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Time dependence in quantum mechanics — Floquet
theory and the Berry phase.

D. J. Moore,
Département de Physique Théorique,
Université de Genéve, CH-1211 Genéve 4, Switzerland.

(2. VI. 1992, revised 20. X. 1992)
Abstract

We give a short review of some aspects of the dynamics of time-dependent quantum
systems. In particular we discuss how to recast time-periodic quantum problems into an
equivalent time-independent form, contrasting the results with those gained for a similar
reformulation in the case of general time-dependence. This approach, usually known under
the name of Floquet theory, can be used to clarify the structure of, for example, invariants
of the given quantum system. We also apply it to the calculation of the Berry phase and
show how it enables us to understand Berry phases for time-independent systems. This

involves rewriting earlier work of the author in a coordinate-free fashion.
1 Introduction

When we allow the Hamiltonian of a quantum system to become time-dependent many

complications arise. On the formal level, in the time-independent case the evolution is
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simply given in terms of an exponential; U(t,s) = exp{—iH(t—s)}, where U is the operator
of evolution from time s to time t. This result is known as Stone’s theorem [Conway 1985,
p269]. The direct analogy for time-dependent systems is the Dyson expansion [Scharf 1989,
p9], where the exponential must be time ordered since in general [H(t), H(t')] # 0.

The addition of time-dependent terms to the Hamiltonian also causes deep qualitative
changes to the nature of the evolution. A simple consequence of Stone’s theorem is that
an eigenstate of the Hamiltonian will stay in that eigenstate. Here the evolution merely
multiplies the state by the time-dependent phase e 7*(t=%) where E is the energy of the

state. It is for this reason that energy eigenstates are often called stationary states.

Now in the time-dependent case an initial eigenstate of H(s) will in general leave the
corresponding eigenspace of H(t). However even when the evolution does preserve the
eigenvectors, the so-called adiabatic case, it has undergone a profound qualitative change.
One finds that the phase is no longer just given by the (instantaneous) energy, but contains
a term which arises due to the “twisting” of the evolving state. This extra term is called
the Berry phase [Berry 1984] and is a feature of all time-periodic Hamiltonians, not just

adiabatic ones.

The aim of this work is to show that by recasting the time-dependent problem into an
equivalent time-independent form we can gain some useful insights into the Berry phase.
Thus, in a sense, tackling the first difficulty of time-dependent problems helps us with the

second as well.

The price that must be paid to allow us to apply Stone’s theorem directly to time-
dependent systems is an enlargement of the system’s Hilbert space. In this space the
Hamiltonian is replaced by the Floquet Hamiltonian. Generically this operator will have a
purely continuous spectrum [Flesia and Piron 1984], but this need not be the case for the
important class of systems with time-periodic Hamiltonians. Here the analysis is called
Floquet theory [Chu 1989]. We will see that the eigenvectors of the Floquet Hamiltonian,
if they exist, provide us with the so-called cyclic initial states used in the discussion of
Berry phases. Further one obtains a useful characterisation of the Berry phases themselves

as expectation values of a certain self-adjoint operator.

The rest of this work is organised as follows. In section 2 the new Hilbert space K
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and Floquet Hamiltonian K are defined for the periodic case. On the other hand, the
corresponding construction is sketched for the general case in section 3. In section 4 the
cyclic initial states of the system are shown to be related to the eigenvectors of K and the
corresponding Berry phases are calculated. Finally in section 5 some applications, such as

the structure of invariants, are discussed.
2 The New Hilbert Space

Essentially we want to expand the Hilbert space H to include the initial time ¢. The
most natural way to do this in the T-periodic case is to consider T-periodic maps from R
into H. The canonical inner product in this space is the integral of the corresponding inner
product in H itself. Thus we need a set S of T-periodic maps such that for all {,¢' € S
the integral fOT(ﬁ(t),E’ (t))2¢ dt exists and is finite. One can show that the largest such set
is comprised of those maps £ for which the function ||§()||:‘}_£ is integrable on the interval
[0,T] and the function (3, £(-))4y is measurable for all ¢ € H. Here “measurable” means
Borel measurable and “integrable” means Lebesgue integrable. This measure is taken as
its properties, such as being complete and translationally invariant, will become important
in the following.

