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and Bose-Einstein Condensation
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Department of Mathematical Physics, University College,
Belfleld, Dublin 4, Ireland.

(12. VI. 1992, revised 1. X. 1992)

Abstract/ In 1968 Gunton and Buckingham pointed out that there is a close relationship
between the critical behaviour of the spherical model and that of the ideal Bose gas. In this
paper we concentrate on this similarity between the two systems. We show that in the spherical
model there is in fact Bose-Einstein condensation into the spin modes with low energy. As in
the Bose gas we distinguish between generalized Bose-Einstein condensation and Bose-Einstein
condensation. We find that the spherical model in certain cases has two critical temperatures:
one temperature Tc corresponding to the onset of generalized Bose-Einstein condensation (and
of spontaneous magnetization) and a lower temperature Tm at which generalized condensation
becomes condensation into the spin mode with the lowest energy. We also study the fluctuations
of the spin mode with lowest energy and investigate in detail some lattice interactions.

1. Introduction

The spherical model was introduced in 1952 by Berlin and Kac [1]; by using
the deità function technique they evaluated the free energy per site and showed
that the model exhibits spontaneous magnetization. Very soon after the publication

of this paper Lewis and Wannier [2] pointed out that the calculations in [1]

can be considerably simplified by the introduction of the grand canonical ensemble

as in the ideal Bose gas. It was however very quickly realised that, although
the thermodynamic functions can be calculated by using the grand canonical
ensemble, the two ensembles are not equivalent below the critical temperature: the
expectation values of some observables are not the same in the two ensembles in
the thermodynamic limit. This means that as in the ideal Bose gas [3], [4], [5],
[6] the probability measure connecting the two ensembles, the Kac density, is not
degenerate below the critical temperature. This problem was studied in [7], [8],
[9] and more recently in [10].

In 1968 Gunton and Buckingham [11] pointed out that there is a close
relationship between the critical behaviour of the spherical model and that of the
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18 Gough and Pule H.P.A.

ideal Bose gas; they showed that the critical exponents are the same for the two
systems. In this paper we concentrate on the similarity of the spherical model
with the ideal Bose gas. We show that there is in fact Bose-Einstein condensation
in the spherical model. The objects analogous to the occupation numbers in the
Bose gas are the squares of the direction cosines of the spins with respect to the
eigenvectors of the interaction matrix. We shall refer to these as the spin mode
occupation numbers and we shall call the eigenvalues of the interaction the spin
mode energies. We use the techniques developed for the Bose gas in particular
in [12], [13] and [6]. As in the Bose gas we distinguish between generalized Bose-
Einstein condensation and Bose-Einstein condensation. We shall say that there
is generalized Bose-Einstein condensation when a set of the spin modes with low
lying energies are occupied, while Bose-Einstein condensation requires that the
spin mode with lowest energy is occupied. We find that the spherical model in
certain cases has two critical temperatures: one temperature Tc corresponding to
the onset of generalized Bose-Einstein condensation (and of spontaneous
magnetization) and a lower temperature Tm at which generalized condensation becomes
condensation into the spin mode with the lowest energy. This phenomenon occurs
also in the ideal Bose gas [6].

The paper is set out as follows: in Theorem 1 we obtain the free-energy
density for the spherical model for a very general class of interactions; by using
the techniques of [13] we avoid the use of the saddle-point method which in many
cases is difficult to make rigorous. In Theorem 2 we show that there is a critical
temperature Tc below which there is generalized Bose-Einstein condensation and
that the distribution of the generalized condensate is degenerate. In Theorem 3

we prove that there is a temperature Tm < Tc such that for temperatures less than
Tm there is Bose-Einstein condensation, again obtaining the distribution for the
random variable representing the condensate; in many cases this distribution is
degenerate. In Theorem 4 we study the fluctuations of this random variable. We
find the relevant scale such that it attains asymptotically a non-degenerate finite
distribution. These theorems are stated in Section 2 and proved in Section 3. In
Section 4 we study examples of interactions on a lattice, some of which give rise
to Tc > Tm. These examples are based on the work in [14] and [15].

Acknowledgement: We wish to thank Professor J.T. Lewis for suggesting that
the spherical model should be re-examined in the light of the recent work on the
Bose gas.

2. The model and the results

Let {n; : I 1,2,3...} be a sequence of positive integers increasing to oo
and let fi; R"'- Let Ji be a linear operator on fi; and e; (1,1..., 1) € fi;. For
h € R define #,Ä : fi; -» R by

ff,'(w) -^;,u)-%u), (2.1)

where (•, •) denotes the Euclidean inner product on fi;. For d G N, r > 0 let S(d, r)
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be the sphere in R with its centre at the origin and with radius r, and let

fi;(r) — {lj : u) e Hi, ||w||2 rni] S(ni, \/rni).

The configuration space for the spherical model is fi;(l) and the canonical measure
on fi;(l) at inverse temperature ß is defined by:

Pf <h(A) (Z,(ß, h))'1 J e^H'^mnt^(du)) (2.2)

where mj^ denotes Lebesgue measure on S(d,r) and Zi(ß,h) is the canonical
partition function

Zi(ß,h)= f e-^H^mniiVïïr(du)). (2.3)
Jnt

In this paper we shall concentrate on the model with h 0; we let Hi
Hf, Pf Pf'° and Zi(ß) Z,(ß,0). We shall assume that the operator J;
has an orthonormal set ofn; eigenvectors (pi(j), j 1, ...nf, with eigenvalues
A|(j), j' 1,... n;. We order the eigenvalues so that

A|(l)>A,(2)>A,(3)>...>Ai(r»i).

Let ei(j) |(A,(1) - \t(j)), so that

0 «i(l)<ei(2)<...<ei(n,).

We shall call {«/(j) '¦ j 1,..., n;} the spin mode energies and n; the number of
sites.

Let p,i be the probability measure on R+ [0, oo) defined by

pi(A) -${j : ei(j) e A}, (2.4)
ni

JR

that

/(t)W(dt) -^/(e,(i)).
/R+ m ^t

We shall require that the eigenvalues of J; have the following properties:
(Al) the limit A(l) lim;-^» A;(l) exists;
(A2) there is a measure fi on R+ such that for every f : R+ —+ R which is
continuous and bounded, /p /(f) ln(2 + t)fn(dt) converges to /pj /(f) ln(2 + t)p(dt)
as I tends to infinity.

We have above extracted the essential properties of J; necessary for our results;
We shall see below that these are satisfied in the case when J; is given by a kernel
on a lattice, see for example [16]:
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Let {ai, av,..., a„} be a basis for R" and for I € N let A; be the subset of A
the Bravais lattice generated by this basis, given by

V

A, {^m;a; : m € {-1,-1 + 1,... ,1 - 1,1}"}.
i=i

Let n; be the number of lattice points in A;, that is n; (21 + 1)". Let u:A-»R
be a positive function such that u(—x) u(x) and 2xeAM(x) < °°- We then
define u; : A —? R in the following way:

U;|A; «|A;,

it; is then extended to A in such a way that it is periodic with period A;, that is,
if m € Z", let m have components

rhi (mi + I) mod (21 + 1) — I,

then m e {-/,-/+ 1,... ,1 - 1,1}" and

V V

uiÇS^nnai) u(y rhidi).

