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The Spherical Model
and Bose-Einstein Condensation

By J. Gough
and

J.V. Pulé *

Department of Mathematical Physics, University College,
Belfield, Dublin 4, Ireland.

(12, VI. 1992, revised 1. X. 1992)

Abstract: In 1968 Gunton and Buckingham pointed out that there is a close relationship
between the critical behaviour of the spherical model and that of the ideal Bose gas. In this
paper we concentrate on this similarity between the two systems. We show that in the spherical
model there is in fact Bose-Einstein condensation into the spin modes with low energy. As in
the Bose gas we distinguish between generalized Bose-Einstein condensation and Bose-Einstein
condensation. We find that the spherical model in certain cases has two critical temperatures:
one temperature T, corresponding to the onset of generalized Bose-Einstein condensation (and
of spontaneous magnetization) and a lower temperature T};,, at which generalized condensation
becomes condensation into the spin mode with the lowest energy. We also study the fluctuations
of the spin mode with lowest energy and investigate in detail some lattice interactions.

1. Introduction

The spherical model was introduced in 1952 by Berlin and Kac [1]; by using
the delta function technique they evaluated the free energy per site and showed
that the model exhibits spontaneous magnetization. Very soon after the publica-
tion of this paper Lewis and Wannier [2] pointed out that the calculations in [1]
can be considerably simplified by the introduction of the grand canonical ensem-
ble as in the ideal Bose gas. It was however very quickly realised that, although
the thermodynamic functions can be calculated by using the grand canonical en-
semble, the two ensembles are not equivalent below the critical temperature: the
expectation values of some observables are not the same in the two ensembles in
the thermodynamic limit. This means that as in the ideal Bose gas (3], [4], [5],
[6] the probability measure connecting the two ensembles, the Kac density, is not
degenerate below the critical temperature. This problem was studied in [7], [8],
[9] and more recently in [10].

In 1968 Gunton and Buckingham [11] pointed out that there is a close re-
lationship between the critical behaviour of the spherical model and that of the
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ideal Bose gas; they showed that the critical exponents are the same for the two
systems. In this paper we concentrate on the similarity of the spherical model
with the ideal Bose gas. We show that there is in fact Bose-Einstein condensation
in the spherical model. The objects analogous to the occupation numbers in the
Bose gas are the squares of the direction cosines of the spins with respect to the
eigenvectors of the interaction matrix. We shall refer to these as the spin mode
occupation numbers and we shall call the eigenvalues of the interaction the spin
mode energies. We use the techniques developed for the Bose gas in particular
in [12], [13] and [6]. As in the Bose gas we distinguish between generalized Bose-
Einstein condensation and Bose-Einstein condensation. We shall say that there
is generalized Bose-Einstein condensation when a set of the spin modes with low
lying energies are occupied, while Bose-Einstein condensation requires that the
spin mode with lowest energy is occupied. We find that the spherical model in
certain cases has two critical temperatures: one temperature T, corresponding to
the onset of generalized Bose-Einstein condensation (and of spontaneous magne-
tization) and a lower temperature T}, at which generalized condensation becomes
condensation into the spin mode with the lowest energy. This phenomenon occurs
also in the ideal Bose gas [6].

The paper is set out as follows: in Theorem 1 we obtain the free-energy
density for the spherical model for a very general class of interactions; by using
the techniques of [13] we avoid the use of the saddle-point method which in many
cases is difficult to make rigorous. In Theorem 2 we show that there is a critical
temperature T, below which there is generalized Bose-Einstein condensation and
that the distribution of the generalized condensate is degenerate. In Theorem 3
we prove that there is a temperature T, < T, such that for temperatures less than
Ty there is Bose-Einstein condensation, again obtaining the distribution for the
random variable representing the condensate; in many cases this distribution is
degenerate. In Theorem 4 we study the fluctuations of this random variable. We
find the relevant scale such that it attains asymptotically a non-degenerate finite
distribution. These theorems are stated in Section 2 and proved in Section 3. In
Section 4 we study examples of interactions on a lattice, some of which give rise
to T, > T,. These examples are based on the work in [14] and [15].

Acknowledgement: We wish to thank Professor J.T. Lewis for suggesting that
the spherical model should be re-examined in the light of the recent work on the
Bose gas.
2. The model and the results

Let {n; : | =1,2,3...} be a sequence of positive integers increasing to oo

and let §2; = R™. Let J; be a linear operator on ; and ¢; = (1,1...,1) € Q. For
h € R define H}* : Q; — R by

H} ) = — 0, J10) — h(et,w), (2.1)

where (-,-) denotes the Euclidean inner product on ©;. Ford € N, r > 0 let S(d,r)
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be the sphere in R? with its centre at the origin and with radius r, and let

Q(r) ={w:we Q,||w||? = rni} = S(nu, Vrra).

The configuration space for the spherical model is (1) and the canonical measure
on {2;(1) at inverse temperature 3 is defined by:

PER(A) = (2,8, k)™ /A A O () (2.2)

where mgy , denotes Lebesgue measure on S(d,r) and Z;(3,h) is the canonical
partition function
Zl(ﬁsh) z/ e_ﬂH{l(W)mm,\/n_z(dw)' (23)
Q
In this paper we shall concentrate on the model with h = 0; we let H; =
HY, P',B — Pf’o and Z;(B8) = Zi(3,0). We shall assume that the operator J

has an orthonormal set of n; eigenvectors ¢;(7), j = 1,...n;, with eigenvalues
Mi(j), j=1,...n;. We order the eigenvalues so that

A1) = M(2) 2 M(3) = ... = Mi(m).

Let €(7) = $(Mi(1) — Mi(5)), so that

We shall call {¢(7) : 7 =1,...,n;} the spin mode energies and n; the number of
sites.
Let p; be the probability measure on Ry = [0, 00) defined by

u(4) = 45 ) € A), (24)

that is

]

[ fepd) = > fai)

J=1

We shall require that the eigenvalues of J; have the following properties:
(A1) the limit A\(1) = lim;—00 Mi(1) exists;
(A2) there is a measure u on Ry such that for every f : Ry — R which is con-
tinuous and bounded, fR+ f(t)In(2 + t)pi(dt) converges to fR+ f(t)In(2 4 t)u(dt)
as | tends to infinity.

We have above extracted the essential properties of J; necessary for our results;
We shall see below that these are satisfied in the case when J; is given by a kernel
on a lattice, see for example [16]:

19
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Let {a;,a2,...,a,} be a basis for R” and for [ € N let A; be the subset of A
the Bravais lattice generated by this basis, given by

A= {Zm;ai : me{-l,-l+1,...,1-1,1}"}.
=1

Let n; be the number of lattice points in Ay, that is ny = (214+1)". Let u: A = R
be a positive function such that u(—z) = u(z) and ) ., u(z) < co. We then
define u; : A — R in the following way:

ur|Ar = u|Ay,

u; is then extended to A in such a way that it is periodic with period A;, that is,
if m € 2%, let ™ have components

m; = (m;i +1) mod (21 + 1) — I,

then € {-I,—-l+1,...,l —1,l}" and

UI(Z mia;) = u(z mia;).