As in the case of L*(R,dz), to get a Hilbert space we have to take equivalence classes;
£ ~ ¢ if they differ only on a set of measure zero. This leads to the definition of
the Hilbert space K as being the set of equivalence classes [§] with the inner product
(€, = 7 OT(f(t),E'(t))H dt. The normalisation factor 7 is introduced for conve-
nience. On following the standard arguments for L?(R,dz), one finds that K is separable
with orthonormal basis {[¢4n]}. Here £an(t) = ™4, for some orthonormal basis {14} of
H and w = 27/T. Note that the measurability of (1,{an(-))3¢ comes from the continuity
of the exponential and the fact thét our o-algebra contains the open sets. Essentially this
space is just the tensor product of H with L?([0,T], dt) and periodic boundary conditions.
The Hilbert space K was introduced by Sambe [1973] in this context after initial work by
Shirley [1965] in the matrix formulation.

We will have occasion to use several operators on K. First of all define T'(s) by setting

T(s)[€] = [t(s)€] with (¢(s)€)(t) = £(t — s). Here the necessary integrability properties are
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simple consequences of the translation invariance of the measure. We call this operator the
translation operator and note that it has eigenvectors [{4n] With eigenvalues e7i"“*, As
TI'(s) is a strongly continuous one-parameter unitary group it has a self-adjoint generator
D. This is just the differentiation operator, usually written D = —id,.

Similarly we define an operator W(s) starting from the evolution U(%¢,s) by setting
W(s)[¢] - [w(s)€], where (w(s)¢)(t) = U(t,t — s)é(t — s). The periodicity of the map
w(s)€ follows from the fact that for periodic Hamiltonians U(t + T,s + T') = U(t,s) which
is a consequence of ¢(t) and ¢'(t) = ¢(t + T') satisfying the same Schrédinger equation. A
quick calculation shows that W(s) is a strongly continuous one-parameter unitary group.
We write K for its generator, called the Floquet Hamiltonian.

If we now write H for the lifting of the periodic Hamiltonian H(t) to K we find the

following result which is a consequence of Trotter’s theorem [Flesia and Piron 1984];

Theorem 2.1 If there is a dense linear manifold in K on which K,D and K — D are all
essentially self-adjoint then the self-adjoint extension of K — D is just H. In this case the
Floquet Hamiltonian K is the self-adjoint extension of H + D.

This result is often expressed in the form K(t) = H(t) — i8;, however we prefer the form
above as it emphasises that the initial time ¢ has now been absorbed into the structure of

the new Hilbert space so that the operators K, D and H are all “time-independent” in XK.
3 The General Case

If we want to treat the case of a general time-dependent Hamiltonian in this manner
we must extend the interval [0,T] to the whole real line. That is we must consider S as
the set of those maps from R into H such that ||£()|[%{ is integrable over R. Note that the
measurability condition on (¢, £(-))7y remains the same. After taking equivalence classes
we end up with the direct sum KX = @,H;. The major qualitative difference that this
makes is that those maps with constant norm can no longer belong to S.

In this case it can be shown that the Floquet Hamiltonian K has a purely continuous
spectrum. There are many simple ways of showing this. For example if [¢] is an eigenvector

of K with eigenvalue € then [¢'] with ¢'(t) = e'**£(2) is an eigenvector of K with eigenvalue
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e+ A. As this holds for any A € R, if K has any eigenvector at all then it has an uncountable
number of them corresponding to different eigenvectors. As K is separable this cannot be
the case. Note that the corresponding trick does not work in the periodic case as there
we require {' to be T-periodic. This means that A = nw, giving a countable set of linearly

independent eigenvectors.

It is instructive to make some comment on two other methods of proving this result.
The first of these relies on showing that the eigenvectors of K would have to have norm
essentially constant in time, which is impossible as noted above. The second strategy is
to show that K is unitarily equivalent to the operator D, which has a purely continuous

spectrum in the general case.

Let [€] be an eigenvector of K with eigenvector ¢ so that [£] is also an eigenvector
of W(s) with eigenvalue e i¢*. Thus for any representative £ € [¢] we have that e™i¢*¢ ~
w(s)¢. This implies that for fixed s and almost all ¢ the map ¢ satisfies e ¥€*¢(t) =
w(s)é(t) = U(t,t — s)é(t — s). Hence for almost all ¢ and fixed s we have that ||£(t)||%_£ =
|€(t — s)”?H If this result held for an s-independent set of ¢t € R of full measure then the

result would be proved, as the norm of [¢] in K could not be non-zero and finite.