Let A; {xi,X2,...,xn,}, that is choose a labelling of A; and then define J; to
be the matrix with entries

Ji(i,j) ui(xi - Xj). (2.5)

Let {61,62,- • -6i/} be the basis of R" satisfying (ai,bj) 2tt6ìj and let A|" be the
lattice reciprocal to A;:

Af I (2l+l)-1Y,mibJ :™e {-/,-/+1,...,/-1,/}" >

Choose Ap and Ap such that Ap U Ap Af \ {0}, Af+ n Ap 0 and

TAf+ Ap under the mapping T : k y-* -k. For k G Af let Ç,(k) € Rn' be
defined as follows:

(£)5cos((fc,x,)) iffceAp,
(Cfafa, --{ (i)è«n((*,*i» iffceAp, (2.6)
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{Q(k) : fc 6 Af} is an orthonormal set of eigenvectors of the matrix Ji(i,j) with
eigenvalues A;(fc) where

Âf(fc)= ]Tu(a;)cos((fc,a,)). (2.7)
x€Ai

For fc € Af let

«(*) ì(A,(0) - Â,(fc)) ]T u^sìn2 ï<*'*>- (2-8)
xGAj

(Al) is satisfied since A;(l) A;(0) converges to SieAu(x)- Because |A;(fc)| <

A;(0) for all fc € Af, ê;(fc) E [0,A;(0)] and therefore pi has support in [0, A;(0)];
thus to check (A2) it is sufficient to consider Jp f(t)pi(dt) where / is a bounded

function on R+. Now

f f(t)Mdt) ± £ mW
JH+ n' teA,-

which, if / is continuous, converges to C 1 /Ar f(e(k))m(dk) where m is Lebesgue

measure on R", Ar is the parallelepiped

ni 1

{^kibi : \ki\ < -, i l,...,n;},
i=l

C is the volume of Ar and ê : Ar —? R is defined by

?(fc) ^U(a.)sin2ì(fc,x); (2.9)
i6A

thus Jpj f(t)pi(dt) converges to Jo f(t)p(dt), where fi C-1m o ê-1.

The sequence of operators {J;} converges strongly to the semi-infinite matrix J
given by J,j u(xi-Xj) which defines a self-adjoint operator on /2(A); the measure

p is then the density of states of |(A(1) — J).
We now go back to the general case and state the results proved in this paper.

In the first theorem we deal with the convergence of the free energy per site for
the spherical model. Let /;(/?) be the free energy per site for the finite system at
inverse temperature ß:

f,(ß) -^lnZi(ß).
Let

/R>w
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Note that ßc can be equal to +00.

Theorem 1. The limit f(ß) lim;-^ fi(ß) exists and is given by: if ß < ßc,

f(ß) a(ß) + ^ßJR Ht - oc(ß))p(dt) + -L ln t _ iA(l) (2.10)

where a(ß) < 0 is the unique solution of the equation

ß=\L T^—ßidt); (2.11)
2 JR+ t - a

ifß > ßc,

fw è L int **(*)+kin - - \^- (2-12)
2p JR+ 2ß ir 2

By analogy with the Bose gas we shall introduce the spin mode occupation
numbers. For j 1,2,... n; we let Nj be the random variable

AT» \{Mi),")\2- (2.13)

Note that for w 6 fi;(l)

iV,H<||^(i)||2|k||2=n;.
In the lattice model described above, if we take w (1,1,..., 1) then, since <pi(l)
-4—(1,1,..., 1), we have Nx(u>) n;. Also the canonical partition function can be

written in terms of the spin mode occupation numbers as follows:

!w).
- 111

Z,(ß)= / exp{-ßy2\,(j)Nj(u))}mnitV^(e

We shall say that there is Bose-Einstein condensation into the spin mode with
lowest energy if

lim Ef (¥l) > 0, (2.14)
;->oo \ ni J

where Ef is the expectation with respect to the probability measure Pf. It can
happen that the limit in (2.14) is zero but there is still condensation into the spin
modes with low lying energies e;(fc); if this happens we shall say that the model
exhibits generalized Bose-Einstein condensation. More exactly we shall say that
there is generalized Bose-Einstein condensation if

lim lim Ef
Ho ;->-oo ' ni -^ ' > 0. (2.15)
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Our next theorem shows that the spherical model exhibits generalized Bose-
Einstein condensation if the temperature is sufficiently low:

Theorem 2. Jn the spherical model there is no generalized condensation ifß < ßc,
while for ß > ßc the model exhibits generalized Bose-Einstein condensation: for
s>0,

lim lim Ef
(54-0 l-*oo ' exp|~ E N*\ =exp-s{1-|}-

(,(k)<6

(2.16)

To examine macroscopic occupation of the spin mode with lowest energy we
need more information about the spin energy spectrum {e;(j) : j — 1,2,... ,n;}.
We introduce a second critical temperature ßm which is related to the maximum
density of spin modes which have energies e;(fc) tending to zero slower than e/n;
asl-too for every e > 0. Let

ß+(e) limsup/ ±pi(dt), (2.17)

and

ßm(e) liminf / ¦^Pi(dt).'-*» J[^-,co) M

We shall assume that lim£_KX,/î+(e) and lime_»oojö~(e) exist and are equal; we
shall denote their common value by ßm. We introduce also a scaled density of
states Gi; G; is a measure on R+ defined by

Gi(A) l{j : njeiO') € A} (2.18)

and we denote its Laplace transform by 7;:

7/( / e~atGi(dt). (2.19)
•/[0,00)

We shall assume that f(s) lim;-^^ 7;(«) exists for s > 0; this ensures that there
is a measure G on R+ such that

7(a) / e~stG(dt) (2.20)
•/[0,00)

for s > 0 and that e~stGi(dt) converges weakly to e~atG(dt) for s > 0. In addition
we shall assume that JQ e~asf(s)ds < 00 for all a > 0; since s 1-* 7(5) is mono-
tonically decreasing this is equivalent to requiring that 7 be locally integrable at
zero.
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In the case when fj,({0}) 0 clearly ßc < ßm. From the convergence of 7; we

can deduce that there exists a K < 00 such that J{j : ei(j) < n,-1} < K for all I;
this implies that the inequality ßc < ßm holds even when /i({0}) > 0.

In the following theorem we obtain the distribution of the random variable

-jj1 in the limit 1-t 00 by obtaining its Laplace transform.

Theorem 3. If ß < ß„

lim E
(—too

-A^- 1, (2.21)

for all A > 0.
Let a > 0; then the probability measure with Laplace transform

exp-{sßm + ir
2 io

du 1-e"
•7(11)} (2.22)

has an absolutely continuous distribution F such that F(ß) 0 for all ß < ßm and
F(ß) is strictly increasing for all ß > ßm. Ifß > ßm is such that F is differentiable
at ß then for all A > 0,

lim Ef -A^ A
e "i

2ß
(F'(ß))-if eA^Kß-ß')! (_*(1 _ |)) dF(n

(2.23)
where I is the sum of the fìrst two modified Bessel functions: I(x) Io(x) +1\ (x).

Note that if F\ and F% are defined through (2.22) with a ax and a a2

respectively then dF2(ß) dFx(ß)eA^~^)ß/ /o°° c-(«i-«i)/»'dF^ß') and therefore
the righthand side of (2.23) is independent of a. If the interaction in the lattice
model considered in Section 1 is between nearest neighbours then f(s) 1 (see

Section 4, Proposition 2); in that case, (2.22) yields F'(ß) x/fefa(g~gm) for

ß > ßm, and by using the identity:

- k (l-x) 5e KXI(-Kx)dx e~K,
Jo

(2.23) gives for ß > ß„

limEf
J-too '

-A^i

— K-t)/«-'"-*""-^^1-»^
e-^1"

(2.24)
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Finally we examine the fluctuations for the random variable ^ when 7 1.