Let A; = {z1,%2,...,%n, }, that is choose a labelling of A; and then define J; to
be the matrix with entries

Ji(1,7) = wi(zi — ;). (2.5)

Let {b1,bs,...b,} be the basis of R” satisfying (a;,b;) = 2md;; and let A] be the
lattice reciprocal to A;:

v
af = {(2l+ D7D msbiim € {—l—l+ 1,1 - 1,;}"}-

=1

Choose A]* and A]~ such that AJ* UAJ™ = AJ\ {0}, AT* NA]” = 0 and
TA]t = A]™ under the mapping T : k — —k. For k € A} let {i(k) € R™ be
defined as follows:

.

=

(2) conllk,z) ifk € AT,
Gk =1 (

2w
=

) sin((k,z;)) if ke Al (2:6)

k=0,

=~
£
N—
=

A.



Vol. 66, 1993 Gough and Pulé

{¢i(k) : k € A]} is an orthonormal set of eigenvectors of the matrix Ji(z, ) with
eigenvalues S\I(k) where

Mi(k) = Z u(z) cos((k, z)). (2.7)
TEA,

For k € A] let

(34(0) = Xu(k)) = 3 u()sin? %(k,x). (2.8)

TEA;

l\DIl—‘

é(k) =

(Al) is satisfied since A\;(1) = A;(0) converges to Y zen u(r). Because IMi(k)| <

21(0) for all k € AT, &(k) € [0,2(0)] and therefore y; has support in [0, A1(0)];
thus to check (A2) it is sufficient to consider fR f(t)p1(dt) where f is a bounded
function on R;. Now

/ F()p(dt) = Z fa(k))

kGA"

which, if f is continuous, converges to C~! [, f(€(k))m(dk) where m is Lebesgue
measure on R”, A" is the parallelepiped

Zkb kil <

C is the volume of A" and €: A" — R is defined by

1 =1y aqThiths

mln--

1
ék) = Z u(z)sin® = (k, z); (2.9)
2
€A
thus fR+ f(t)ui(dt) converges to fR+ f(t)p(dt), where p = C lmoé&™t.
The sequence of operators {J;} converges strongly to the semi-infinite matrix J
given by J;; = u(z;—z;) which defines a self-adjoint operator on {?(A); the measure
p is then the density of states of Z(A(1) — J).
We now go back to the general case and state the results proved in this paper.
In the first theorem we deal with the convergence of the free energy per site for
the spherical model. Let fi(3) be the free energy per site for the finite system at
inverse temperature 3:

fi(B) = -—-—-anz(B)
Let

ﬂc == ]R %M(dt)
+

21
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Note that 3. can be equal to +oco.

Theorem 1. The limit £(3) = limo0 f1(3) exists and is given by: if 8 < f.,

18) = a(8) + 55 [, In(t—a(@Nuiee) + g% 1) (210

where a(3) < 0 is the unique solution of the equation

1 1
p=3 fR+ () (2.11)
if 8> B,

1 B

f(B) == Int dt+—1n————() (2.12)
6)= 55 Jj It 1@ + 55

By analogy with the Bose gas we shall introduce the spin mode occupation
numbers. For j =1,2,...n; we let N; be the random variable

Nj(w) = [{¢u(5),w)I*. (2.13)
Note that for w € (1)

Nj(w) < ¢ lw]®* = n

In the lattice model described above, if we take w = (1,1, ..., 1) then, since ¢;(1) =
_\/1n=1(1’ 1,...,1), we have Ny(w) = n;. Also the canonical partition function can be

written in terms of the spin mode occupation numbers as follows:

248) = /Q S ﬁZ/\z(J )}y, ().

We shall say that there is Bose-Einstein condensation into the spin mode with
lowest energy if

Jim E? (Nl) >0, (2.14)

—00 mng

where Ef 1s the expectation with respect to the probability measure PI’B . It can
happen that the limit in (2.14) is zero but there is still condensation into the spin
modes with low lying energies ¢;(k); if this happens we shall say that the model
exhibits generalized Bose-Einstein condensation. More exactly we shall say that
there is generalized Bose-Einstein condensation if

8
lim lim E; Z N;| >o. (2.15)
fz(J)<:6

A.
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Our next theorem shows that the spherical model exhibits generalized Bose- Ein-
stein condensation if the temperature is sufficiently low:

Theorem 2. In the spherical model there is no generalized condensation if 8 < f3,

while for 8 > (. the model exhibits generalized Bose-Einstein condensation: for
s >0,

: . B 8 _ _ _ &
%lﬁf)l Il_1+nc;1° E; |exp o :L:)d Ni | =exp—s {1 3 } ; (2.16)
€] v

To examine macroscopic occupation of the spin mode with lowest energy we
need more information about the spin energy spectrum {¢;(j) : j = 1,2,...,n}.
We introduce a second critical temperature 3,, which is related to the maximum
density of spin modes which have energies €;(k) tending to zero slower than e/n;
as [ — oo for every € > 0. Let

B (e) = limsup -}—,u;(dt), (2.17)
I+00 J[£,00) 2t
and
1
Bmle) = liminf] —pi(dt).
[—00 [%’Oo) 2t

We shall assume that lim. o, 8 (€) and lim¢ o 3, (€) exist and are equal; we
shall denote their common value by 8,,. We introduce also a scaled density of
states Gi; Gy is a measure on Ry defined by

Gi(A) = {7 : me(j) € A} (2.18)

and we denote its Laplace transform by ~;:
T(s) = / e *'Gi(dt). (2.19)
[0,00)

We shall assume that y(s) = limj o 7i(s) exists for s > 0; this ensures that there
is a measure G on R4 such that

() = f[o Gl (2.20)

for s > 0 and that e™**G;(dt) converges weakly to e**G(dt) for s > 0. In addition
we shall assume that [~ e~%*y(s)ds < oo for all a > 0; since s ~ ~(s) is mono-

tonically decreasing this is equivalent to requiring that v be locally integrable at
zero.

23
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In the case when p({0}) = 0 clearly 8. < Bm. From the convergence of v; we
can deduce that there exists a K < oo such that §{;j : (j) < n;'} < K for all {;

this implies that the inequality 3. < @, holds even when u({0}) > 0.
In the following theorem we obtain the distribution of the random variable

% in the limit  — oo by obtaining its Laplace transform.

Theorem 3. If 3 < f,,
lim E? [ "W] =1, (2.21)

=0

for all A > 0.
Let a > 0; then the probability measure with Laplace transform

exp —{sfm + %fow du (1 ; e—tw) e *“y(u)} (2.22)

has an absolutely continuoﬁs distribution F such that F(8) = 0 for all 8 < (3., and

F(B) is strictly increasing for all 3 > Bm. If B > Bm is such that F' is differentiable
at @ then for all A > 0,

lim E? [ "—L] =1- %(F’([J)) /ﬂ e~(atap) (BT (_%(1 - ?)) dF(8'),

l—oc0
(2.23)
where I is the sum of the first two modified Bessel functions: I(z) = Ip(z)+ I (z).

