ju, et

p(Ç)J= -Jp(Ç) VÇeR3, pour établir que

(2.22) b(h) -i I î>i/a(e(Y-p))<xV|[H ;X ]u>.
Y.Per

2 '

On en déduit alors facilement que

(2.23) b(h)«shE î>tiv(87)
0 Y Y

(u lp(n )u,)ds.

Quand on écrit que u*(x) c(h)e * x
v (x), avec v (xfa2k>0h u*k(x),

on obtient que, pour un 7 e tj fixé, on a

°i w i Y\ Y/ w 2/. v -((p(x)+<p(x-Y))/h h,
(u2(x)|p(n )u,(x)) c (h)e v v w (x),

avec w =-(o2v |(nYo)(V<pYo)(v )Y)-(o2(V<pa")v |(nYo)(v )Y) + C(h).

On utilise alors l'égalité (no)o2(V<p(x)ô:)=-(no)(V<p(x)o)o2,

pour voir que w =(<p,-<p,)(o2v |(v +

i(<p2+<p2)((mo)o2v |(v )-i((p3+<p3)((k o)o2v |(v )+0(h).
En utilisant les proprités sur le premier terme du développement asymptotique

de v on trouve facilement que le premier terme de celui de w est nul sur la

géodésique: w (y) 0(h). On déduit alors facilement de (2.23) que
n

3-j -S0/h
(2.24) b(h) h e Y p(h,Y)*i/a(6Y),

et que les p(h,7) ont un développement asymtotique de la forme

(2.25) p(h,7fa2k>0hkpk(7).
Les propriétés (2.6), (2.20), (2.2l), (2.24) et (2.25) montrent que les deux

premières valeurs propres >\i+ de H ' vérifient
_s /h -(s +i l/h

(2.26) ^j(h,8)=X(h) + h(4"n) e
° [v(h,8)+h5(h,8)] + 0(e ° °

avec v(h,8)= Y ß(h,7)cei(87) et

6(h,8) [(X oc(h,Yhi/rv(eY)) +( Y p(h,Y)i.iTv(8Y)) ]' :

désigne - étant relatif à j l et le + àj 2).
Le théorème est donc démontré, quand n 3.
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Dans le cas où n 2 ou n l, la démonstration est plus simple du fait que la
matrice M(9) dans (2.5) est d'ordre un, l'indice j ne prend pour valeur que 1, la

méthode BK.W. fonctionne aussi dans ce cas et beaucoup plus simplement.

Remarque (2.l): Si n 3 etsi V(x) estpaire, i.e. V(x) V(-x), VxeR3,
h 9

alors les valeurs propres de H ' sont de multiplicité paire.

Si V(x) est impaire, i.e. V(x) -V(-x). VxeRn, (n l,2 ou 3),

alors le spectre de H est symétrique par rapport à l'origine,

Xesp(Hh) =* -a.esp(Hh).

Pour s'en convaincre il suffit de remarquer que, si V est paire, H ' ^3-=<s3H '

où «s&est l'isométrie anti-linéaire <s3.u(x) (a2ïï+(-x),-o2u (-x)), Vue 3^

Si V est impaire, (Hj+V)jfl.=<*KHj-V)

omme on a vu que - (H0- W.

retrouve la propriété énoncée

comme on a vu que -(H0-V) et H0+V sont unitairement équivalents, on

III) Etude de la multiplicité du niueau fondamental

OO

Dans toute la suite V(x) sera un potentiel C et T- périodique,

v 'ox —
(3.1) V(x)=2^ve avec v =v etv=0.

t « -o) <o 0

<o€T

Pour tout (8,-c) G RnxR, on notera (Jlk(0,t))k6 z* la suite des valeurs propres

de l'opérateur Hth9 Hj,9+tVa défini sur lW/TiC2"1).

Théorème (3.1) S'il existe p ef Y dans T \{o} tels que

(3.2) Im(v,+YvpvY)*0.

alors l'ensemble des (8,x)g RnxR, tel que toutes les valeurs propres de

l'opérateur H soient simples, est dense dans R xR.
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Preuve. On va faire la démonstration dans le cas n=3.