Let

W 5 / 7W(*) <2-25)
1 J(0,oo) t

and define, for a > 0, the measure Gf by

Gf [A] UJ ¦¦ n}-*e,(j) € A \ {0}}. (2.26)

For a > 0 for which there is a measure G" on R+ such that for every / :

/(*)
t(l + t)

R+ —> R which is continuous and bounded, / -. Gf(dt) converges to
JR+

'

i ^ ' -G"(dt) as I -t oo, we define the function g" : R+ \ {0} -tRbyR+t(l+t)

9'(0= [ Ì-H^)]G'(dt). (2.27)

Theorem 4. Suppose there exist a value a such that the function g" is neither
identically zero or plus infinity. Then this value of a is unique and, whenever
ß > ßm, the following limit exists

N ßm
lim Ef[exp{C(^ - (1 - %-))ßnf}] expfo'(C)}. (2.28)
/-?oo m ß

3. Proofs of the Theorems

It is convenient to define a modified partition function Zi(ß) by

Ziiß) 7r-in'y/Kie-^X'(0)n,ßß^n'-2)Zi(ß). (3.1)

If we let Ji |(A;(1) - Ji), then we can write

Z,(ß)=ir-in'. mj e-<"faw>m ^-(du)). (3.2)

m rz— is invariant under U,
If U is the orthogonal matrix which diagonalizes J;, we have since the measure

avariant under U,

V ß Uta) »..v>^ ;
°'{ß)

(3.3)

*-*M( e-E;:x«<Mm /-(do,).V ß Jq,(b) nt,^rt\ >
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We also introduce an auxiliary grand-canonical partition function H;(q) for a < 0:

/•oo

3,(o) / e^'aZi(ß)dß; (3.4)

then

E;(a) 7rfa"' / e"^nii(£,(j)-a)^da; n"i1(e,(i)-a)-5. (3.5)
JR"'

For a < 0, let

pi(a) —lnS|(a), (3.6)
n;

then

Pi(<*) -1[ Ht-a)pi(dt), (3.7)
* 7[0,oo)

and therefore because of the assumption (A2)

p(a) lim p,(a) =-\ ln(t - a)p(A). (3.8)
'-*°° ^ ^[0,00)

Let /;(/?) — A-\nZi(ß); we shall prove that f(ß) lim;-»,*, /;(/3) exists and is

given by:

f(ß) a(ß)ß - p(a(ß)) for ß < ßc (3.9a)

where a(ß) < 0 is the unique solution of ß p'(ct) and

f(ß) -P(0) for /9 > /3c. (3.96)

Theorem 1 then follows immediately. We shall require the following two lemmas.

Lemma 1. Let X\ and X2 be independent non-negative random variables with
means mx andm2 respectively. Suppose that Xx has density x exp(—xj2m\);
if Xq > 0 and 0 < S < xo then

-(»0+<)

P [Xx + X2 e [xo, xo + 6]] >
e

7 6(1 - ^;y/2irm1(xo + S) %o

Proof: The random variable X has density p given by [17]

PW / /o =7 fa
2m_1 ^2^'

J[o,x] v27rmi(x - y)
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where F2 is the distribution of X2. Thus p(x) > A ' L F2(dy); therefore

P[XX + X2 e [x0,xo + 6]] / p(x)dx
J Xr,

/-XO+S e~5^r /•

> / dx / F2(dy)
Ao V27rrnii; V[o,x]

('0+') .jt
/ dx / F2(dy)

yJ2nmi(xa +6) JXo J[o,x]
>

y/2irn
(»o-W

> ,/ : : / / (1 - yZ)F2(dy)
Jxo J[0,o\/2irmi(io +S) JXo J[o,oo)

(«0+ «)

(f-^lnl—Ì)
fa27rmi(x0 +3) V »o

(«0+')

>
e 2mi

5(3 m2)
i/27rmi(x0 +6) x0

D

The mapping a t—t p';(a) is strictly increasing for a < 0; p';(a) —» 0 as a —> —oo
and p'i(a) —> oo as a —> 0. Therefore for each ß > 0 and each /* € N there is a

unique value of a < 0 such that /9 p|(a); denote this value of a by a;(/3)).

Lemma 2. limf-x^a^/?) exists and is given by

&«<» -{ôOTi La.lim „,(« {* ^A. (3.10)

Furthermore

&*-<»>-{AT ?>?::

Proof: We first observe that p';(a) < — ^j and therfore a;(/?) lies in the interval
[—jfaO) for each / The sequence (a;(/3)) thus has an accumulation point in the
closure of this interval. This accumulation point is readily shown to be unique and
given by (3.10); the proof of this is identical with that of Lemma 3 in [6] and we
omit it.

The function a i—> pt(ot) is convex and therefore the convergence of pi(a) to
p(a) is uniform on compact subsets of (—oo,0); the convergence of pi(ai(ß)) to
p(a(ß)) is then immediate in the case ß < ßc. Next we suppose ßc < oo; this
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implies that fi does not have an atom at the origin. To deal with the case ß > ßc

we define, for S > 0,

Pi(a;5) -l f ln(t - a)pi(dt) (3.11a)
1 -'[*,oo)

p(o;S) -\\ ln(f - a)p(dt). (3.116)

If /i does not have an atom at S, then pi(a; 5) converges to p(a; S) and again the

convergence is uniform in a on compact subsets of (—oo,S). Now

Pl(ai(ß)) -\ f ln(t-a,(ß))p,(dt)+p,(a,(ß));6). (3.12)

Using the fact that — lnx < j for all x > 0 and that t-ai(ß) < <S+^ for t e [0,5]
we have

-ïi^+h)^-\^t-aim^\Téw)<k
for t 6 [0, J]. Integrating over [0,o~] with respect to ßi we obtain

-^M* + i)wW ^ "5 / M< - °i(ß))Mdt) < f ^Pi(dt). (3.12)

Let ($„) be a sequence of positive numbers converging to zero such that for each

n, p({Sn}) 0. From (3.13) we get

-zHS+èjWn] < liminf-i / ln(t -«,(/?))W(A)
2 2/* (-too 2 J[o,,5n]

< limsup-^ / ln(t-a,(ß))p,(dt)< f ^pi(dt).
/-?oo 2 7[o,«„] y[o,*„] ^

Since /i does not have an atom at zero this yields

lim limsup / \n(t — ai(ß))pi(dt) lim liminf / ln(t — a;(/?))/i;(dt) =0,n-too l_t,00 JpiSn] n-too 1-hx> J[0,S„]

which combined with (3.12) gives

lim pi(ai(ß)) lim p(0;5n) p(0).
(—too n—too

D
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Proof of Theorem 1:
We first note that the function

ß _ *-*»¦ ^p / e-e<*>3'*>mnhVKÏ(dx)

is decreasing and therefore ß h-> /;(/3) + | ln/3 is increasing. Now for a < 0 and