Note that if F} and F; are defined through (2.22) with a = a1 and a = a3 re-
spectively then dFy(3) = dFy(B)e (22218 e e~(@=2)8"dF (8") and therefore
the righthand side of (2.23) is independent of a. If the interaction in the lattice
model considered in Section 1 is between nearest neighbours then ~(s) = 1 (see

Section 4, Proposition 2); in that case, (2.22) yields F'(8) = /2 ¢—F—= —elfmfm)

\/W

m

B > Bm, and by using the identity:

1

1
1-— K./ (1 —z) 2e ™ I(—kz)dz =",
0

(2.23) gives for B > fm

A.
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Finally we examine the fluctuations for the random variable %1- when v = 1.
Let

1 1
o=y [ ma (2.25)
2 J(0,00) t

and define, for ¢ > 0, the measure G§ by

71A4] = {7 : m;~7e(5) € A\ {0}}. (2.26)

For ¢ > 0 for which there is a measure G° on R4 such that for every f :
f(2)

LH1+1)

f(?) :
— _G° t :R R b
]R+ t(1+t)G (dt) as I — oo, we define the function g +\{0} = R by

R; — R which is continuous and bounded, /R G7(dt) converges to

O = [ ;- e @ (2.27)

Theorem 4. Suppose there exist a value o such that the function g% is neither
identically zero or plus infinity. Then this value of o is unique and, whenever
B > Bm, the following limit exists

_Ar

5 ))Bni}] = exp{g°({)}. (2.28)

N
- B wid S
Jim Effexp{¢(2) =
3. Proofs of the Theorems

It is convenient to define a modified partition function Z;(3) by
Zi(B) = n=E™ e BN OmBgE(M=D) 7)), (3.1)
If we let J; = 2(Mi(1) — Jy), then we can write

n

> s [T —{w, Jiw)
ag) == 50 [ T () (3.2)

If U is the orthogonal matrix which diagonalizes Jj, we have since the measure
m.,. oA is invariant under U,

>  —in ni —u,UjU'w
Zy(B) =n"2 lVE/s;I(,B)e : l )mm. ﬁm(dw)

(3-3)

-1 n =3 q(fw?
=5 _] e i=1"° ‘m dw).
V J¢; 2(8) m,\/ﬂm( )

25
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We also introduce an auxiliary grand-canonical partition function Z;(a) for a < 0:

= e = [ A7 7,(3)dB; (3.4)
0
then
1 =Y (a(j)-a)w? n . -1
Z)(a) = 7™ fan DN CIOEOL: =TI, (a(j) — )% (3.5)
For a < 0, let
1. _
pi(a) = —InZ(a), (3.6)
ny
then ;
p(e)==5 [ Int— cuu(db) (3.7)
[0,00)

and therefore because of the assumption (A2)

—oo 2

p() = lim pi(a) = —7 ]{0 In(t — cu(dr). (3.8)

Let fl(ﬂ) = —fr—ll—l-ln Z1(B); we shall prove that f(8) = lim;_oo fi(3) exists and is
given by:
f(B) = a(B)B — p(a(B)) for B < f. (3.9a)

where a(8) < 0 is the unique solution of § = p/(a) and

f(B) = =p(0) for § > . (3.9b)

Theorem 1 then follows immediately. We shall require the following two lemmas.

Lemma 1. Let X; and X, be independent non-negative random variables with

means m, and mq respectively. Suppose that X; has density 72=7r1=n"?1;}’ exp(—z/2m,);

ifzg > 0 and 0 < 6 < xo then

~(z0+8)
e 2m mo
P[X: + X; € [zg,20 +6]] > (1 — —).
Xs+ X2 € fan,z0 + 8] 2~ eesd1 = 1

Proof: The random variable X has density p given by [17]:

_lz—y)
771 Fp(dy).

p(z) = ] - e
[0,z] V/2rmi(z — y)

A.
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o THT

where F; is the distribution of X5. Thus p(z) > v, v f[O,a:] F,(dy); therefore
.'l’:o+6
P[X; + X € [c0,20 + 8]] = / ali)dz

o
et [ R

> Fa(dy
zo miZ Jio,x]

_ (=0+4)
e 2my

.1.‘0+6
> dz F(dy)
\/21rm1 (zo + 9) / [0,2]

a:+6

z‘o+§
> F dy
\/27rm1(:v0+5) / /o ,00) JFx(dy)
_(=zg+9)
_ g e (6—m ln<m0+5))
/27mi(zo +0) ’ 0
_(=zg+9)
e 2mq

ma
> 01— —).
~ /2mmy(zo + 9) ( To )

(]

The mapping o — pj(a) is strictly increasing for a < 0; pj(a) = 0asa — —o0
and pj(a) — oo as @ — 0. Therefore for each 8 > 0 and each I € N there is a
unique value of a < 0 such that § = pj(a); denote this value of a by a;(3)).

Lemma 2. limj,., o;(3) exists and is given by

R

Furthermore

_ a(B)); B <P,
lim p(eu(B)) = {ggo)(;ﬁ)) B ; Be.

Proof: We first observe that pj(a) < —s- and therfore a;(3) lies in the interval
[—2—13—, 0) for each [ . The sequence (a;(3)) thus has an accumulation point in the

closure of this interval. This accumulation point is readily shown to be unique and
given by (3.10); the proof of this is identical with that of Lemma 3 in [6] and we
omit it.

The function a — pj(a) is convex and therefore the convergence of p;(a) to
p(a) is uniform on compact subsets of (—o0,0); the convergence of pi(ai(8)) to
p(a(B)) is then immediate in the case 3 < B.. Next we suppose 8. < oo; this

27
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implies that p does not have an atom at the origin. To deal with the case 8 > S,
we define, for § > 0,

pili 6 =2 —= L It — @) (3.11a)
and .
pla;d) = -5 L,w) In(t — a)u(dt). (3.11d)

If 1 does not have an atom at §, then pi(a;§) converges to p(a;d) and again the
convergence is uniform in a on compact subsets of (—00,4). Now

plei(®) = 5 [ it~ cul@ple) +plelB)id) (312

Using the fact that —Inz < 1 for all z > 0 and that ¢t — () < §+ 55 for t € [0, 4]

we have
1 1 1

—= ln(5 + 55) < ——ln(t —a(B)) < 2 - (ﬁ)

for t € [0, 4]. Integrating over [0, 8] with respect to y; we obtain
1 1

— = 111(5 + w)u;[é] < —--f In(t — oy(B))pi(dt) < f —u(dt). (3.12)
2 2 [0’6] {0,6] 2t

Let (6,) be a sequence of positive numbers converging to zero such that for each

n, u({6n}) = 0. From (3.13) we get

l—9 00

_hln(5+ ) [6.] < 11m1nf—% /[0 . e~ (@)l

) 1 1
< limsup 5 f In(t — ay(B))p(dt) < [ Em(dt).
[0,6,] (0,6,]

500

Since p does not have an atom at zero this yields

lim lim sup/ In(t — ai(B))i(dt) = lim liminf In(t — ay(B))u(dt) =

n—oo [—o00 (0,6,
which combined with (3.12) gives

Jim pi(ea(8)) = lim p(0;65) = p(0).

A.
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Proof of Theorem 1:
We first note that the function

-1n VU e—ﬂ(x,ix)

B
B Ja,)

My, mr(dT)

is decreasing and therefore 8 — f;(ﬂ)—{- %lnﬁ is increasing. Now for a < 0 and

6>0 5
E;(a) > ] Jeﬂ'nzazl(ﬂl)dﬂf
B—

B -
— / e—mi{fi(B)+5n g —ap’'} ;5muln ‘B'dﬁ'
B—é

> e~ {fi(B)+51In f—aB} FmIn(B—0) 5

Therefore
B—06
B

pi(a) = —1Ind - fiB) + af + %zn( );
ng

and so

(=2

8-
B

liminf /i(8) > af — p(a) + 3 In(*2);

since ¢ is arbitrary we have, letting § — 0
liminf fi(8) > af — p(a).
Because this is true for all o < 0 it follows that
lilrgiogffr(ﬁ) > ilipo{aﬁ ~ p(a)}.

