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ANALYTIC COMPLETION FOR DYNAMICAL
ZETA FUNCTIONS

David Ruelle **

Dedicated to Elliott Lieb

Abstract. It is possible to extend the known domain of analyticity of dynamical zeta
functions, and also of resolvents of transfer operators, by use of the tube theorem. The
case of piecewise monotone maps of the interval is worked out explicitly, and one recovers
in a very different manner some recent results of Keller and Nowicki. In an appendix, it is
shown that the study of piecewise monotone maps reduces to the Markovian case.

1. Introduction.

It is often possible to associate with dynamical systems some dynamical zeta functions
with interesting analyticity properties. For instance, if (M, f) is a dynamical system,
Fix f™ the set of fixed points for the m-th iterate of f, and g > 0 a function on M, we

may introduce
o0 - m—1
_ & k_\s
o =en 3 T3 [ ot

z€Fix fm™ k=0

and prove that ( is holomorphic or meromorphic for (z,s) in a certain domain D C C2,
under suitable assumptions on M, f, and g. For functions of several complex variables, it
is however a general fact that holomorphy in a domain D *) may imply holomorphy in a
strictly larger domain D. The extension from D to D is called analytic completion. The
purpose of this note is to show that by analytic completion one may derive new analytic
properties of dynamical zeta functions. One can similarly extend the domain of analyticity
of the resolvent (1 — z£)™! of the transfer operator L defined by

LO(z)= ) g(y)°®(y)
y:fy=z
but this will not be discussed in detail here (see Remark (6) in Section 2).

The tool that we shall use is the tube theorem (see for instance Bochner and Martin
[3]). Let D be a domain (= open connected set) in C". If

D ={(z1,...,2a):(Rez,...,Rezp) €T}

*) In general, a domain D is an open connected subset of C*, a function f : D — C is
holomorphic if it has an absolutely convergent Taylor expansion (in n variables) near each
point of D.
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we say that D is a tube with base I'; the imaginary parts of the z; are thus unrestricted.
The tube theorem now asserts that z_f a function 13 holomorphic in the tube D, it eztends
(uniquely) to a function holomorphic in D, where D is the tube with base T, I‘ being the
convez hull of T.

We shall not go into any details of the study of functions of several variables, but we
mention the following fact ( Hartog’s main theorem, see for instance Bochner and Martin [3])
which is important to know. Let D be a domain for the variable z, and 0 < p < P < oo; if
(z,w) = f(z,w) 1s holomorphic in Dx {w : |w| < p} and of, for each z € D, w — f(z,w) 1s
holomorphic in {w : |w| < P}, then (z,w) — f(z,w) is holomorphic in D x {w : |w| < P}.

In what follows we shall give one example of application of the tube theorem, to obtain
new analyticity properties of zeta functions associated with piecewise monotone maps in
one dimension. In this way we shall recover some results of Keller and Nowicki [6]. This
example is used to show the scope of the method, but other applications are certainly
possible.

Our method gives analytic zeta functions which are not directly related to determi-
nants of operators acting on Banach spaces. This is different from the work of Keller and
Nowicki mentioned above, where the zeta functions are related to transfer operators, also
studied by Young [12], which act on specific Banach spaces.

It may be worth mentioning here that analytic completion has been repeatedly used
in physical applications (in quantum field theory, see for instance Streater and Wightman
[11], and in statistical mechanics, see Lieb and Ruelle [7]).

2. Piecewise monotone maps.

We take X to be a compact subset of R, and say that J is a closed interval of X if
J = X N [u,v] for suitable u < v. We assume that X is the union of finitely many disjoint
closed intervals Jy,...,Jn, and that f : X — X is such that f|J; is strictly monotone
and satisfies the Darboux property for : = 1,..., N. [The Darboux property means here
simply that fJ; is a closed interval of X; in particular f is continuous.]

Given g: X — C, we let

varg = supz lg(a;) — g(ai-1)|
1

where the sup is over finite families of points of X, with ap < a; < ... < a,. We say that
g is of bounded variation if var g < co. We shall use the fact that if ¢ > 0 and Res > 0,

then
[s]

Res

var(g®) < var (g7¢?) .