Hi(a)> / ef>'n"*Zi(ß')dß'
Jß-S

j e-n,iMß')+^\nß'-aß'}e^n,lnß'dßi
Jß-S

S>0

Therefore

and so

Jß-S

> e-nl{fl(ß)+^\uß-aß}e^n,ln(ß-S)^

Pl(a) > lin S- f,(ß) + aß+ iU(^Â
n; 2 p

liminf/,(/3) > a/3 - p(û) + Ì ln(-^ "~ ^
f^oo -"^ - ^ ^ ' 2 v

/3 "
since S is arbitrary we have, letting 6 —t 0

lim inf/j (/3) >a/3-p(a).
/—*oo

Because this is true for all a < 0 it follows that

liminf fi(ß) > sup{a/3 — p(a)}.
i-too „<o

To prove the upper bound we introduce the Kac probability measure K" on R+;
K, is absolutely continuous and is defined by

Kf(dß) e-n""(a)eßn,aZi(ß)dß. (3.15)

We first consider the case ß < ßc\ in this case we can find a unique value of a < 0

such that p'(a) /3. From (3.4) we get

H e-V'K(dß') exp _>W-M«-fr)} (3 16)
Jo ài

where Si s/n;. For a < 0 we have that

limP;(q)-p;(q-fr)=p,(Q); (3.17)
I—too 0;
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therefore
/•oo

„ „ ,:?tjft'\ — c-3p'(«)
f-t

/•oo

lim / e-'P'Kf(dß') e'
'->°°Jo

and hence Kf converges weakly to Sp^ay Thus for 0 < S < — |a(/3),

limKf(/?)+i[/3,p'(a(/3)+2<5)] l.

Now

-lnKfW+<S[^,p'(a(/3) + 2J)]
Til

rp'(a(ß)+2S)1 rP yaKP)-r^o)
—In / e-"'W^')+l1»"'-(^)+^'}eè"'1"'î'd^-p;(a(/3)+^
n; ./#

1 /p'(a(/3)
2lnl J< -fi(ß) + a(ß)ß + 5ß+1-ln (V(rtl)+2J) j _ p/(a(/J) + ^.

therefore

lim sup fi(ß) < a(ß)ß - p(a(ß) + S) + Sß + \ ln fP'(q(/^ + 2&)

i-tOO 2 \ P

since p and p' are continuous, letting i-tOwe get

lim sup/,(/3) < a(ß)ß -p(a(ß)) sup[a/3 - p(a)].
/—too a<0

We now take ß > ßc; let Y1,Y2 ,Yn, be independent random variables with
density (27rmyx)~3 exp(—x/2m,j),j 1,... ,n; where the mean mj (2n;(e;(j) —

a))-1. Then from (3.16) we see that X 5Z?4i ^j ^s distributed with probability
measure Kf and has mean p'i(a). Putting Xx Y\ and X2 ^2"L2 Yj in Lemma
1 we get

Choose a; < 0 such that pj(a;) /3 and let S 1/n;, then

Kf ß,ß+-ni

2 "|°|
_ -n;a; \ ^ur 1

n(ß+±)J 2n](-ai)
1

K^Ip2np'> fa -^e'+*i
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for large I, since a; —t 0 as / —t oo. Thus lim inf^oo ^- ln Kf ' /3, /3 + ^- > 0 and

by the same argument as for ß < ßc this gives

limsup/;(/3) < —limsupp;(a;);
/-too /-too

but p/(aj) converges to p(0) by Lemma 2 and therefore

lim sup/;(/?) < —p(0) < sup(a/3 — p(a)).
/-too a<0

Combining the upper and lower bounds we then get:

/(/?) lim /,(/3) sup(a/3 - p(a));
/-too a<o

the Legendre transform of p can be readily calculated to give (3.9 a,b).

Proof of Theorem 2:
i^xf(«) £eiü)>,JV,-M;iet

D

Zf(s,ß) / e-^H'(-)-sX'^»mn,iVS7(dW) (3.18)

and let ff(s, ß) -(ßni)'1 In Zf'S(ß). We shall prove that
fs(s,ß) \imi-¥ooff(s,ß) exists and for S > 0,s i-» fs(s,ß) is differentiable
in s at s 0. But

2 "I exp -/33
(ff{<T,,ß)-ff(0,ß))

Ol
(3.19)

where <T; s/n; and therefore since s h-t fs(s,ß) is convex

limEf e "i exp
0/°*

/3^(0,/3) (3.20)

Now Nj(u>) — |(ç!>j,w)|2 (uj,PjUi), where Pj is the orthogonal projection onto
4>j, and therefore Xf(u>) (ui, £^e (,)>« Pju)i thus

Zf(s,ß)= [ e^^Jf^)m {<kj) (3.21)
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where J*' J; + 2s^e (j)>sPj- The eigenvalues of this operator are A'' (j)
where

Af-'O) A,(j) if e,(j) < «5

and
\Si'S(j) Xi(j)+2s if ei(j)> 6.

Thus we can apply the result of Theorem 1 with p; and p replaced by pf ' and ps'

where p?'*(;4) ^-»{j : |(Aj(0) - Af'*(.;')) € A} and p8-*5 is the limit of pf** in the

sense of (A2). If g : R+ —t R is a continuous function such that |fif(t)| < C ln(2 +1)
for some constant C then

/ g(t)p°'s(dt) f g(t)p(dt) + f g(t- s)p(dt). (3.22)
J[0,oc) J[0,S) J[S,oo)

Let p°<*(a) -\ /[0iOo) ln(t - a)p><*(dt) for a < 0, let /3«-* /[0oo) £p***(dt)
and for /3 < /?*-* let a'-*^) < 0 be the unique solution of/3 ^p'**(a). Then by
Theorem 1 we have that ff(s,ß) converges as Z —> oo to fs(s,ß) where

f\s,ß) «r^(ffl-^ - ^lnf - ÌA(0),

if/3</3cJ>*, and

/ä(^) -^(0)-^lnf-iA(0),
ifß>ß'c's.
We can calculate the derivative of fs(s,ß) with respect to s at 3 0 to get

ds \f-èf(o,s)Hdt) Xß>ßc

Therefore

r dfStn m J1 if/^&'

Thus using (3.20) and Ylj>i ¦^i(w) n' we Se* the required result.

We shall say that F : R" —t R is monotone if

F(xx,...,xn) > F(yx,...,y„)

D
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whenever Xi > yi for i 1,..., n.

Lemma 3: Suppose F : Rn,_1 -t R and G : R"1-1 -t R are monotone; define

/ : R"' -> R and g : R"' -» R by f(u) F(NUN2,...,N^-i) and g(u)
G(N1,N2,...,Nni^1).
Then

E?[/ff] > Ef[/]Ef[j,].

Proof:

E^
J0,(1) exp^SJlT1^^/) - e/0)K-}-F("ï>2, • • jrKygW

/n,(i)exP{-/?E"iâ1 (e'(»»l) - e/0')H}mn,,vTì7(^)

_
Jp1 ^n,-i /J""'"1 dr„,_2 JJ"2 drxF(ri,r2, ¦ ¦ ¦ rn,-1)D(r1,r2, ¦ ¦ ¦ r^-i)

/o1 rfr»i-i /or"'_1 *m-2 ¦ • -/0r2 driD(ri,r2,.. .r„,_i)
where

n/ «p{/?£/LT1(l("i)-Q(i))ry}
Z?(ri,r2,...rn,_i) - {(l-r„,_1)(rn,_1 -rn,_2)...(r2 -ri)ri}

For h : R* -+ R and r > 0 let

w;=<*>-/faifa-...f*>-^^;^ »

where

z;=r^r^_,...rJr,"Tf'----f,Jo Jo 7o /Mn, ••-,»•*,»•)

W(ri,..., rk) ain + + atrjt,

ai > 0, a2 > 0, a/c > 0, and

¦P*(ri,...,rjt,r) {(r - nt)(rifc -r*_i)...(r2 -ri)ri}'.
We shall prove by induction on fc that if hi and ft2 are monotone then

(hih2)kr > (hi)kr(h2)kr- (3.23)

If hx : R+ —t R and h2 : R+ —» R are monotone then

(Mr)-Mr'))(Mr)-Mr'))>0
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for all r, r' 6 R+. Therefore

(Z})'2 [dn e"iri f dr2 ea]r l.l(h1(r1)-h1{r'1))(h2{r1)-h2{r'1))>0,
Jo {(r — ri)ri)5 J0 {(r — ri)r[)2

or
(hih2)l > (hi)l(h2)l.