Soit 8 G Rn fixé et vérifiant

(3.3) lö-eMs-el, v <o et ôgt <o*s.
h.e

Les valeurs propres de Hn sont (±u »,

(3.4) ^ (i+h2|<o-e|2),/2,

chaque valeur propre ±u est de multiplicité deux,

(3.5) h,9
dim(Ker(HÖ°±n0l))=2

Pour simplifier les notations, on omettra la référence à h et 8, on écrira Ht au lieu

deHM: H=Hh9.
*

On va considérer H. comme une perturbation de HQ. On considère <o G r fixé.
On a

(3.6) Ker(H0-^l) Vect{e,ux<pu,eU0XJ(<pJ},

ou <p v hv' (<ù-8)oe
A^ ri

_„ y—¦==-, onprend e

^k * /sir Uet v =-

On remarque que Ker(H +ii l) T(Ker(H„-u 1)), si T
0 r6) 0 "tì

f +\ - \
X X

X

({<P...J<P .T<p ,TJ<p } est une base orthonormée de C
CO v ' tu ¦ CO CO

Soit IIula projection orthogonale sur Ker(H0-nul).
Si on veut appi iquer les théorèmes de perturbation établ is dans [MO - PA] à la

valeur propre double nu, et savoir si elle éclate en deux valeurs propres simples, il

suffirait pour cela que II Vu ou quell V(Hn-u l) (l -H )VII admette deuxCOU CO U * (0 0) w

valeurs propres simples. Un calcul élémentaire montre que

,2 ,S~U.Y) 8+(<o,Y),
,„ .1 VII -7.lv0 rrs*

(3.7) n vn =o et n v(h-u i)"'vn =5jyi2(
Y ^ö+Y ^ü> ^<o+Y + ^<o

m.

avec 8"U,7) 2(|(J<p>w+Y)|2 + |(<p>u+Y)|2) et

6+(co,7) -2(|(T<p>ü+Y)|2 + |(T<pJJ<P(o+Y)|2).

On ne peut donc pas appliquer les théorèmes de [MO-PA]; on poursuit tout de
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même leur méthode à un cran suplémentaire. On est ramené à chercher à savoir
si l'opérateur

(3.8) Ro=n(ûv(H0-^i)",a-njv(H0-^i)"1vn0)
admet deux valeurs propres simples.

La matrice de RQ dans la base orthonormée {e"° <f>lù.ela J(<pJ} est hermitienne et

a ses éléments diagonaux qui sont égaux,

(3.9) au a<o(e):= <R>%J|e%u> <Ru(eiwxJ(«pJ)|eiwxJ(<pJ >;

pour s'en convaincre, il suffit de remarquer que H0 commute avec la

transformation unitaire u(x) —J(u)(-x) et, le fait de remplacer V(x) par V(-x)
revient à prendre le conjugué du terme à calculer qui est ici réel.
Notons

(3.9') b.-b.(e):=<^(e%>teJ(,J>.
Si bw^0, alors Ru a deux valeurs propres simples nw3 et no3 telles que

»11.3-tic.3 2|bJ-

Soient u~
0

les vecteurs propres associés choisis tels qu'ils forment une base

orthonormée de Ker(H0-jiul).
3

±,t ^i j ±
On considère les spineurs u /_, t u

<0 <0,J
J 0

et
±,t ^i j ±

le réel u 2s t H¦ r.\ ^^ '
J 0

Les réels u sont définis par: li+„ u u+. 0, u"=u est le réel vérifiant

n v(Hn-u i)"'vn =-u ,n<o O ro ' u ra,2 <o'

et les n~ 3 sont les deux valeurs propres distinctes de Ru

On définit les spineurs u~, de la façon suivante:

les u^ 0 sont les vecteurs propres définis ci-dessus,

«^-(Ho-^irVu;,,
<2 (H0-^l)"1[V(H0-niol)"1V + lxu2l](uiw0)

et- <3= -(h0-m)"'{v (H^^D-'tvm^^D-'v+^n-n^ixu^).
On vérifie facilement que l'on a
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Ilu*1|-l 0(t). <u>;%=0(x) et (Ht-n^l)(u^) 0(,4).
ceci quand x->0.

Par conséquent, si bu(8)*0, il existera £w(8)>0, tel que, pour toutt, W^6U(8),

t * 0, on ait la valeur valeur propre double, nu, de HQ qui éclate en deux valeurs

propres simples,?.1,'*, pour H telles queX+/'-X~/' 2i |b (8)|+C(t
fil T * /il *¦! 1*1

Etude de h (8) de ^.Q')

Notons jto la projection othogonale de C sur Vect{(p et, na celle sur

Vect{J(<i>J}.0nafto=-J*oJ.

L'opérateur R peut être considéré comme un opérateur R sur C

4

R =(a ®k )(Y R •)((« œit
a a q a ,| a a

J l

avec

v v v
n V P+Y P Y / w * \R,. 2^7 r-, M v®31 JU ®n >•a.l („ _u )(„ _„ a+p + Y a+p+Y a+p a+p

P'7^a+p+Y ^a/Vpa+p *a '

V V V
R

„ Xt P+\P,
Y

,U ©n JTU ©Jt )T,
a,2 („ _„ W„ +|i a+p+Y a+p + Y a + p a+p

H' "a+p+Y *a a+p *a

V V V
R X7 P+Y.".