[Indeed if 0 < u < v, then
v
v — u?| < / s £2=1|dt =
u

s e es
E(UR s_vR ) ]

j Res.tBes—1 gt
Re s
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We say that (J1,...,Jn) is a generating partition if every intersection

() F i)

n=0

consists of at most one point. Define ¢ : X — +1 such that ¢ | J; = +1 (resp. —1)if f is
increasing (resp. decreasing) on J;. [We may assume that no J; is reduced to a point, or
else choose ¢ | J; arbitrarily.] Write then

m—1
Fix~ f™ = {:1: eFixf: [ e(f*e)= —1} :

k=0

Baladi and Keller [1] have studied the zeta function

((z) =exp Z % Z H g(fk:z)

z€Fix fm k=0

where f is piecewise monotone as above, associated with a generating partition, and g is
of bounded variation. If

m-—1

. k 1/m
6= lim (max k];IO l9(f*=)])
they show in particular that ¢ is holomorphic when |z| < 6~1. Their proof uses an idea of
Haydn [4] and a device called Markov extension, originating with Hofbauer, and for which
there is an improved and lucid exposition in Keller and Nowicki [6]. It is possible, however
to bypass the use of the Markov extension and reduce the problem to the Markovian case,
as explained in the Appendix of the present paper. The proof of the results of Baladi and
Keller simplifies quite a bit in the Markovian case, as shown to the author by V. Baladi.
We shall also use in what follows the “negative zeta function”

(" (z) =exp2 Z % Z I:[ g(fFz) .

m=1 z€Fix~ fm k=0

Note the factor 2 in the exponential and note also that it is not required that the partition
(J1,.-.,Jn) be generating. This negative zeta function is also holomorphic for |z| < 87!
(see Baladi and Ruelle [2]. As indicated in [2] it is not necessary to assume that g is
piecewise continuous as in [1], bounded variation is sufficient.)

If u is of bounded variation and u > 0, then u® is of bounded variation when a > 1.
[In fact

varu® < a(||u®""||o) varu .
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Indeed, if 0 < u, v, we have
v
|[v®* — u®| = |f at* 1dt| < a.max(u® 0" ) Ju —v| ]
u

The condition that u® be of bounded variation for all @ > 0 (used in the following theorem)
is automatically satisfied if u > const > 0; it is otherwise a mild restriction on .

2.1. Theorem. Let the functions uy,uq,vy,v2 be of bounded variation X — C,
with vy,ve > 0. Furthermore assume that z — |uz(z)|®, vi(z)®, va(z)® are of bounded
variation for all « > 0. We write

0 f ui(z)uz(zr).vi(z)vy(z)=0

F. ]
“—‘-%5% < ("—‘%—’%) otherwise.
uq(e ve(z

If the partition (J1,...,JN) 18 generating, define the zeta function

zs)wexpz S T[ ato)

z€Fix fm™ k=0

gs(z) =

Define also the negative zeta function
© o m m—1 .
“(2,8) = ex e z
Ceomeszy T 5T e0*
without assuming that (Jy,...,JN) be generating. Write (for real o)

6(¢) =limsup ( max |H g,,(fkw)[)”m
k=0

m—oo  z€Fix fm

m— 0o z€Fix— fm

m—1
6~(0) =limsup ( max | [] go(f*2)))"'™
k=0

Then 1/((z,s) (resp. 1/¢7(z,s)) 1is holomorphic for |z2|0(Res) < 1 (resp.
|2|0~(Res) < 1) .

[Note that if we write

m—1
(ka) 1/m
f = limsu ma. -
m.—}oop (xeF:xfm lkno uz(f'“z)

§ = limsup ( max |H cttin x) llm

m—oo  TEFix fm vy (f":;)
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we have (o) < 0.6° for all 0 > 0. Similarly for = (o) .

The case of ( (assuming that (Jy,...,Jn) is generating) and the case of (™ are similar,
we consider the former.

We write uy .Uy = vy, up. Uz = |uz|? = v3 (so that U = 2 except if u; and v; vanish).
Also let

4
0 i JJvi(z)=0
9(z,t1,12,t3) = N
va(z). ] vi(z)¥ otherwise.
Note that we may equivalently define

3
g9(z,t1,t2,13) = v4(z). H vj(z)"
1

if Ret; > 0for j =1,2,3, and continue by analyticity. We also introduce

o0
=exp— Y — > g(f*z,t1,ta,t5)

and
0.(Ret;, Rety, Rets)

m—1
. 1/m
= limsup ( max H |g(fkm,t1,t2,t3)|)/
k=0

m—o0 IEFiX f

m

-1
6; = lim (sup H vj(fka:))llm for j =1,2,3.
m—=o0 zeX Eean
With these definitions we see that d(z,t;,t2,t3) is holomorphic when
N|z|6.(Ret;,Rety, Ret3) < 1 ()
(because card Fix f™ < N™), and also when
1] 67% <1
i (1)
Ret; >0 for ;=1,2,3

This second region of holomorphy is a consequence of the theorem of Baladi and Keller
[1]- (As noted earlier, one need not assume piecewise continuity of u,uq,v1,v2, see [2]; see
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also [2] for the corresponding property of (=, where it is not needed that (Jy,...,Jn) be
generating.)