Suppose that the inequality (3.23) is true for fc 1,... ,m — 1.

''. ,«p{«M,...,ry)
Jo Jo V(ri,...,rm,r) J0 J0 nr[,---,r'm,r)

x{(hi(n,...,rm)-hi(r'1,...,r'm)}{h2(ri,...,rm)-h2(r'1,...,r'm)}>0. (3.24)

The integral in (3.24) is equal to

Jo Vr - rm Jo Vr-rm

{(n1(...,rm)/l2(...,rm))--1-(/ll(...,rm)rm-1(/l2(...,^)rp1

-(hi(-..ym))ZHh2(-..,rm))^ + (h1(...,r'Jh2(...,r'n))^1}.

By the induction hypothesis the quantity in {...} is greater than or equal to

(<M---,r»)>:r1HM"-ym))?m-1)^

therefore it is sufficient to prove that if h is monotone r —t (h(..., r))™~* is
monotone. Now if r > r'

(h(..., r))--1 - (h(..., r')?-1 (h(..., r))--1 - (h(..., r')>r *

+ (h(...,r')>r1-(M---,o>r1
>(M...,r'))r1-<M---,0)r1-

Therefore it is enough to prove that for fixed r', r i—t (/i(..., r'))™-1 is monotone.
We can write

/fcf >\\m-\ _
/p1 drm_i JJ"2 dr! h(rri,..., rrm_i, r')t7(ri,..., rmy)

/o drm_! /0r2 dn W(ri r1»"1)

where
exp{rW(n, r2,..., rm_i )}W(r!,...,rm_i) P(fi,...,rm_i,l)
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Since if r > s, h(rri,..., rrm-\, r') > h(sri,..., srm-i, r'), it is sufficient to prove
that

/0 drm-i /J"2 dri W(n ,...,rm-i )h(n,..., rm_i, r')
T I—? j

/0 drm-i /0r2 driW(ri,..., rm-i
is monotone; but this quantity can be differentiated with respect to r to give

(Hh(..., r'))?-1 - (H)?-' {H---, r'))?"1 (3.25)

with ai,a2,...,am_i replaced by rai,ra2,...,ram-i. But by the induction
hypothesis (3.25) is non-negative and thus the lemma is proved.

D

For the next theorem we require also the following information about the
sequence a;(/3)n;.

Lemma 4. For ß > 0 let 6; —a;(/3)n;. If ß < ßm, 6; diverges to +oo and if
ß > ßm, 6; converges to b(ß) > 0 where b(ß) is the unique root of

I f e-°b^(s)ds =ß-ß„Z J[0,oo)
(3.26)

We do not give the proof of this lemma since it is almost identical with that of
Theorem 3 in [6].

Proof of Theorem 3:
For C > 0 let

<7/(C,/3) Ef e s^ "'

then

gi(niC,ß) (Zi(ß))-1 f e-/9(H'(w)+CJVl(w»mni>v/Hr(da;)
•/iîi(i)

*-*S(*w)~l fV P v ' Jnt(
-<w,(j,+CPiM.mn„V^7(^)-

Let

S|(C,o) 7r-iBl / e-^fa'+C^-M^;
JR">

then on the one hand we have

(3.27)

(3.28)

Si(C,a)
C-o 3/(a), (3.29)



36 Gough and Pule H.P.A.

and on the other hand by (3.27)

»oo

H,(C,a)=/ e^'aZi(ß)g,(n,C,ß)dß. (3.30)
Jo

Therefore

/OO
/ \ 2 /OO

e^'aZ,(/3)fl,(n,C,/3)d/3=^^-^J J ef>n>aZ,(ß)dß (3.31)

which we can rewrite as

/ e-axZi(x/ni)gi(niC,x/n,)dx= (-r—) f e~axZ(x/m)dx (3.32)
0 £v> +S' °

for 3 > 0. Using the identity

(cT7)5=i-re_sie_èc^c/(^cxMx (3-33)

where I is the sum of the first two modified Bessel functions: I(x) Io(x) + h (x),
we can invert the Laplace transforms in (3.32) to get

gi(niC,x/m) 1 - ^(Hx/n,))-1 j" Z,(y/n,)e-l^-yn(-^C(x - y))dy

or

ak,ß) 1 - laZiißir1 J Zi(ß')e-^ß-^I(-\aß - ß'))dß'. (3.34)

Let a > 0, then by multiplying (3.34) by Zi(ß)e~a^ and integrating we get

f 'gi(C,ß)K;a/n'(dß) K~a/n'(ßi,ß2)

~sc/2<lßL e~(aH<Kß~ß,)n-\aß-ß'm7a/nt(dß')-

Now /0°° e-^Kfa/n,(d/3) exp -</>;(«) where

««>—Mfafa)-"(fa)}
- / {ln(t + s + a) - ln(t + a)}Gf(df)
2 J[o,b)

\ni I ln(1 + ^77I a.)p'(dt)-

2

+
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Using the inequality
(l + y)-1y<ln(l + j/)<t/ (3.36)

for y > 0 we get that

lim lim -n; / ln I 1 +
"

„ r pi(dt) sßm
/.-to«/-too 2 y[6/ni,oo) V n'(' + ^)y

If 6 > 0 is chosen so that G does not have an atom at 6 then

lim I f {ln(t + s + a) - ln(t + a)}G,(dt)
/-too 2 ,/[0]6)

lim l H du (l~e~Ua\ e— /" e-«*G,(df)
/-too 2jo \ u y j[0>6)

\ r du (l~e~Ua\ e— / c-«G(A);
2 y0 v « y y[o,6)

we have used here the dominated convergence theorem: J,Q b. e~utGi(dt) < G;[0,6),

which is bounded since it converges to G[0,6). If a is chosen such that /0 due_°"7(w)
< oo then by letting 6 —t oo along the points of continuity of G we get

*l>(s)
i r°° /l-e~u*\lim V/(s) sßm + - dui e—7(tt).

/-too 2 y0 \ u j
Therefore the sequence of probability measures {K, "'} converges weakly to
an infinitely divisible measure K whose Laplace transform is exp-tb(s); since

G/({0}) > 1, 7(m) > 1 and therefore we can write

e-^)=f_^_]5e-^)

where

fa—y\s + aj

1 f°° /l-e_us\
xl>(s)=Sßm + -J^ dui— )e-au(y(u)-l).