Y

JU ,eî JTU ®k
0,3 „v(li +U )(u -U "+P+Y a+p + Y a+p a + p

P,T v|a + p+Y 'a xpa+p pa '

V V V

etR £- ""V,
Y

TU v©Jt JTU ®k )T ;
"•4 ûY(il +11 )(u +n "+P+Y a+p + Y a+p a+p

H' "a+p + Y "a "a+p "a
on a pris la convention de ne considérer dans la somme que les termes donnant
lieu à un coefficient de fourier de V(x) non nul, i.e. seuls le p et 7 tels que 7*0,

p*0 et p+7*0 sont à considérer, (remarquer quevo 0 et que"r -l).
On trouve alors que

iax iax v<
3.10 b =b 8:=<R e <p e J <p >=2.v v vb p,p+7.8a a a xa "" Ta p+Y p Y a r r

p.Y
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avecb>,p+Y,e)= I b (p,p+Y,8)[^ (e) + (-i)Jn<o(8)]"1
j.k e {1,2} ' r

x

[K + p(B) + (-l)\jB)ì-1.
On omettra la référence à 8. On utilise les propriétés suivantes,

J2=-l.T2=-l,TJ JTet(x|Jy) -(y|Jx),

et on trouve les expressions ci-dessous des bu. k(p,p+Y):

ba.U(P-P+7) (<Pal<Pa+p)(<Pa+pl<Pa+P + Y)(<<>a+p+Y|J<Pa)-

^X+p^a +p+Y^a+p^a^+pJ-
^a + p^a^^a+p^a+p+Y^'Pa + p+Y1^)-
^a + p^a^'Pa+p+Y^a +p^^a+p + Y^

ba,.2(P>P+^ (T<Pal<Pa+p)^a+P+YlJ<Pa)(T<Pa+pl<Pa + p+Y)-

(<Pa
+ p|TJ<Pa)(<«)al<Pa+p+Y)(<Pa + p +

Y|T<<,a+p)-

(T<Pal<Pa+P)(<«,al<Pa+p+Y)(<f>a+p+Y|TJ<f,tì+p)-

(<P lTJ<p )(<p |J<p )(TJ<p |<p
va+p' Jra VTa+p+YIJYa/v JYa+p Ya+p+Y '

b „,(p.p+Y)=-(<p l<P )(<P (TJ<p )(T<p \<t> J +
a,2,1 r r ^YaYa+p Ya+p+Y Jva vaYa + p+Y

(<Pa+p|J<f>a)(T<«>al<Pa+p+Y)(<Pa+p+Y|T<l,a+p) +

(<Pal<f>a
+ p)(T<Pal<Pa+p+Y)(<Pa+p+Y|TJ<Pa+p)-

(<P U<P )(<P lTJ<p )(TJ<p |<p
VTaIJVa + p/vra+p+Y' JMa/v Jya+pIHa + p+Y7

et

ba,2,2(P.P^) (T<Pa^+pH<Ptì+p+YlTJ<Pa)(<Pu+pl<Ptì+p+7)-

K+p^a^a^a+p + Y^a+p+Y^a+p^

(<P lTJ(p )(<p |TJ«p )(J<p |<p
va+p' Jra va+p + Y' JYa JTa+p'Ya+p+Y'

On vérifie facilement que, pour tout p, Y, j et k, on a

Les égalités (3.10) et (3.11) montrent que

(3.12) (V(x) V(-x),VxGRn}=*{b =0,V<aGJ-*},
CO

et que les bQ sont imaginaires,

(3.13) b =-ïï, V<oGT*.
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Remarquons que, pour toutp et Y Gl" \{o} tels que p+Y xo,

(3.14) { 8 -» bw(p,p+Y,8) est analytique et non identiquement nul}.
hfl

La dépendance analytique en t de Ht entraine la dépendance analytique en i de

hd
toute valeur propre simple de Ht le théorème (3.1) se déduit alors aisément du

fait que (3.14) et (3.2) entraînent que, pour tout cù g T fixé, la fonction

8 -» bQ(8) est analytique en dehors d'un nombre fini de points et elle est non

identiquement nulle ¦

Exemple (3.2) Soit la fonction défine sur R,

Vv(t)=-coîi(t) + 3vi)i'a(t)-ceo(2t)-vî)i-a(3t),

avec 0 <|v| <—. La fonction vv(t) admet un minimum non dégénéré aux points
3

tG2ftZ. Soit le potentiel défini sur R

V(x)=£,Vv(x,)+£2Vv (X2)+£2Vv (X3),
1 2 3

où les Vj sont des réels donnés vérifiant 0<|vj<-, j l,..,3,

et les £; sont des réels, 0 <£; <-r-, donnés.