The regions I and II are both tubes with respect to the variables log z,t;,%2,%3. The
basis of I is a convex cone with apex at (—log N, 0,0,0) and the basis of II contains an open
set near (0,0,0,0). The tube theorem therefore implies that d(z,t;,t2,%3) is holomorphic
when

|Z|9*(R€ t],Re ta, Re t3) Zoi | (III)
We take t; = s, t; = —s, t3 = —1, and note that

g(x, S, =S, —1) = g,(l‘)
6.(Res, —Res,—1) = 0(Res) .

Therefore
1/¢(z,8) = d(z,s,—s,—1)

is holomorphic when
|z|0(Res) < 1

proving the theorem. [

2.2. Corollary. Let u;,us be of bounded variation X — C and z — |uz(z)|* of
bounded variation for all a > 0. Write

0 if uy(z).uz(z) =0
9(z) =

tl,l(:l?)

= otherwise.

If the partition (J1,...,JN) ts generating,
oo - m—1
V@) =eo=3 = > ] o(f*)
m=1 H z€Fix f™ k=0
i8 holomorphic when |z|6 < 1, where

m—1
6=1lmsup (_max_ | [ o(f*=))"/™ .
k=0

Simalarly for (~.

2.3. Corollary. If u; = uz = 1 in the theorem, then 1/((z,s) is holomorphic for
|2|6F¢* < 1, Res > 0. In particular if § < 1, the function 1/C(1,s) is holomorphic for
Re s > 0. Simalarly for (~.

This is because § = 1, hence §(Re s) = §%¢* for Res > 0. O
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Remarks.

(1) If g, is unbounded, it may happen that §(Res) = oo, in which case the theorem
is vacuous. If O(Res) is finite, the value of the theorem is that it replaces the (easily
obtained) region of holomorphy

N|z|0(Res) < 1

by the nontrivial region
|z|0(Res) < 1.

(2) The study of piecewise monotone maps of the interval [0,1] C R is readily re-
duced to the situation of the theorem. [Let the monotonicity intervals be [a;_1,a;] for
i=1,...,N. f£ €(0,1) and k > 0 is the smallest integer such that f*¢ € {ay,...,an_1},
replace £ by two points £_ < £, and insert an interval of length 1/n! between them, ob-
taining a set X and a map X — [0,1]. The piecewise monotone map of [0,1] lifts then
to a continuous map of X (see [5]). The replacement of [0,1] by X produces only trivial
changes in the zeta functions.]

(3) An interesting special case of (2) is when f is a piecewise monotone differentiable
map [0,1] — [0,1] and g(z) = |f'(z)|~!. Corollary 2.2 reproduces then in particular some
results of Keller and Nowicki [6].

(4) Let again f be a piecewise monotone differentiable map [0,1] — [0, 1]. Instead of
a zeta function we may sometimes define a determinant Det(1 — zL) where £ is a transfer
operator defined by

L(z)= Y g(v)®(y) -

v:fy=z
Using Remark (2) we assume that we may apply the theorem with v, /vy = |f'|™? and
uy/ug = g or g/ f'. We further assume that

m—1

| T] £ (fr2)>1

k=0
whenever z € Fix f™, m integer > 0, and that

m-—1

§=limsup (_max [ If'(f*=) ™)™ <1

_— z€Fix fm
m—oo ix f ey

m—1
f* =li

m—o0
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We may then define

Det(1 — z£) = exp — Z Z rgm

m=1

m-1

oo H g(fkl')

k=0

Il
o
te]
=)
I

3 l";

m-—1
m=1 z€Fix fm™ |1- H f’(sz”

k=0

m-=1
1 (st )15 (£*2)1)
k=0

> z
DY
m=1

m-—1
z€Fix fm 1= [] £k

k=0
oo oo i m—1
= v - g k
= exXp Z Z ™ Z (If’|f’“)(f z) -
n=0 m=1 z€Fix fm k=0

Since

Z rri:[(lmm)(f'f;.;) (verém)”

z€Fix fm k=0

we may write

Det(1 — z£) H Cn (*)

where En i1s constructed with
an=g|f'I”". (/)"
and (*) converges when |z|0* < 1.