To prove the upper bound we introduce the Kac probability measure K{* on Ry ;
K} is absolutely continuous and is defined by

F(dB) = e"mP (P Zy(B)dp. (3.15)

We first consider the case 3 < .; in this case we can find a unique value of a < 0
such that p’(a) = 8. From (3.4) we get

/0°° e~ KE(d') = exp —s {pi(e) — ?:(Of — &)} (3.16)

where §; = s/n;. For a < 0 we have that

i P1(@) — (e — &)

=00 51

= p'(a); (3.17)
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therefore
o0

lim e""ﬂ'K?(d,B’) = ¢oP' ()

900 0

and hence K converges weakly to §,:(4). Thus for 0 < § < —a(8),

lim K708, p/(a(B) +26)] = 1.

Now

~ InK; O (3, ' (a(6) + 20)

(a(B)+26) )
o X /p e~ M BB+ B ~(a(B)+0)' Y 3mn B g3 _ 1 (0(B) + 6)
n 8

<78+ a(8)+ 55+ 3 1n (LEEEEN) _ pa(s) + 0

therefore

limsup fi(8) < a(8)8 — pla() +6) + 86 + 5 In (P'(“(ﬁg + 25))

since p and p’ are continuous, letting § — 0 we get
limsup fi(8) < a(B)8 — pla(8)) = suplaf - p(a))
—00 o

We now take 8 > fB.; let Y3,Y;...,Y,, be independent random variables with
density (27rmjz)~3 exp(—z/2m;),j = 1,...,n; where the mean m; = (2n;(ei(y) —
@))~!. Then from (3.16) we see that X = 3 7", ¥; is distributed with probability

measure K and has mean pj(a). Putting X; = Y7 and X, = 377!, Y; in Lemma
1 we get

<7l0.6+8) 2 (242 * s (1- i) + o187

Choose a; < 0 such that pj(e;) = 8 and let § = 1/ny, then

v [pos 2] s (comen)
bl - p— A . 1 € T
I n (6 + 77) 2nf(—ai)
bid Bl ]

> 1 4 e@
T (B )2 20 ’




Vol. 66, 1993 Gough and Pulé

for large [, since a; — 0 as [ = oo. Thus liminf; -nl—lln K" [ﬁ,ﬁ + ;‘l-l-] > 0 and

by the same argument as for 8 < 3, this gives

limsup fi(8) < —limsup pi(a);

=00 -0

but pi(ay) converges to p(0) by Lemma 2 and therefore
limsup f(8) < —p(0) < sup(af — p(e)).
=00 a<0

Combining the upper and lower bounds we then get:

f(8) = lim fi(B) = sup(af — p(a));

a<0

the Legendre transform of p can be readily calculated to give (3.9 a,b).

O
Proof of Theorem 2:
Let X{(w) = Ya)>s Ni(w); let
2(s,0) = [ MK O, () (3.18)
Qi (1)
and let fi(s,8) = —(Bn)'ln Z,”‘s(,@). We shall prove that

fo(s,8) = limjye f{(s,8) exists and for § > 0,s — f¥(s,B) is differentiable
in s at s = 0. But

s [;u] - [_ 5o 016) = fF (o,ﬁ))] .18

gl

where 0; = s/n; and therefore since s — f9(s,3) is convex,

x3 8
Il_i}rgoEf Iie'@";T] = exp [—ﬁs%J;—(O,ﬂ)J ; (3.20)

Now Nj(w) = |(¢j,w)|* = (w, Pjw), where P; is the orthogonal projection onto
#;; and therefore X{(w) = (w, 2 e(j)>s Fiw); thus

a,d’w
z;‘(s,ﬂ)zfn(l)e%mw:% >mm,m(dw) (3.21)
i

31
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where Jl“"‘s = Ji+ 283, ;y>6 Pi- The eigenvalues of this operator are )\f"s( J)
where

A(G) = NG) if ali) <8
and :
APA(5) = Md) + 25 if e(j) > 6.

Thus we can apply the result of Theorem 1 with y; and p replaced by ,uf"s and p®9
where pls‘é(A) = n%ﬂ{j : 3(M(0) — )\f’a(j)) € A} and p*? is the limit of p‘,’"s in the

sense of (A2). If g : Ry — R is a continuous function such that |g(¢)| < Cln(2+1)
for some constant C' then

f[o’m)g(t),js,a(dt)= /{0 ’J)Q(t)li(dt)+ /[Jm) g(t — s)u(dt). (3.22)

Let p*%(a) = -1 f[O,oo) In(t — a)u*®(dt) for a < 0, let B2° = fio,oo) 2u*0(dt)
and for 8 < 32 let a**(B) < 0 be the unique solution of 3 = Zp"*(a). Then by
Theorem 1 we have that f2(s,3) converges as | — oo to f*(s,3) where

3,0
£s.8) =9 —ps ) a2 2o,
if 8 < ﬁ;”a, and
5,6
£(5,8) = ~Z2(0) = 55102 — 23(0),

if 3> B2°.
We can calculate the derivative of fé(s,3) with respect to s at s = 0 to get

Qﬁ(o B) = 1= 35 Jio,6) magmyi(dt) if B < B
o %' — 35 Jo,6) T1(dt) if 8> Be.

Therefore

.oyt 1B < b
}‘Eéa(o’ﬂ):{% if 8> .

Thus using (3.20) and 3, N;(w) = n; we get the required result.

We shall say that F': R} — R is monotone if

F(El,...,l'n) > F(yla"'ayn)

A.
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whenever z; > y; fori=1,...,n.

Lemma 3: Suppose F : R*™! - R and G : R*~! — R are monotone; define
f:R"™ - Rand g : R" - R by f(w) = F(N1,Na2,...,Np,—1) and g(w) =
G(N1,N3,...,Np—1).

Then
Ef[fg] > E7[fIE][g].
Proof:
8 fn,(l) exp{f Em 1 (er(ra) — eI(J))WZ}F(WhU-’za i;—l)mnz,\/n_t(dw)
Er[f] =

Joyy exp{=B L35 (a(n) — a(f))w ?}mn,,m(dW)

_ fol drm_l for“'_l dTnl_g $3 sz drlF(Tl,Tg, eeeTpp—1 )D(T1 37254 rm-—-l)
fol drn,_l for"'ml d'l"m_.g SEF fJQ dT]D(Tl, r2,... rm—l)

where

exp{B Y71 (e1(na) — ea(5))rs}

{(Q —ray—1)(ra;-1 — rny—2).--(rz — 7'1)7'1}'

D(ri,r2,...Tn—1) =

For h:RY — Rand r > 0 let

ra2 H(Tl . rk)h(rl ol rk)}
h Zk d d exp{ ) ’ ) ’
( )1" ( / 'k / drk v / " Pk(rla <oy Tky 1")

where { "
exp{H(r1,...,Tk
Z = d d dr )
/ rk] Tkt ] n Pk(rls T‘k,T)
H(r1,...,76) = air1 + ... + akri,
a3 20, a2>20, ... ar >0, and

Pr(ry,...,re,r) ={(r —re)(rk — Tk=1)...(r2 — rl)rl}%.