As this is not necessarily the case we take the following indirect route. Take any
fixed t*. Then [ **|le(t)3, dt = [ [lé(t — o)lZ,dt = fi_, [€()|2, dt. Hence by
induction we see that the integral of the instantaneous norm of {(t) is constant on each
interval [ns,(n 4 1)s]. Thus the integral over all time cannot be non-zero and finite. In
this manner we see that the difference in behaviour in the general and periodic cases is

due to the fact that states of essentially constant norm cannot belong to S.

Now imagine that |[U(t,t — s){(t — s)||7y is measurable in the two variables s and ¢
and there is a dense linear manifold on which K, D and H are essentially self-adjoint.
Then a quick calculation shows that R(¢o)K R(to)* = D, where R(t0)[¢] = [¢'] for €'(2) =
U(t,to)*é(t). To demonstrate this result it is simplest to show that R(¢o)W(s)R(t0)* =
T(s), the translation operator defined in section 2. The result then follows as K is the
generator of W(s) and D is the generator of T(s). Hence as D has # purely continuous

spectrum so does K.

Physically the operator R(ty) transforms the system into the Heisenberg picture at
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time ty. This fact can be used to show that the general method discussed here is simply
a direct application of Lax-Phillips scattering theory to quantum mechanics, with the
scattering operator being given by S(p_,p+) = _B(p.,.)ﬁ(p_)‘ for 0 < py and p— < 0
[Flesia and Piron 1984].

Now let us try to apply this result to the periodic case. First in this case the operator
D has a pure point spectrum with eigenvalues nw. Hence if the result were true it would
mean that the Floquet Hamiltonian was always diagonalisable. However we also find that
the theorem fails as R(%y) is not in general an operator on K, its induced action on S not
preserving periodicity. In fact for £'(t) = U(¢,20)*€(¢) we have £'(t +T) = U(t+T,20)*é(2)
where we have used the fact that £(t+T) = £(¢). However U(t+T,t) = U(t+T,t)U(t,t0)
so that for a periodic R we would need U(t+ T',t) = 1 for all ¢ which is not necessarily the
case. Note that this last condition can easily be shown to be equivalent to U(T,0) = 1.

Finally the difference between the formalism in the general and periodic case has
an exact analogue in the quantum mechanics of a particle on a line. Let us consider the
differentiation operator on various subsets of R [Akhiezer and Glazman 1981]. First, on the
whole axis the domain of the differentiation operator is simply all those elements ¢(z) of
L?(R, dz) which are absolutely continuous and such that ¢'(z) € LZ(R,dz). The condition
of absolute continuity is needed so that we may integrate by parts. This leads to the
differentiation operator being self-adjoint. One finds that this operator, the analogue of D

in the general case, has a purely continuous spectrum.

We now look at the operator in a finite interval [a,b]. Here we need more than the
conditions stated above. This is because integrating by parts leaves a surface term. This
was zero in the case above as the functions vanished at infinity. However for the finite
interval the condition of vanishing surface term, necessary for the differentiation operator
to be symmetric, provides an independent constraint on the domain. One finds that we
must require ¢(b) = eie¢(a) for some fixed . This parameter 8 then labels a continuous set

of possible self-adjoint differentiation operators, all of which having pure point spectrum.

Effectively what we do in Floquet theory is pick the case § = 0 corresponding to
periodic vectors, however in theory we could have made any other choice. Our reason

for choosing 8 = 0 is that any other choice would lead to a more complicated expression
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for the Berry phase without giving any compensatory advantages. One can also discuss
the differentiation operator on the semi-finite interval [0, 00), taking ¢(0) = 0 so that the
operator is symmetric. However in this case we find that the differentiation operator is
not self-adjoint, and further has no self-adjoint extensions. This is because the deficiency
indices of the operator are different. Hence any attempt to create a formalism akin to the

two above will be hampered by severe technical problems.
4 Cyclic Initial States

From the analysis in the last section we can expect to find a range of spectral properties
for the Floquet Hamiltonian depending on the particular periodic Hamiltonian chosen. Our
next task is to give some physical meaning to these states, if indeed they exist. This leads
us to the definition of cyclic initial states.