(5) In his beautiful study of the thermodynamic formalism for the Gauss map, Mayer
(8], [9] has obtained meromorphic extension of zeta functions by a method totally different
from that of analytic completion discussed here.

(6) Analytic completion can also be applied to the resolvant (1 —2zL)~! of the transfer
operator £. We bypass the consideration of Banach spaces and consider [(1 — z£)™'®] (z)
for suitable ® and given z as a function of z. This method can be applied for instance to
the case of rational maps of the Riemann sphere (see [10]).
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A. Appendix. Reducing the study of piecewise monotone maps to the
Markovian case.

Let X be a compact subset of R. We assume that X is the union of finitely many
disjoint closed intervals Jy,...,Jn, and that f : X — X is such that f|J; is strictly
monotone and satisfies the Darboux property (i.e. fJ; is an interval) for: =1,...,N.

The partition (J,...,Jn) is said to be generating if every intersection

o0
ﬂ F " i)

n=0
consists of at most one point.
The total variation of ¢ : X — C is denoted by varg, and ¢ is said to be of bounded

variation if var g < oo.

A.1. Proposition. Let X, f,(Jy,...,JN), g be as above, with (Jl,...,JN) gener-
ating and g of bounded variation. There ewzst then X f, (Jl, fN) g with the same
properttes such that X may be identified with a closed subset ofX that f = f|X g=9|X
and (Jl, JN) 18 a Markov partition for f Furthermore, if € ¢ X, then g(f"f) =0 for

somen > 0
Let €(z) = %1 depending on whether f is increasing or decreasing on J; (if J; is
reduced to a point, or empty, make an arbitrary choice). We define

X={:N->{1,...,N}}

with the topology of pointwise convergence. If £(k) = £'(k) for k¥ < n and £(n) < £'(n) we
n—1 n—1 ~
write £ < &' if [] €(é(k)) =1, and € > €' if [] e(€(k)) = —1. This makes X into an
0 1
ordered Cantor set, that can be embedded in R. We also define f€ by

(f&)(n) = é(n + 1)

i.e., f is the shift, and
={eeX e =i} .

In particular (fl, - ,f ~) is a Markov partition for f, and fis monotone on each J;. We
define now j : X — X by
(a)(n)=i & fro€ ;.

This map is injective because we have assumed (Jq,.. J N) generating, it is order pre-

serving by our definition of the order on X and we have f 0j = jof. We may thus use j
to identify X with a subset of X and we have then f = f |X
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There remains to define g with the properties announced. Let
u; = min J; , v; = max J;

where J; is now considered as a subset of J;. We may extend ¢ | J; to a function g on
[u;,v;] such that

var (7 | [ui,vi]) = var(g | Ji) .
[Take for instance g(w) = g(z) where z = max {y € J; : y < w}.] We complete the
definition of § by setting it equal to 0 on the complement of the intervals [u;,v;]. The

function g is thus of bounded variation on X ,and g | X = g¢g. The following lemma
concludes the proof of the proposition. O

A.2. Lemma. If £ is such that
f“f € [uf(n),ve(n)] for all n >0, then £ € X .

If we define .
&) = F* [uewy, vew)
k=0

then J3(&) 2 &, hence J;(§) # 0 for all n > 0. We have J5(§) = [UE(O),’UE(O)] and, for
n >0,

Ta(8) = [teqo) veoy) N F 1 Tao 1 (£E) -

By induction on n we shall show that J}({) is a subinterval of js(()), of the form [u},v}],

*

with u}, v € X. Note that f[ug(o),vg(o)] N Jy_1(f€) is a nonempty intersection of

subintervals of je(o) with endpoints in X, and is therefore again a subinterval of fe(o) with
endpoints in X. Since f | J¢(o) has the Darboux property, we see that J;; = [u},v;], with

uy, vy € X as announced. The nonempty intervals J(£) N X form a decreasing sequence,

and their intersection contains some ¢* € X. We have thus

©=N 2> NEOnx) ¢

n>0 n2>0

hence ¢ € X, proving the lemma. O
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