Since (a/(s + a))2 is the Laplace transform of po(x) (f )2e axx î, then K is

the convolution of the measure with density po with another measure K whose

Laplace transform is exp— ip(s). Therefore K is absolutely continuous; let F be

its distribution. Clearly F(ß) 0 for /3 < ßm- Also K[0,/3m) 0. Suppose
there is 6 > 0 such that K[/3m,/3m + 6] 0; if this is true for one value of a
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then it is true for all possible values of a. Then i/>(s)/s > ßm + S and therefore

liminf.-«, %* > ßm + S. But

lim M
s-tO S

ßm + \ /00(7(") - l)e-aU < ßm + S

for a sufficiently large; therefore K[/3m,/3m + S] > 0 for all S > 0. Now for ß > ß„

F'(ß) ßf fr^K(d/?') > f e-<'-'->ft[fl.,fl > 0.
V W y[/3ro,^] VP - P' V71"^ - ßm)

The right-hand side of equation (3.35) converges to

f/?2 I /-02 /•£

/
2

dF(/3) -\c ['dß f c-(«+èC)(/»-/»')7(_ IC(/3 _ ß'))dF(ß'). (3.37)
./ft z ./ft JO ^

Now

dgi
dß

(C,/3) -CEf —e "i
n; -{« e^H -Ef[e-^]Ef[Ä]|.

The last expression in {...} is positive; this can be seen by putting F(ri,... ,rn,-i)
—e "i and G(ri,... ,rn,_i) ^ZjiT (e'(n/) ~~ e/(J))rj 'n Lemma 3, therefore

ß >-* ff/(Ci/3) is decreasing. Thus

limsupff,(C,/32) / 'dF(/?) < lim / '
g,(Ç, ß)Kp (dß) < lim infg,((,ßi) f '

dF(ß).
/-too Jß1 '-"»./ft '-*°° ./ft

(3.38)
Let F be differentiable at /3; from (3.37) and (3.38) we get

i rß+i i /-/J-r*
liminfp,(C,/3)- / dF(/3') > -. / dF(/3'

/-?oo d Jß d Jß

1Ç
2(5

Letting S —* 0 we get

/•/0+0 /.j»

/ dß" eA"+hO(ß"-ß,)I^_U(ß"-ß'))dF(ß').
Jß Jo 2

(3.39)

liminfp,(C,/3)F'(/3) > F'(ß) - U f e-(«+èC)(^')/(_fa(/? - ß'))dF(ß').
/-too 2 Jo 2

(3.40)
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Integrating from /3 — S to ß and using the other side of the inequality in (3.38) we
get

limsupff;(C,/3)F'(/3) < F'(ß) - U fe-(^k^-^I{_1^ - ß'))dF(ß').
/—too ^ Jo "

(3.41)
If/3 > ßm,F'(ß) > 0 ,then (3.40) and (3.41) then give

lim gi(Cß) 1 + l(F>(ß))-*C f eA*+hOiß-ß')I{Jaß _ ß'))dF(ß').

We shall now study the case ß < ßm. We start from (3.31); this can be written in
the form

i
/»OOyOO

/ gi(C,ß')K(dß')
Jo ,C/m-

(3.42)

Let ßi < ßm; from the inequality (3.36) we get

2

Therefore

\ f t 7777TTZ rMdt) < -In / e-'Kf iM(dß) < aß,.
2 J[0,00) t-ai(ßi) + — J[0oo)

lim -ln / e—"Kf {ßl\dß) sßu
'-?°° y[o,oo)

and thus Kf ' converges weakly to Sß,. Also —a;(/3i)n; —t oo by Lemma 4 and
so (3.42) gives

/•oo

lim / ff;(C,/3')KfWl)(d/3') l. (3.43)

Suppose /3 < ßm and choose ßi < ß, then since /3 i—t gi(Ciß) is decreasing and

KfWl) -t Jft from (3.43) we get

limsupff,(C,/?)< lim / gi(C,ß')K^ßl)(dß') l.
/-too l->oo y0

Similarly by choosing /3i > /3 we get

/•oo

liminfff,(C,/3)> lim / p,(C,/3')Kf (/5l)(d/3') 1.
/-too /-too Jßl

Therefore limi-yoo gi(C,ß) exists and is equal to 1.

D
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Proof of Theorem 4: The uniqueness of a follows from the scaling of the

j f(t)G°i(dt) J f(n°'-°t)Gf(dt).
measures Gf:

We have also

lim /3,m lim lim Ì / -p/(df) + lim lim ^7" j ]GJ(dt).
/-too 6-tooZ-too 2 J[b/„lt00) t 6-too/-too2 J(0,b/nf) t

The first term is equal to /3m and the second term is zero; thus

lim ß[* ßm-
/—too

e-tw4--ï)

For C > 0 and a > 0, let

MC,/3) Ef

then hi(Cß) gi(-nfC,ß)e-(n'(ß-ß^) and from (3.34) we get

h,(cß) e-«^n
+ (JOW (^i^))"1 jf^e^^-^^^^V

(3.44)
where /(x) ^/xe~xI(x). We let p/(a) —| /,Q ln(t — a)pi(dt) for a < 0 and
define a measure m; on R+ in the following way:

a+i

JAn(-nf ßj" ,o

m,(A)=nj *-e-»'P'(o) / Z,(ßr+y/nJ)dy. (3.45)
=>)

We can rewrite (3.44) in the following form with a < 0

-£)-««>))/ 2MC,/3)K, "'(d/3)= / ac-C»r(/»-ft~)K| "'(d/3) + (ìc)ènfe-n,(p,(-^r)-^(
•/ft -/ft - 2

x / 2

dße~aß f -v2>v~/^ g / ^Lie-C»m;(riy) (3.46)
yft y~(
^„-^ rr(Mr)^cw(faff)-y)),-c,

^ - /3f - ynj
Let /3m < ßi < /32; the first term in right-hand side of the equation is bounded
above by e-1»"' <-ßi~ßi and since it is positive it vanishes in the limit I —? oo. We

shall prove that the second term converges to ^-j-e9^ ea^m Jß2 dß 4 Now by
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Lemma 3, /3 h+ hi(f, /3) is increasing and in the case studied here K, *' "' converges

to the measure with density po(/3) ^t e
/ ; therefore using the argument

»5 yjß—ßm
employed in the proof of Theorem 3 we obtain

(3.48)

lim hi(C„ß) e9'(0. (3.47)
/—VOO

We now study the last term in (3.46); we want to show that

f<(ß-ßn i{\gnf{ß-ßn-y)) -(yIC5 / — —e ">vmi(dy)
J-°° yjß - /3f - yn'"

We first note that

/oo
i / v r°°

e-<ymi(dy) lim (Inf<-V-*<°> / Zi(ß')e-^"iß'-ßT) dß<
•oo '-*00 yo

lim exp [Cnfßr + n,{p,(-C/n]-") - p,(0)}]

lim «pi/ K_in(i±l)}Gr(dt)
/-too 2 y(o,oo) l * * J

expff'r(C).
(3.49)

We also know that lim^-nx, ï(x) »M and that I(x) and -$¦ are bounded; let

Ai sup J(x)
r€[0,oo)

and

Then

;42 SUp -±fér.
*€[0,oo) VX

rA(ß--ßA) T(lt(n?(
C5 / — e ">ymi(dy)

Jnf(ß-ßr)-nf"a ^ß _ ßm _ ynj°

-U^ rß-ßn mnW-ßn-y)).-^^
V2 Jnfiß-ßr)-«?'* ^ßC(nf(ß - /3f - y)
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< ^Cnj/*e-^(ß-ßn-n?>3) H e-h<ymi(dy)
V2 y_oo

—t 0 as / —t oo.