We shall prove by induction on k that if h; and h; are monotone then

(R1h2)E > (h1)5(ha)5. (3.23)

If hy : R4 — R and h2 : R4 — R are monotone then

(Ra(r) = ha(r"))(ha(r) — ha(r")) 2 0

33
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for all r,r" € Ry. Therefore

@) [ any [ i )~ hatr)=halrh) 2

=i}

r—ry)r1}2

or

(Rih2); 2 (h1);(h2);.
Suppose that the inequality (3.23) is truefor k =1,...,m — 1.

r ro re ! '
/ d'r'm ...] d lexp{H(rli : }/ dT‘ / 2 lexp{,};‘(r‘lﬁ";ﬂrm)}
0 o P(ry,.-. rm,r) Plriiissgri r)
x{(h1(r1,.--srm) = hi(ry, ..., ) Hh2(r1, - - yTm) — ha(r], ..., 7 )} > 0. (3.24)
The integral in (3.24) is equal to

drmmf dr!. Zm Z”‘
{{Bal - rm)Bale . corm M- — (hal oo sPm))p (Ralne P )}

- (hl(...,r;))'r',:“_l(hz(...,rm))f:n" + (hl(...,r;)hz(...,r;))f}m‘l .

By the induction hypothesis the quantity in {...} is greater than or equal to
(Pa (om0 = (R r DB ) (R rm )T = (B2, )Y )5

therefore it is sufficient to prove that if h is monotone r — (h(...,r))*" ! is
monotone. Now if r > r/

YOS o Y YO . N (YOOI o (YOO
(RN = (R Y
> (A, NPt = (h(.., BN

Therefore it is enough to prove that for fixed r’,r — (h(...,r"))"~! is monotone.
We can write

fol B s d. # s forz drs Blrris o o Pm—is? )W (ris e ,rm_l)'

h(...,r))m 1 = :
( )> 1d7"m_1... rsz‘]W 7'1,...,1‘7”_1
0 0

where

exp{rH(r1,72,...,Tm_1)}
w 5 m—1) = :
(7‘1, T 1) 'P(T'l,..-,'rm—lal)

A.
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Since if r > s, h(rry,...,rrm-1,7") > h(sr1,...,8"m-1,7"), it is sufficient to prove
that
1
- Jo BPmea ...forz driW(ry,...,tm—1)h(r1,...,Tm=1,7")
1 ?
fO d’f‘m_l din f0r2 dTIW(Tl, Ein ,Tm—l)

is monotone; but this quantity can be differentiated with respect to r to give

(Hh(..,P"))P = (H)PHR(..., /" NPT (3.25)
with a;,as,...,am—1 réplaced by ra;,ras,...,ram—1. But by the induction hy-
pothesis (3.25) is non-negative and thus the lemma is proved.

a

For the next theorem we require also the following information about the
sequence a(8)n;.

Lemma 4. For 3 > 0 let by = —ai(B)ni. If B < B, by diverges to +oo and if
B > Bm, by converges to b(3) > 0 where b(3) is the unique root of

1

P ] e~ By (s)ds = B — Bim. (3.26)
2 [0,00)

We do not give the proof of this lemma since it is almost identical with that of
Theorem 3 in [6].

Proof of Theorem 3:

For ( > 0 let
—_egN
a(¢,8) =E} [e < “'];
then
gt(mC,ﬁ) _ (Zl(ﬁ))_lf e_'B(H‘(w)+CN1(w))mnl,‘/ﬁ‘;(dW)
(1)
s M (5 "/ —(w,(J+CPL)w) dw 9
G (2®) e m,, o) (3:27)
Let
Zu(¢,0) =2 fR e~ IH R (3.28)
n;

then on the one hand we have

26 = (%) Sita) (3.20)

35
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and on the other hand by (3.27)

=¢0) = [ mLB)amC,0)45. (3.30)

Therefore

I eﬂ"'°21(ﬁ)g:(nzC,ﬁ)dﬁ=( e ) [ emens

0 (—a 0

which we can rewrite as

/Ooo e™** Zi(z/n)gi(riC, o /ni)dz = ( $ )% ]0°° =5 (z/n)dz  (3.32)

+ s
for s > 0. Using the identity
1
S 2 i 1 1 1
s —sz —5(T = .
((‘*’ s) 1 [0 e *Te 2CI( 2C:c)dz (3.33)

where I is the sum of the first two modified Bessel functions: I(z) = Ip(z)+ I1 (),
we can invert the Laplace transforms in (3.32) to get

) = 1= 3¢(ZuGa/m))™ [ Ziy/meHEDI= 5 - )iy

or
K 1,5 av 25 an —tee—p)p_1 Ndg'
(¢, 8) = 1= 3C(ZB) [ 28 HEOI(-3((p-p))d.  (331)
0
Let a > 0, then by multiplying (3.34) by Zg(ﬁ)e"‘”g and integrating we get

B2
/ a(C, BKT™ (dB) = K;*/™ (By, 2)
B (3.35)

1 B2 B _ L i 1 , iy ,
=3¢ [ s [ 001205 - BRI (4B
27 Ja, 0 2
Now [.° e“’ﬂK,_a/"’(dﬁ) = exp —i(s) where

o) = - {n (~29) e (-2}

- % f[o’b){ln(t + 54 a) — In(t + a)}Gi(d?)

1 s
+ —ny In| 14+ —-—0=] p(dl).
ERS ( mft + n—f))

A.
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Using the inequality
(14+y) 'ly<n(l+y) <y (3.36)

for y > 0 we get that

1 s
im lim - _ dt) = sfBm .
Jﬂ,ﬂf&sz[b,n,,w)m(”muﬁ))’“( )=

If b > 0 is chosen so that G does not have an atom at b then

lim = [ {In¢ + s+ a) — In(t + a)}Gi(dt)

=00 [O,b)

. 1 *° 1 —p™ " —au —ut
= lim — du| — ] e e "'Gi(dt)
500 2 o u [0,b)

= l'/ du (}_T_f:_._) e_““/ e "'G(dt);
2 Jo U [0,b)

we have used here the dominated convergence theorem: fEO b e~ 'Gi(dt) < Gi[0,b),

which is bounded since it converges to G[0,b). If a is chosen such that f0°° due™*"~(u)
< oo then by letting b — oo along the points of continuity of G we get

$(s) = lim ¢u(s) = sBm + %/0 du (1 ; ° ) e y(u).

Therefore the sequence of probability measures {K,_a/ ™1 converges weakly to

an infinitely divisible measure K whose Laplace transform is exp —(s); since
Gi1({0}) > 1, 4(u) > 1 and therefore we can write

1
3 =
—¥(s) _ (L) %)
s+a

where

z 1 [ 1—-e ™\ _4u
P(s) = sPm + 5 du e” " (v(u) - 1).
0 u

Since (a/(s + a))% is the Laplace transform of pg(z) = (%)%e_”:c_%, then K is
the convolution of the measure with density po with another measure K whose
Laplace transform is exp —t(s). Therefore K is absolutely continuous; let F be
its distribution. Clearly F(8) = 0 for § < (. Also K[0,8) = 0. Suppose
there is § > 0 such that K[Bp,Bm + 6] = 0; if this is true for one value of a
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then it is true for all possible values of a. Then ¥(s)/s > fBm + & and therefore
liminf,_y0 ¥ > 3., + 6. But

o )

8—0 S -

1 o0
Bm + EL (y(u) =1)e ™ < B + 6

for a sufficiently large; therefore K[Bp,Bm + 8] > 0 for all § > 0. Now for 8 > fBm

! _[a e—e(B8-8") _ , Vva Ca(B—p)
F(B) = \/;/[ » ’“ﬁ’qdﬂ ) 2 me B=bm)K[Bm,B] > 0.