Le potentiel V(x) est T-périodique, si r 2nZT, et admet un minimum non

dégénéré aux points du réseau T, si les t- sont assez petits, on aura (1.4).

Si on a£j<<£,, pour j 2 et j 3, il existe une unique géodésique minimale, pour
+ 2

la métrique d'Agmon W (x)dx
h ô

Si ftk(8))k est la suite des valeurs propres de H ' hoc(D-8)+ß+V(x)H,

alors, pour presque tout 8g(]o,^[) et pour tout kGZ\{o}, il existe une suite

(lu,, 0<hj<l. VJGN, et h — 0, quand j — +oo,

telle que Xk(h.,Q) soit une valeur propre simple pour tout j.

Pour s'en convaincre, il suffit de remarquer que, pour tout <o G Zr et pour

presque tout 8G R3\(yZ)3, bje) défini par (3.9') et donné par (3.10),
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n'est pas nul. En suivant la démonstration du théorème (3.1), on vérifie

facilement que, pour presque tout 8g R\(yZ)3, pour tout h>0 fixé et pour tout

m>0 fixé, les valeurs propres, (a.j(h,8,m,-c))j, deHt m
ha(D-8)+mß+-cV(x)!l,

(t G R), sont simples, sauf pour un nombre dénombrable de t. La dépendance

analytique en m montre que?.k(h,8,m,':) est simple sauf pour un ensemble

dénombrable de (m,x). En prenant m=t, on voit que ï.k(-,8) est simple sauf

pour un ensemble dénombrable de t ¦
Remarquons que, si V(x) n'est pas paire, une question intéressante reste

toujours sans réponse, à savoir si le terme 6(h,8) dans (2.26) n'est pas nul.

IU) Cas d'un potentiel de type Couiombien

On considère ici seulement le cas n 3, et on suppose que le potentiel V(x) est

toujours périodique mais indéfiniment derivable, seulement sur R \I", et que

c,(x)
(4.1) V(x) c(x)+-——, pour tout x tel que |x| soit assez petit,

0 |x|
OO

les Cj(x) étant des fonctions C dans un petit voisinage de l'origine et telles que

(4.2) -^<c,(0)<0 etVc,(0) 0.

On vérifie alors aisément, comme dans [MO-PA], que l'opérateur

(4.3) Ph: Hj+hV(x)fl,
est essentiellement auto-adjoint sur 3S à partir des spineurs indéfiniment

dérivables et à support compact.

Si on note toujours P la réalisation auto- adjointe, la théorie de Floquet montre
oo

que son spectre est constitué de bandes, comme dans le cas C

Théorème (4.1) Sous les hypothèses (4.l)--(4.3) ci-dessus, il existe C > 0

tel que, si h0 > 0 est choisi assez petit, les propriétés ci-dessous soient satisfaites

pour tout h, 0<h<ho.

(4.4) sp(Ph)n]-l-he-a(h)C,O] 0.
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Pour tout £>0 assez petit, il existe un entier N, et une constante C, ne

dépendant que de t, tel que
h

N

(4.5) sp(P )n]0.1-£[= U bk(h), bk(h)c[he<a(h)C+ek,ek-he<a(h)C],
k l

où les bk(h) sont des intervalles fermés, bk(h) [bk(h),bk(h)], ef (ek)k>0 estla

suite croissante des valeurs propres dans ]- l,l[ de l'opérateur de Dirac

Hj,+c,(0)|xr'u, sur M.
De plus on a

(4.6) b,(h)ub2(h) [rJh)+*D(hUD(h) + r+(h)],

A.D(h) étant la plus petite valeur propre positive d'un problème de Dirichlet sur un

ouvert Si contenant la cellule K et de fermeture ne rencontrant pas r\{o).
La longueur de cette double bande admet le comportement asymptotique suivant

1-2X0 -,s0/h
(4.7) r+(h)-r (h) 8h e (l+Ö(h)),

avec 5>0 indépendant de h,

(Xo (l-S)i/2,z -ci(0)et S0 Inf{|Y|;YGr\{0}}).

La démonstration de (4.4) et (4.5) résulte aisément de la localisation des

valeurs propres faites dans [MO-PA], et (4.7) se démontre comme le théorème

(1.2), (ici d(x0,x) |x-x0l et la phase <p(x)=td(x0,x)), et le Lemme (3.6) de

[MO-PA] permet de pallier l'absence de développement B.K.W. complet pour les

vecteurs propres du problème de Dirichlet.
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