Since i-»i~i is convex

0<(/?-/3r -ynf)-i-{ß-ßn-*< yn'
2(ß - ßj" - yn,-')3/2

and therefore for 0 < y < nf(ß - /3f) - n]"'3

\(ß - ß? - yn,"»)"* - (ß - ß?)-* | < H2lL,

and for y < 0

itfi»r(/3 _ /j» - yn-*)-* - (ß -ßrr* \< 2(ß - /3f)3/2
'

Therefore

2<r/3 ~

IC! / — ;—e ^ymi(dy)
J-°° yjß-ßp-yn;*

mr(ß-ßn-«!°"
- T^p y ^ '(jCWG9 - #") - 2/))e-Cïm,(dy)|

<~-n;"'2Ai J°° ye~<ymi(dy)

+ 2(/-^f)3/2Al /œ l»le"C"m'(dv) - 0 as i - oo.

Given e > 0 there is xq such that |/(x) — «M| < e for x > xq. Then for I such

that 2Cn; > ^o we have

/"l
IP-Pi ;-n, 1

I(-an"(ß-ßn-y))^Cym,(dy)
¦oo *

/•nrt/'-zT)-",2"'3 i r°o
- / —==e_Csm;(d2/)| < e / e~Cymi(dy).

J-oo V27T ./-oo



Vol. 66, 1993 Gough and Pule 43

We note that 7=1 implies that e;(l) < e;(2); using this fact and an argument
similar to that used at the beginning of the proof we obtain

lim nàc—'<»(-£)-«<(>)) aàc«/»m. (3.50)
/—>oo

Combining these results we see that (3.48) is satisfied and thus by (3.49) we have

rnnß-ßD /(|C(nf(/3-/3f)-t/)) _<y
1 ,.(0hm C5 / i —e «mi(dy) e9 "\'-<*> J-co yJß_ßm_yn-o Vß-ßm

From the above inequalities we see also that the integral is uniformly bounded for
/3 in compact subsets of (/3m,oo); therefore the Lebesgue dominated convergence
theorem together with (3.50) yields the required result.

D

4. Some Examples on the Lattice

The finite lattice A; introduced in section 2, can be replaced by a more general
parallelepiped A; whose sides do not all scale proportionally;

V

A; {r 2_\ mia, : m,- 0, ±1,..., ±/i}
i=i

A; consists of n; LiL2 Lv sites, where Li 2Z,- + 1. We shall assume that
the basis is labelled so that

Li>L2>...Lv. (4.1)

The lattice A[, which is reciprocal to A;, is given by

V

K\ {k Yjkibi : LX =0,±l,...,±/i}
1=1

In the bulk thermodynamic limit, which we shall denote simply by "/" —* oo ", we
consider the limit

Li,L2...,Lv -t oo (4.2)

We shall consider the problem in dimensions v > 3. As an interaction we take
the isotropic simple-cubic nearest-neighbour interaction which has the following
kernel;

„,(«)«/è. x ±ai,i l,...,u; (43)K ' \0, otherwise. v '
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The energy eigenvalue corresponding to fc 2!=i ^i&t € Aj" is

V

li(k) ê(fc) J2 sin2(7rfc.) (4.4)
1=1

The smallest non-zero energy eigenvalue e;(2) is therefore given by

e,(2) ?(±|-) sin2(^-).

Proposition 1. Suppose

lim %r Ae(0,oo], (4.5)
i-tOO L{

and

lim lnL\ =gg(0,oo), (4.6)
/-too Lr3 Li„

then the second critical temperature ßm exists and is given by

ßm=ßc+-- (4.7)
7T

Proof : Choose <S > 0; we define the non-negative number m(8) by

f 0, A oo,

Then for all / sufficiently large we have

{fceÄr : Z(fc) < -^-} {fc iî-o, : aieZ,|*i|<m(*)}.
nfO-' ii

For e > 0, we define

ßc(e;l)= f ^-Mi(dt); (4.9)
7(e,oo) "

one notes that /3c(e) lim/-foo ßc(e; I) exists and converges to /3C as e —t 0+.
Finally, we define

ß-^ li £ pj-{teAl':ê(t)>J-0
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The functions /3m and /3+, introduced in section 2, are defined by

ßm(e) =liminf/3m(e;0
/-too

and
ßm(e) hmsup/3ro(e;Z)

/-too

We have the following relation, for S > 0;

W^)=^;0 + èEè- (4-10>
'S2' ' "cv " 2n,^6(fc)if

where K is the set {fc £ ÂJ" : ^5 < ê(fc) < S2}. Now, for 0 < fc0 < \ we have

(SmJrk°)k<sinnk<nk for |fc| < fc0 (4.11)
fco

Hence we have it that, on setting fco 5 ;

Ei Ç {fceÄJ- : J-< ê(fc) < J2} Ç F,

where

tii {fc e a; : - .'••'. -

and

F, {fc € AJ" : -A— < fc2 + fc2 + + fc2 < ^} (4.12a)
4d2n; ?H

F, {fc€Är : -ji— <fc2 + fc2 + ...+fc2<^}. (4.126)
7Tzdzn; 4

For k £ Ei we have
1

>
1

ê(Jfe) ~ TT2 fc2 + + fc2 '

while for fc € F; we have, setting fco — *
2 '

1
<

&2

ë(k) - 4sin2(|^)fc? + + fc2 '

This provides us with the following bounds ;

1 ^—\ 1 1 o ,\ o 1 \~^ 1

2^;^fc2 + ...+fc2 ZP^pW-PcV ;Z)-4sin2(Ì7r,5)2^^fc?+--- + ^
(4.13)
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The lower bound yields, for I sufficient large

ßm(^;l)-ßc(S2;l)>

2n,7T2^fal2 + ^ +---+ L2>

>^_y-"(il + iiri- 2n,7T2^ KL\ + L\>

i ro/n i /-^iö/tt r2 /.iao/ir r2
>- -LaI2 / [R-2]27rRdR-- -[2 dsi-± + 2 ds2^]

2n/7T2 Jri 2n;7r2L ym(i)+1 s\ J1 s2

(4.14)
where the primed and double primed summations are to be carried out over the sets

{s£Zv : \si\>m(6) if s2,..., sv 0, $, + + *-£ < £} and {s £ Z2 : |si| >

m(5) if s2 0, |4 + -ji < fr} respectively and where ri max{"y j-}.
For J fixed, if we take I sufficiently large then we have r\ -r- ¦ We observe

that the first term in inequality (4.14) is convergent;

LiL2 ,8L2. B
ln( )-t —,

n;7T 7T 7T

as I —t oo. The second term in (4.14) depends on the limiting value A of j^ in

(4.5);
case 1 : A oo, and therefore m(5) 0;

7-2 /-LiS/n r2^./ d,1i ^-[l--^]-»0, as/
n; yj sf n; Lid

the other integral being similarly bounded.
case 2 : 0 < A < oo, and therefore m(8) > 0;

r2 rliS/n i 7-2 i i~i / j.fa _. für x
1

'sf n, ll + m(£) L1(?J A(l + m(£))
^ /' d.!^
n/ ym(i)

as / —t oo. However m(8) —t oo as <S —t 0+ in this case. Therefore, it follows that

«(£) limmf/3m(l;/) > ßc(82) + f + ^^, (4-15)

where the last term in (4.15) is interpreted as zero for the case A oo. On taking
the limit 8 —t 0+ we obtain

lim/3-(-i)>/3c+f. (4.16)
(5-+0+ O* 7T
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The upper bound, for I sufficient large, becomes