Consider the evolution U(%,s) generated by a T-periodic Hamiltonain H(¢) in the
Hilbert space H. Now two vectors ¢ and ' that differ by only a multiplicative phase,
¥' = €%, have the same expectation values for all linear operators and so they represent
the same state. Hence the real state space of the system is the projective Hilbert space
P = H/ ~, where p ~ o' if there exists a« € C such that ¥' = o). The reason one
habitually works with  is that the linear structure on H greatly simplifies any calculation,
however we must bear in mind that there is then an overall phase arbitrariness in ¥ and
so only relative phases are physically meaningful.

Bearing these considerations in mind we are lead to call an initial state ¢(0) cyclic if
#(T) = €x$(0) for some ¥, that is if the initial and final rays in the Hilbert space are the
same. We will call the number x (mod 2r) the overall phase of the system, although some
care must be taken in ascribing physical reality to this phase, nominally the relative phase
difference of the initial and final states. This is because it is most natural to describe the
time as a continuous superselection rule which therefore indexes the Hilbert space. Hence
to compare ¢(0) € Hy with ¢(t) € H; we must identify the two Hilbert spaces which leads
to some conventionality. This is just the choice of picture — either Schrédinger, Heisenberg
or some form of interaction.

The justification for choosing the Schrodinger picture, which corresponds to simply
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identifying Ho and H, is the following. In other pictures the periodicity of the system is
partially contained in the time-dependence of the operators involved, and so the resulting
analysis is more complicated. Hence our choice is a matter of convenience rather than
logical necessity. Of course the clearest experiments designed to measure such phases
avoid the problem by starting with a linear superposition of two cyclic initial states and
looking at the internal interference of the two components at a later time. This internal
interference is manifest in, for example, the rotation of the plane of polarised light as it
propagates through a helically wound optical fibre [Chiao and Wu 1986.

The link between the eigenvectors [¢] of K in the Hilbert space K and the cyclic initial
states ¢(0) of the Hamiltoinian H(t) in the Hilbert space H is contained in the following

two results.

Theorem 4.1 FEach cyclic initial state ¢(0) with overall phase x = —eT generates an

eigenvector [{] of K with eigenvalue e.

Proof: Let ¢(0) be a cyclic initial state with overall phase x = —€T" so th;a,t U(T,0)¢(0) =
e T $(0). Define £(t) = e!“*U(t,0)¢(0). One can easily show that £ € S using the unitarity
of U and the fact that U(¢+T,T) = U(t,0). Then (w(s)¢)(t) = U(t,t—s)¢(t—s) = e i€*¢(2)
so that [¢] is an eigenvector of W (s) with eigenvector e™'¢* and so an eigenvector of K

with eigenvalue e. .

Note that each ¢(0) generates a countable set of eigenvectors [£,] whose eigenvalues differ

by an integral multiple of w.

Theorem 4.2 Each eigenvector [{] of K with eigenvalue € generates a cyclic initial state

¢(0) with overall phase y = —¢€T.

Proof: Let [{] be an eigenvector of K with eigenvalue € so that [£] is also an eigenvector of
W(s) with eigenvalue e ¢*. Then if ¢ € [¢] and putting s = T we have that w(T)¢ ~ e~i€T¢,
Hence there is at least one time ¢* for which U(t*,t* — T){(t* — T) = (w(T)¢)(t*) =
e <T¢(t*). Let ¢(0) = U(0,t*)é(t*). Then using the fact that ¢ is periodic and U(T,t*) =
U(0,t* — T) we have U(T,0)¢(0) = eT$(0), so that ¢#(0) is a cyclic initial state with

overall phase x = —e€T. ]
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If one asks about the nature of the overall phase one is lead to the discovery that x is
the sum of two qualitatively different parts. This discovery was made by Berry [1984] in
the case of adiabatic evolution, although it was implicit in earlier work [Berry 1990]. The
generalisation to non-adiabatic evolution soon followed [Aharonov and Anandan 1987].
The first part of the overall phase is given by § = — foT(¢(t),H(t)¢(t))H dt and is called
the dynamical phase, while the rest is called the Berry phase. Note that if we add a
time-dependent ground state energy to the Hamiltonian, the only change suffered by the
evolving state is a time-dependent rephasing. Thus the path followed by the system in the
projective Hilbert space remains the same. Now it can easily be shown that this rephasing
contributes only to the dynamical phase. This means that the Berry phase only depends
on the pé,th followed by the system in the projective Hilbert space, a fact that has lead to
it being called the geometrical phase by many authors