The right-hand side of equation (3.35) converges to
B2 1 B2 B . ; 1
| ar@) -3¢ [ ds [ 001 Soa- p)iF(e).  (330)
B1 B1 Y

Now

0 N1 _,aN gV _eanL
5‘%(@6)=—CE§’ [n—je <"#] _{E,ﬂ [e Cﬂ?f“H] —Ef [e <ﬂn,]Ef[H]}.

The last expression in {. ..} is positive; this can be seen by putting F(ry,...,rn,—1) =
_8“—09;},- and G(ry,...,rn—1) = Z}’;—ll(q(nl) — q(j))rj in Lemma 3, therefore
B — gi(¢, B) is decreasing. Thus

B B2 a B2
timsupan(¢,0a) [ dF() < Jim [ ai¢,BIKT () <limin i<, ) [ dF(B).
100 B1 l=00 /g, I3 81
(3.38)
Let F be differentiable at 8; from (3.37) and (3.38) we get
o N R N
iminfa¢,0); [ aF @) 2 3 [T ar(e)
1¢ pte " 4 —(a+1)(B"-8" 1 " ' '
— 5 dp e T3 I(—5¢(B" = B"))dF(B).
246 Jg 0 2
(3.39)

Letting 6 — 0 we get

ﬂ I
liminf (. B)F'(68) 2 F'(8) - 3¢ [ e HOP01(—20(8 - )dF (8.
(3.40)
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Integrating from 8 — § to B and using the other side of the inequality in (3.38) we
get

A :
limsupgi(C, A)F'(8) < F'() = 3¢ [ e @HOP=E1(— (8 - )P ().
—00 0

(3.41)
If B> Bm, F'(B) > 0 ,then (3.40) and (3.41) then give

B i
lim gi(C,8) =1+ 3 (F'(8)) ¢ f e HOG-I)(—30(8 - B)dF (@),

We shall now study the case § < 3,,. We start from (3.31); this can be written in

the form .
* ! o no__ —Q 2
‘/0 gl(C,ﬂ )Kl (dﬁ ) - (C/nl _ a) :

(3.42)
Let 81 < Bm; from the inequality (3.36) we get
1 /’ s —sfpe(B1)
5 e s—ln/ eI P (dB) < By
2 Jlo,00) t —au(Br) + () [0,00) !
Therefore

=50

lim —lnf e_"BK?'(ﬂ‘)(dﬁ) = sf1,
[0,00)

and thus K?'('@ V) converges weakly to 88,. Also —ay(f1)ni — oo by Lemma 4 and
so (3.42) gives

Lim f " a6 AR A = 1. (3.43)
= Jo

Suppose 8 < B, and choose 3, < (3, then since 8 — gi((18) is decreasing and
K P 64, from (3.43) we get

B
limsupgi(C, 8) < Jim [ ai(¢, A" (dg) = 1.

=0

Similarly by choosing 5, > § we get
l— o0 =

°J B

Therefore lim;_,o g1(¢, B) exists and is equal to 1.
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Proof of Theorem 4: The uniqueness of o follows from the scaling of the
measures Gf:

/ £(H)GY (dt) = / f(n'=)GY' (dt).

We have also
Bise, B0 = Birn, o, = ! (d£)+ oo, T Sr™ [ Lao(dy
=00 P b—hool-—l-)ooz [b/n:,00) t”l bi)IEol—)oo2 l (O,b/nf) . )

The first term is equal to B, and the second term is zero; thus
lim 3" = fm.
l— o0

For ( > 0 and ¢ > 0, let

m

hi(¢,8) = Ef [e_w"m_f"r'%) ;

then hi(¢, B) = gi(—n{ ¢, B)e$™ (F=A") and from (3.34) we get

hi(C,B) = e (B=A")
1oz 30 (5 o\t [P 5 o —cnegr—gmy J(5CnE(B — B"))
+ GO (208) [ zugeentr-am ST g
(3.44)
where I(z) = /ze % I(z). We let fi(a) = -3 f(o ooy In(t — a)ui(dt) for o < 0 and
define a measure m; on Ry in the following way:

—ot1 o &
mi(d) = n Fremn© [ B vy (349
—nf " 0

We can rewrite (3.44) in the following form with a < 0

B2 o B2 L ; o
/ hl(C,ﬁ)KI ny (dﬂ) =/ e—Cnf(ﬂ—ﬂgm)Kl n (d‘ﬂ)+(%C)%n?e—m(p,(-n_')-.p,(o))
'82 nf’(ﬁ'— lrn) T 1 -4 _ my __
% ] dBe? / #0 T(5¢(nf (B - B) — )
ﬂl —CO Vﬂ _ ,BIn _ ynl—d

Let 8 < B1 < f(B2; the first term in right-hand side of the equation is bounded
above by e~¢" (#1=8") and since it is positive it vanishes in the limit | — co. We

e~ Ymy(dy). (3.46)

shall prove that the second term converges to “—i—eg(oe"ﬁ"‘ ;1 2 dﬁ\/"";—%. Now by
s ™ —Fm
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Lemma 3, # — hy((, B) is increasing a.nd in the case studied here K_“/ ™ converges

to the measure with density po(8) = —; \}"’ﬁ’ therefore using the argument

employed in the proof of Theorem 3 we obtain
Lim (¢, B) = 9" (), (3.47)
—00

We now study the last term in (3.46); we want to show that

o /nr(ﬂ—ﬁi“) I3¢(ng (B - B1) — v)) =S¥ my(dy)
oo VB~ B~ yni?

m_/ \/:e Ymy(dy)| — 0 as I — co.
I

(3.48)

We first note that

o0 o0
lim (¥ / ePmi(dy) = lim (3nf Ve [T g(g)emenl -0 ggt
—00 —00 0

=00
= limexp [(nf B + ru{pi(—¢/ni =) — 51(0)}]

= lim explf {——l (C+t)}G'f(dt)
=00 2 0’00) t

= exp ¢°(().
(3.49)

We also know that hm,,._.,oo \/_ and that [ (z) and -:(7-=)~ are bounded; let

A= sup I(z)

z€[0,00)
and 3
I(z)
Ay = sup —=.
2 z€[0,00) \/5

Then

. /nm-m IGAT (B = A7) = 9)) vy
nf(ﬂ—ﬂgm)“nczala \/18 - ﬁlm -

1, 42 n{(B=A) I(3¢(nf (B —B™) —v)) T
\/icnl ] 7 (8- Bm) nz,/a \/ C ﬁ ﬁl ) ) l( y)

41
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A2 2 —S(n°(B—Bm)—n2°/3 * _1
57‘5(”7/ e~ 3(ni (A=A")—m, )f_ooe 2 my(dy)

—0as ! — oo.