A»(i;0 - ßc(62-:I) < ti, AUS) + lh(8)} (4.17)
oi 4sin (|d7r)

where

¦' F(I) X 2

with F(I) {s £ Z2 : |si | > m(J) if s2 ^ 0, & + & < Ç} and
^2 ^2

F(II) 1 2 "

with F(II) {s £ Z" :s3,...,s„/0,||-r...+ ;§<£}
We shall, first of all, estimate the contribution made to I/(<5) by the elements of
F(I) for which s2 0

case 1 : A oo and therefore m(S) 0 ;

— V riL j. iL-i _ Ü sr —
2n, £-* KL\ L\] 2n, ^ s\

F(i)n{S2=o} 2 {^eZ^CÄXlsiKlÄZ,!}

•è«i/¦2 fl*1'! 1

^'1 + / fa1
L2 2

-[2- A.n; Oiyl

which tends to zero as /-too
case 2 : 0 < .4 < oo;

2n>, ^ ,r?, ,.,„ fai n< •/»»(*) s2

£2 i t2 riSLi

L2u 1

n; m(J) <5Li

which converges to ^„fa, as / —t oo

Similarly, one obtains the result that the contributions made to h(8) from the
elements of F(I), for which we have respectively Si l,Si —l,s2 0,s2 1

and s2 — 1, are likewise bounded.
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One notes that, in the case 0 < A < oo, the number m(8) —t oo as 8 —* 0+. Hence
these particular low energy bands of states can be ignored as they make no overall
contribution to /3m.
The remainder of h(8) is

2ni^f(L2 + L2>

Whl71)2 + (H-1)212-2mjA-^ L\
'

L\

<^-LiL2 f dtidt^tl+tl)-1
2n; Ja2

1 /"*/2 1

^rL*L2 / r- [-5ï]^RdR2n; Jyßß^i/Ll+ilLl R1

n _ /2 5 1, 1 1 tt n /2 5 1, Li.
n, /L V32 2 KL\ L\n L3...LA V32 2 v Lj

where K' is the set {s € Z2 : |si|,|s2| > 1, -Ä + tt < ^-}, Ai and A2 are

the regions in R2 defined by Ai {(si,s2) : § < s2 + s2, ^ + -^ < ^-} and

^2 {(ti,f2):|(^ + ^)<ff+t|<<52}.
As the limit of ^2 always exists and is in [0,1], so we have that

lim Tr-2-r-Pn !<* - 5 Ml + %) + lni2] Hm ^y^V *B.
/-too i/3 .L„ O 2 i^j /-too Lz ¦ ¦ ¦ Liv

Therefore, for 0 < A < oo we have

lim lim Ii(8) < ttB. (4.18)
<$—t0+ /—too

Finally we examine the term 11/(5) As before, we shall remove the
contributions from the bands Si —1,0,1 and s2 —1,0,1 occuring in F(II) as they
do not effect the value of ßm. We therefore concentrate on

1 V^'/5l s2 sl fa
2^^-faZf + Zf + "'+LÎ' '

where the primed summation is over the set {s £ Z : |si|, |s2|, |«31 > 1 ifs4,...,s„ ^
2 2

O.-jT + ••• + ^r < 52/4}; this sum is bounded above by

1 «-^« «i2 s2 s2 _1

2n,^ lL2 +L2 +L3; '
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where the double primed summation is over the set {s £ Z : |si|, |s2|, |«31 >
2 2 2

1, jr + j? + T? < <^2/4} this set is in turn bounded above by the integral

<- f dtidt2dt3(t\ + t\ + tj)'
1 JAa

i rsi2 i

where A3 {(ti,t2,t3) eR3:|^ + ^r + ^<tf+tl+fi< 52/4}. The above

bound tends to 7t5/2 as / —t oo.
This gives

lim lim 11,(5) 0. (4.19)
<$_H)+ /-too

Hence combining the inequalities (4.17) and (4.18) with (4.19), we obtain, for
A oo,

ß+(~) < ßc(S2) + f -[*B + ^] (4.20)
à* 4sin (|57t) 2

and by taking the limit 5 —* 0+ we obtain

lim /?+(!) ßc + £. (4.21)

The same result is obtained for the case A < oo.

D

Proposition 2. Suppose that conditions (4.5) and (4.6) of Propostion 2 are
satisiûed then the function 7 given by (2.20), exists and is given by

{1
A 00

ÌZ^ZexV{-An2z2t}, 0 < A < 00.
<4-22>

Proof : Now 7(f) lim/^oo 7;(t), where

V

7/W= J2 Y[exp{-msin2(-K^-)t}.
{|«,|</i;«=l,...,i/}i=l J
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Now we introduce the function gj(t; I) defined by

9j{t;l) YI exp{-n,sin2(7r-^-)f}.

It is evident that

|7,(f)-5>Xp{-A7rVt}|<
zeZ

V

l^expf-ATrVt}- Y, exp{-n,sin2(7r-^)t}| + |2^5il(t;/)|
M<'i h=2

+|22 J£g'dt;l)9,>(t;i) + - + 2V-1 J2 9>At;i)9i2(t;i)-9.„-dt;i)\
»1^*2 {»l ,Ì2»---)*f :distinct}

+ l2" E - E nexp{-nisin2(7r-^)t}|. (4.23)
s1 l s„=lj=l J

The first term on the right-hand side of (4.23) tends to zero because

1 + 2gi(t;l) -* ^exp{-A7T222t }, as /—too.

Next of all, we consider i 2,..., v :

9i(t;l) <g2(t;l) < /2exp{n/ sin2(7T-—t} < L2 exp{-4fT2-}
L2) Lr2

L2 1

now we have that limf-^oo L L jh linif_>.oo -^- ^- It follows that given 0 <
e < 4, we have, for / sufficiently large;

0 < gi(t; I) < L2exp{-(-^ - e)(L3...L„)2}

< exp{(£ + e)(L3...L„) -(j- e)(L3...L„)2},

where 0 < B < oo, is the parameter introduced in proposition 1.

It follows that gi(t; I) —t 0 as / —t oo for i > 1. Similarly one shows that the
other summations in the second term on the right-hand side of (4.23) vanish as
/ —t oo.
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Finally, the last term is bounded above by

r'i-i r1"-1 "

3=1

which tends to zero as / —? oo

2" / / TTexp{-n,sin2(7T-p-)t}
Jo Jo Jlj L3

v »+00 „2 u
ny^ exp{-nf4faf}<(-)5nf1-^,

D

Let a be the critical exponent describing the fluctuations of —f- as in the

statement of Theorem 4.

Proposition 3. Jn the case of nearest neighbour interactions on the original
lattice A;, the critical exponent a describing the fluctuations of — is well-defined

and given by 1 — -.
Proof: Now we have n; L" (21 + 1)", so by choosing er 1 — £ we have

G)~l[A] Uj : nfei(j)} «{j : L2e,(j) £ A}

thereby anticipating the jp scaling of the low level energy values in the nearest
neighbour interaction. It is sufficient for our purposes to calculate the Laplace

transform w, of the measure Gt " ;

u,(a) [ e~stG)~i(dt) V exp{-snf e,(fc)}
y(o,oo) k€Ar

Y exP{-sJL2[sin2(^i) + + sin2(^)]}
\m,\<l

—t y. exp{—s7T2|m|2}.

meZ"

where |m|2 m\ + + m2. This gives

9l-h0 \ E i^-Hl + ^))- (4.24)

meZ"/{0}

D
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