Since its discovery the Berry phase has been the subject of much study (see for example
the reviews by Mead [1992], Moore [1991] and Zwanziger, Koenig and Pines [1990]), most
of which addressing one of the two following questions. Firstly much effort has been spent
on elucidating the geometrical nature of Berry phases. As it only depends on the path in
projective Hilbert space, it is natural to ask whether the Berry phase can be expressed
as the holonomy of a connection in the canonical fibre bundle 7 : H — P. Indeed this is
so-, with the desired connection being the natural one induced by the inner product on H;
that is a path 9(t) is parallel transported if ('(,lt,z,b) = 0 [Simon 1983]. Extensions of this
idea have been made in various directions, for example to the case of a multi-dimensional
cyclic initial space [Giler et. al. 1989] and the evolution of density operators [Uhlmann
1989]. An explicit form for the Berry phase in terms of a coordinatisation of the projective

Hilbert space has also been given [Page 1987].

The other major area of interest has been the use of the Berry phase to unify various
phenomena in physics. For example Hamiltonian anomalies [Nelson and Alvarez-Gaumé
1985), the Rabi oscillation in quantum optics [Moore 1990b, Tewari 1989] and electron
diffraction from a screw dislocation [Bird and Preston 1988| have all been interpreted as

arising due to the existence of non-zero Berry phases.

We now show how the Berry phases can be expresssed in terms of the Floquet for-
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malism. This can be thought of as a “coordinate free” recasting of the results of Moore
[1990a]. Let [£] be an eigenvector of the Floquet Hamiltonian corresponding to the cyclic
initial state ¢(0). Then the overall phase is given by x = —eT' = —T'({[£], K[¢])) and the
dynamical phase is given by § = — fOT(qS(t),H(t)qb(t))H dt. Now the corresponding eigen-
vector [£] contains the represntative £(t) = e'“*¢(¢) so that § = — foT(f(t),H(t)f(t))H df =
—T({[€], H[¢]). This means that v = x — § = —T{([¢],(X — H)[£])) and so we have proved

the following result ,

Theorem 4.3 Let ¢(0) be a cyclic initial state and [£] a corresponding eigenvector of the
Floquet Hamiltonian. Then the corresponding Berry phase is given by v = —T({[¢], D[£]))-

This approach can also be extended to the systems with an underlying non-adiabatic pe-
riodicity subjected to an adiabatic perturbation, as here the Floquet Hamiltonian behaves
in many respects as a normal adiabatic Hamiltonian. We find that the Berry phase is
naturally split into an overall adiabatic phase and a sum of non-adiabatic Berry phases,
one for each of the many non-adiabatic periods that form part of one adiabatic period

[Moore and Stedman 1990, Breuer et. al. 1990].
5 Applications

We now give a brief survey of several applications of the above theory. First we discuss
the use of Floquet theory to give a geometric characterisation of the set of quasi-periodic
initial states, that is those initial states which are linear combinations of cyclic inital states.
Next the case of the existence of non-zero Berry phases for time-independent Hamiltonians
is considered and finally we comment on the structure of invariants in the Hilbert space
K.

A deep geometric characterisation of the point and continuous spectral subspaces of
the Floquet Hamiltonian is provided by a generalisation of the RAGE theorem to the
time-periodic case [Enss and Veselié¢ 1983, Yajima and Kitada 1983, Bunimovich et. al.
1991]. Let the system of interest have Hilbert space LZ(R™,dz™) and M be a subset of R™.
We define the operator F(M) to be the operator of multiplication by the characteristic
function of M. Then an initial state $(0) is called bound if limp_, sup,s, | F(|z| >
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R)U(t,0)$(0)|[2¢ = 0. In contrast, the state ¢(0) is called propagating if for all R,
lim, . L [ | F(|z| < R)U(2,0)¢(0)||4; dt = 0.

We then find that, as long as a certain subsidiary condition is met, the subspace
of bound states is precisely that space spanned by the cyclic initial states. Hence if all
states are bound then the system has a complete set of cyclic initial states. Intuitively
this means that the only non-quasiperiodic states, that is initial states that are not linear

combinations of cyclic initial states, are those that in a sense go to infinity as time passes.