: _1 .
Since x — £~ 3 is convex

m —o\—3% _ _ pgmy—41 yn_"
0< (B0 —yny ) B-p")"2< 2(ﬁ_ﬁlm iynl—a')3/2

and therefore for 0 <y < ny(8 — B") — n,zg/3

—-o/2
yny

< 5

(8= B —yni™) " - (8- )

and for y < 0

lyln; 7

RO

(8- B —yn7o) 4 = (8- )

Therefore

e~ Ymy(dy)

o [ (4=A =" T3¢0 (8 — A1) — v)
= VB - -yt
¢ ny (8= =n?/?
VBB -

C—;n,_”/zAl f ye™Ymy(dy)
0

~

I(5¢(nf (B = B™) — y))e™Ymy(dy)|

N =

<

i’ e Ymdy) 0 as 1
— B
g [ b 0o

Given € > 0 there is zo such that |I(z) — \/g| < € for £ > zo. Then for [ such
that %(nfa/g > xo9 we have
2

nf (B—B)—n7/®
|/ I(5¢0n"(8 — B7) — ))e™ Y mu(dy)

— 00

/n?(ﬁ—ﬁ{n)—"fola L~ (dy)] " e {dy)
— ——ce “Ymy(dy)| < e/ e *Ymy(dy).
—o0 V2 —00

A.
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We note that v = 1 implies that (1) < ¢/(2); using this fact and an argument
similar to that used at the beginning of the proof we obtain

Iﬁm nl%e—nl(f’l(_:_z)_ﬁl(o)) — g3 etPm. (3.50)
—00

Combining these results we see that (3.48) is satisfied and thus by (3.49) we have

1 ]nﬂﬂ-ﬁm TG BB = 9) oy, L@,

>0 — \/ﬁ _ ﬂlm _ ynl—o‘ m

From the above inequalities we see also that the integral is uniformly bounded for
B in compact subsets of (#m,o0); therefore the Lebesgue dominated convergence
theorem together with (3.50) yields the required result.

O

4. Some Examples on the Lattice

The finite lattice A; introduced in section 2, can be replaced by a more general
parallelepiped A; whose sides do not all scale proportionally;

v
A= {r:Zmiai s m; =0,%1,...,%L} .
=1

A; consists of n; = LiL,... L, sites, where L; = 2I; + 1. We shall assume that
the basis is labelled so that

Liy>Ly>...L,. (4.1)

The lattice R{, which is reciprocal to Ay, is given by
Af={k = kibi + Liki=0,%1,...,2L}.
i=1

In the bulk thermodynamic limit, which we shall denote simply by “l — o0 7, we
consider the limit
L],Lg...,LV—POO. (42)

We shall consider the problem in dimensions v > 3. As an interaction we take
the isotropic simple-cubic nearest-neighbour interaction which has the following
kernel;

1 = . g = .
ul($)={6, @ =rhbit = 1y vee y I8 (4.3)

otherwise.

43
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The energy eigenvalue corresponding to k = >_._, kib; € [\}" is
&(k) = &k) = _sin®(rk;) . (4.4)
=1
The smallest non-zero energy eigenvalue €;(2) is therefore given by
= Hh ok Y = b
€(2) = e(iLl) sin (Ll) :
Proposition 1. Suppose
: ni
. 4.5
and
. In L2
then the second critical temperature B, exists and is given by
B
™
Proof: Choose § > 0; we define the non-negative number m(§) by
0, A = oo,
m(d) = 1 4.8
( ) { o o 0<A<oo. ( )
Then for all | sufficiently large we have
~ . 1 S
{ke A} :¢&k) < W} = {k= L_ll‘“ : sy €1, 81| <m(8)} .
For € > 0, we define
1
pulat) = [ cmar); (49)
(€,00)
one notes that f.(€) = limj oo B:(€;1) exists and converges to 3. as € — 0T,

Finally, we define
1 1
Bm (e 1) = . Z TR

~ k #;
! {kef\{:E(k)>"L‘e} (k)
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The functions ;. and 3;, introduced in section 2, are defined by
B (€) = iminf B,,(&1)
=00

and

B (€) = limsup B (e 1) .

=00

We have the fbllowing relation, for § > 0;

Bn(730) = Bl + 5= 3 s (410)

ny 4
where K is the set {k € A} : gz < &(k) < 8?}. Now, for 0 < ko < 3 we have

sin ko

(%

Yk <sinmk <7k, for |k|<ko. (4.11)

1.

Hence we have it that, on setting ko = 5 ;

AT 1 ~ 2
El Q_ {kEAl . '6—2'E<E(k)<5} g FI
where -
ir . 1 2 2 2
E[={k€A, : m<k1+k2+.+kv<;§-} (4120,)
and
Fi={keA] : ---3«--<k2+k2+ +k2<§} (4.12b)
I . 7r26.2nl l 2 * s v 4 -
For k € E; we have
1 >1 1
ék) " mrkE4+... 4+ k27

while for k € F; we have, setting kg = g :

1. 82 1
é(k) ~ 4sin®*(3xé) ki +... + KL

This provides us with the following bounds ;

1 1 1 82 1 1
< s 2. N < .
2min, ;, kf +... -I-k?, - ﬂm(ézyl) ﬂc(d ,l) - 4sin2(%7r5) 2ny ; kf +...4+ k?;

(4.13)
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The lower bound yields, for [ sufficient large ;

(3 = Be(6%1) >

! 31 -
2n.g7r2 Z L2 + + )

z” 4
Zmﬂ'2

é/m 1 Lié/m L2 Laé/=m L
L,L, / [R™%)2rRdR — 5 [2/ ds; — + 2/ dsy— ol 2]
o) 2nl7T m(8)+1 31 1

1

>
- 2nm?

(4. 14)
where the primed and double primed summations are to be carried out over the sets

(s €2 :|s1] > m(d) if sa,.. su=o,i§+ ¥ <Sland{s€Z?:|si| >
m(d) if so =0, %%' + —"} < —5} respectively and where r; = max{m(‘s)'H, 52 :

For § fixed, if we take [ sufficiently large then we have r; = L2 We observe
that the first term in inequality (4.14) is convergent;
L,L 6L B
~— In (—2) 5 —

nmw T

as I — oco. The second term in (4.14) depends on the limiting value A of 74 in
1

(4.5);
case 1 : A = oo, and therefore m(4) = 0;

L2 Lié/n 1 Lf T
o dsl:s? [1—L1]—>0 as | — oo

the other integral being similarly bounded.
case 2 : 0 < A < oo, and therefore m(§) > 0;

E2 pladi 1 P 1

m(8) ds]% - [1 +m(5) L16] 7 A(L + m(9))

as | — co. However m(8) — oo as § — 0% in this case. Therefore, it follows that

1

L y 3 B 1
ﬂm(:ﬁ-) = llgélgfﬁm(g"fal) 2> ﬂc(52) f ‘;r" +

AirmE)y @

where the last term in (4.15) is interpreted as zero for the case A = co. On taking
the limit § — 0% we obtain

B
lim fr () > fet 2. (4.16)
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The upper bound, for [ sufficient large, becomes

1 . 2. 52
Bm(5730) = Be(8%1) S i T57) {L(8) + IL(8)} , (417)
where
L(6) = — ) :(——S% 1 )1
2711 L% L%

LR
with F(I) = {s € Z* :|s1] > m(6) if 53 #0, %5 + 3% < 5} and
2 2

2
1 31

111(5) = 5'?{; F(H)(L_g

2

2
Sa Sy y—1
+L§+...+L3)

2 82
with F(II) = {s € Z" :s3,...,8, 7&0,%%+...+1—‘é- < %
We shall, first of all, estimate the contribution made to I;(d) by the elements of
F(I) for which s =0 .
case 1 : A = oo and therefore m(é) =0 ;
1 7 &2,y L2
IOV A U T Y

™ p(1)n{s2=0}

w
p-anl =

L? 3001
<k, ™
T 1+ /1 29
& 2
= _][2 - _] ’
nj 6L1
which tends to zero as [ — oo .
case 2 : 0 < A < o0
2 2 16Ly
o 3 LY ] Sl W)
2n 3? 1 Jm(é) 82

: {slelzm(6)<|sll<ét5L1}

12
T m(8) &Ly’

which converges to Wl(aj as [ — oo .

Similarly, one obtains the result that the contributions made to I;(d) from the
elements of F(I), for which we have respectively s1 = 1,51 = —1,83 = 0,82 =1
and s = —1, are likewise bounded.

47
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One notes that, in the case 0 < A < oo, the number m(§) — oo as § — 0F. Hence

these particular low energy bands of states can be ignored as they make no overall
contribution to G,,.

The remainder of I;(4) is
1 sy -

1 (l31|*1)2 (Js2] — 1),
P
< 2nl Sy dSldSQ[ L:‘l, + L% ]

& F T dt dta(t2 +t2)71

- 27?,1 As
1 5/2
= —Tylg f [ 2]21erR
2 VarATEHTE R
™ 28 1 | 1 1 26 1 L2
— n—lLng[ln 55 - —lIl( L2 )] = m[ln \/;5 - §1I1(1 L2) +].I1L2],

2

where K' is the set {s € Z% : |s;],|s2| > 1,75 + %% < %}, A; and A, are
2

1
the regions in R? defined by A; = {(s1,32) : 3 < 8%+ s, %2; + —% < T} and
1
Az = {(t1,t2) : (—r+—z)<t2+t2<52}
As the limit of Z'f always exists and is in [0, 1], so we have that
ln Lz

ll_x}rgjf;—[ln 5— 1n(1+ )+lnL2]—- 1_1’11;1° -L—3——L—y='rrB.

Therefore, for 0 < A < oo we have

lim  lim I;(§) < =B. (4.18)

=0+ I—90

Finally we examine the term II;(§) . As before, we shall remove the contri-
butions from the bands s; = —1,0,1 and s; = —1,0,1 occuring in F(II) as they
do not effect the value of 3,,. We therefore concentrate on

1 1 g2 s2
§n_1 (L2 -+ F ~t wawt “_) )
where the primed summation is over the set {s € Z : |s1], |s2|, |s3| > 1 ifs4,...,8, #

0. —ir + ...+ 7% < §%/4}; this sum is bounded above by

2 2 2 —1
1 " sy 83 83

Tt
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where the double primed summation is over the set {s € Z : |s1],|s2|,|s3] >
+ —2 + 5 < §%2/4} ; this set is in turn bounded above by the integral

: _
5_/ dtydtydts(12 + 43 +12) 7
2 /4,
§/2
_1 / [ ]arR?dR
203 iy E

2 3

_2”[ e \[\/H L2+L2]

where A3 = {(t1,t2,t3) € R® : 35 + & + &= <t} + 13 + 1] < §2/4}. The above

1 2 3

bound tends to 76/2 as | — oc.
This gives
1i im II;(8) = 0. 4.19
fiz, fm T =0 (1)
Hence combining the inequalities (4.17) and (4.18) with (4.19), we obtain, for
A =00,

B ( L ) < B:(6%) + & [*B + s (4.20)
migzl = e 4sin®*(14n) 2 -
and by taking the limit § — 0% we obtain
1 B
+ —. 4.21
Jm fr(s) =0+ — (4.21)

The same result is obtained for the case A < 0.

O

Proposition 2.  Suppose that conditions (4.5) and (4.6) of Propostion 2 are
satisified then the function <y given by (2.20), exists and is given by

1, A = o,
Hel= { >z exp{—An?2t}, 0< A < oo (4.22)

Proof : Now ~(t) = lim;—, o 7i(t), where

() = Z H exp{—nysin®( 7r—-—~)t}

{Isi|<lizi=1,...,v} 57=1
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Now we introduce the function g;(t;!) defined by

L
5 S5
gi(t;1) = Z exp{—ni smz(ﬂ'L—j_)t}.

8;=1 J

It is evident that

n(t) = Y exp{—An?z*t}| <
zel

v

| exp{-An"z*} = 3 exp{-misin(r g )t} +12 3 gi ()]

zEZ [s11< 11 =2
+122 > gi (6D giy (151) + ... + 247 > i (8193, (850)..9i, _, (£ 1)]
11 #£140 {i1,i2,...,3,:distinct }

51 L. v )
+|2¥ z Z Hexp{—-m sinz(NZ—"j)t}L (4.23)

g1=1 8, =1 j=1

The first term on the right-hand side of (4.23) tends to zero because

14 2g1(t;1) — Zexp{ An?z%t}, as 1| — oo.
zEZ

Next of all, we consider 1 = 2, ...,v

gi(t;1) < g2(t;1) < Iy exp{n;sin®(r !

T )t} < Ly exp{—4t

L2}

2
now we have that lim;_ o ﬁ%‘lz = lim{—eo f’l—: = %. It follows that given 0 <
ol L3

€< %, we have, for [ sufficiently large;

0 < gi(t;]) < Ly exp{—(-jI — &(Ls...L)%}

< exp{(B + €)(Ls...L,) — (i o 6)(L3~--Lv)2}v

A
where 0 < B < 00, is the parameter introduced in proposition 1.
It follows that g;(¢;!) — 0 as | — oo for 7 > 1. Similarly one shows that the

other summations in the second term on the right-hand side of (4.23) vanish as
[ — oo.

A.
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Finally, the last term is bounded above by

-1 v—1 ¥
2"] ] Hexp{-n;sm (7r % )t}
0 0

ij=1

2 e 32 vis %" 1
7 1—-zv
SJI;[I[-OO exp{-—nlﬁl-L-?t} < (E) n;~2Y,

which tends to zero as | — oo.

a

Let o be the critical exponent describing the fluctuations of %‘— as in the
statement of Theorem 4.

Proposition 3. In the case of nearest neighbour interactions on the original
lattice Ay, the cntxcal exponent o describing the fluctuations 01" is well-defined
and given by 1 — ;.

Proof: Now we have n; = LV = (2] + 1)”, so by choosing o = 1 — 2 we have

GV (Al = 1y : nf @)} = 5 : L2a(y) € A)

thereby anticipating the rlg scaling of the low level energy values in the nearest

neighbour interaction. It is sufficient for our purposes to calculate the Laplace
2

transform w; of the measure G, *;

wi(s) = f(o )e‘”tG,_%(dt) = Z exp{—sn?&(k)}

kEAT

= Z e:«:p{—st[sinz(7”17.:'11 ) s Sinz(%)]}

[m:| <1

— Z exp{—sm?|m|?}.

mEZ"

where |m|? = m2 + ... + m?. This gives

#HO=5 ¥ om0+ e
mel” {0}
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