As an example of the type of subsidiary technical condition needed, we note that it
is sufficient for the Hamiltonian to have the form H(t) = —3V? + Vi(t) + Va(t). Here
Vi and V, are symmetric, V; is continuously differentiable and bounded, and V; is the
multiplication operator by an LP(R™) N L¢(R™) function with 1 < p < } < ¢ < co [Yajima
and Kitada 1983]. Note that this condition is not met, for example, for a particle trapped

inside a box and subjected to an external periodic force.

This approach has been used to show that Hamiltonians of the form H(t) = a(t)p® +
B(t)p-q+q-p)+7(t)g> + 8(t)p + €(t)g + n(t) either have a complete set of cyclic initial
states or none at all [Hagedorn et. al. 1986]. The result is even more striking for the
special case H(t) = wa*a + f(t)a + f(t)a* + B(t), where f and B have period 2w /w. Here
either all states are cyclic or none are [Moore 1990b]. This can best be seen by noting that
the forced harmonic oscillator Hamiltonian preserves coherence and that no two coherent

states are orthogonal or collinear.

There has been much interest in the literature in the characterisation of such states,
particularly in relation to the notion of quantum chaos. For example Seba [1990] has
discussed the quasi-energy spectrum for a particle moving between two rigid walls, one
of which periodically oscillates in time and Casati and Guarneri [1984] have discussed
the motion of a quantum rotator under an external periodic perturbation. Note also
that Howland [1989] has shown how to use Floquet theory probabilistically to look at the
perturbative stability of the spectral properties of the Floquet Hamiltonian.

We next consider the Berry phases for time-independent Hamiltonians. To guarantee
the existence of an evolution operator it is usual to require that the family H(¢) has a

common domain. Choosing some basis {)o} of H in this dense linear manifold leads to
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the construction of a basis [{on] of K contained in the domain of the lifting H. Using
this basis one can show that H(t) is time-independent if and only if [H,D] = 0. In fact
one can go further and show that H (t) is time-independent if and only if the seemingly
weaker condition that [H,[H,D]] = [D,[H,D]] = 0 holds. To do this it suffices to show by
explicit calculation that if we write H[éan] = Y. 1 Garn[€arnr] and require either of the
above two conditions then aqins = 0 if n # n'. Hence the two cases where the exponential

exp{—i(H + D)} can easily be evaluated both require time-independent Hamiltonians.

The fact that we then have [D, K] = 0 allows us to specify completely when non-zero
Berry phases for such systems can occur. Let M be the eigenspace of K corresponding to
the eigenvalue e. Then M has a basis {[£,]}, each member of which is an eigenvector of
D with eigenvalue nyw. But then vy = —T'(([€1], D[€x])) = 0 (mod 27). Hence non-zero
Berry phases can occur only for those elements of M which have non-zero components
for basis elements with different ny. Such a situation is called quasi-degeneracy [Moore

1990b).

Finally we discuss the structure of invariants in the context of the Hilbert space K.
Let I(t) be a family of self-adjoint operators with domain D(t) such that U(¢,0) maps D(0)
onto D(t). Then I(t) is called an invariant if U(¢,0)I(0) = I(¢)U(t,0). Such invariants can
be used, for example, to construct a rigorous proof of the adiabatic theorem [Avron et. al.
1987]. It is easily shown that invariants are exactly those families of operators satisfying
the differential equation iI(t) = [H(t), I(t)].

The reason such operators are called invariants is that if any one of the I(¢) has an
eigenvector then we can construct a corresponding eigenvector with the same eigenvalue
for all other times. For example, if I(0)y = at then I(t)y' = ay)’' where 3’ = U(t,0)%.
Now imagine that there exists a periodic invariant I(t) for which I(0) has an n-dimensional
eigenspace. One can then shown that this space reduces the monodromy operator U(T, 0),

so that there are at least n linearly independent cyclic initial states.

If the invariant I is periodic we can consider it as being an operator I on K, which can
then be seen to commute with K. On the other hand, consider a decomposable operator
on K, that is an operator X which can also be considered a periodic operator on H.

For example H is decomposable while D is not. This latter fact is due to the derivative
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depending on the values of £(t) in a neighbourhood of the time of interest. If our chosen
decomposable operator commutes with the Floquet Hamiltonian, then one can easily show
that it gives an invariant when considered as a family of operators on . Hence the
structure of periodic invariants is completely contained in their commutation properties

with the Floquet Hamiltonian.
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