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Résonances pour 'opérateur de Dirac-11.
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Batiment 425
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Abstract

This paper is a continuation of [8]. We study the shape resonances of the Dirac operator
in the semi-classical limit and prove that they live exponentially near the real axis. The
exponential decay is measured by the Agmon’s distance between the well and the sea. If the
well is ponctual and non-degenerated, we can state precisely the asymptotic behaviour of
the imaginary part of the first resonance.

Résumé

Cet article est la suite de [8]. On étudie ici les résonances de forme de ’opérateur de Dirac
en limite semi-classique et on prouve qu’elles se localisent exponentiellement pres de I’axe
réel. La décroissance exponentielle est mesurée a 1’aide de la distance d’Agmon entre le puits
et la mer. Lorsque le puits est ponctuel et non dégénéré, on peut préciser le comportement
asymptotique de la partie imaginaire de la premiére résonance.
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1 Introduction.

L’opérateur de Dirac est défini sur C°°(IR?;@*) par:

D(h)=h ZB: a;D; + ag+ V(z)ly, (1)

i=1
ou les o je(1,4) sont des matrices carrées d’ordre 4 de trace nulle qui anticommutent:
Qg + iy = 26,'3', (2)

olt I est la matrice identité et ou V' (z) est le potentiel.

Dans [8, section 1], nous avons montré que sous certaines hypothéses (analyticité sur
le potentiel V(z) et existence d’une fonction fuite G), on pouvait voir Popérateur D(h) —
z, z €, comme un opérateur pseudo-différentiel agissant sur des espaces de Sobolev a
poids H(Az, m) définis a ’aide de la fonction fuite G. Le symbole de D(h) — z étant alors
elliptique a l'infini, on en déduisait qu’au voisinage d’un réel E il n’y avait qu’un nombre fini
de valeurs de z pour lesquelles 'opérateur D(h) — z n’était pas inversible, ces valeurs étant
les résonances.

Dans cet article, on va renforcer les hypotheéses permettant de définir les résonances dans
le cas général pour préciser la localisation et le comportement asymptotique (quand h tend
vers 0) des résonances de forme.

Avant de définir les résonances de forme pour I'opérateur de Dirac, il nous faut d’abord
rappeler brievement ce qu’est une résonance de forme pour I'opérateur de Schrodinger

P(R) = —h*A + V(z), (3)
défini sur C°(IR",@'). Supposons que le potentiel V(z) [voir Figure 1] vérifie:
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o V(z) < Esiz €U, U un compactde IR" (le puits),
o V(z)>Esiz €O —U, O unouvert pas forcément borné de R™ (I'ile),
o V(z) < Esiz e R"— O (la mer).

V(z)

4

mer M e puits U ile O mer M

Figure 1: Puits dans une ile.

Montrons maintenant heuristiquement comment de tels potentiels peuvent générer des réso-
nances. Considérons un état quantique noté é(z,t) (i.e. a tout instant ¢, ¢(.,t) € L*(IR:,T))
d’énergie E localisé a I'intérieur du puits U & 'instant ¢ = 0. En mécanique classique, une
particule d’énergie E ne peut franchir une barriere de potentiel V(z) > E. Mais en méca-
nique quantique, une particule peut franchir une telle barriere (c’est l’effet tunnel). Dans
notre cas, on observerait que I’état ¢ se délocalise au cours du temps en fuyant vers la mer
O par effet tunnel (la probabilité d’observer la particule & |’intérieur d’un compact K fixé
décroit exponentiellement avec le temps). L’état ¢(z,t) est proche d’une fonction résonnante
u, (au sens de la norme L?(K)) vérifiant:

D(h)u,(z,0) = zu,(z,0)
L’évolution au cours du temps de la fonction résonnante est donnée par 1’équation:
thdwu,(z,t) = D(h)u,(z,t),

donc la norme L*(K) de u, décroit exponentiellement avec le temps:

13z
e |

'U'Z(mst)lL?(K) =€ uz(WaO)ILZ(K) :

La constante de décroissance exponentielle (inverse du temps de demi-vie de I’état quantique
¢) ne dépend que de la partie imaginaire de la résonance, d’ou l'intérét d’essayer de préciser
3z (qui doit étre négative). On peut d’ailleurs montrer que la partie imaginaire des résonances
est négative lorsqu’on utilise la définition microlocale de Helffer-Sjostrand. Ce point sera
explicité a la Remarque 2 (p. 7).
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Dans le cas de l'opérateur de Schrodinger, B.Helffer et J.Sjostrand ([4, section 9]) ont
montré que les résonances sont exponentiellement proches des valeurs propres d’un probleme
de Dirichlet sur un compact K de l'ile. Plus précisément, il existe une bijection b entre
résonances et valeurs propres proches de E telle que:

259 —e¢
——%—),

b(p) — p = Oc(e
ou Sy est la distance d’Agmon entre le puits U et la mer M. On peut rendre ¢ aussi petit
que ’on veut en choisissant le compact K proche du bord de lile.

Pour l'opérateur de Dirac, il nous faudra préciser ce qu’on entend par “puits dans une
ile”. Dans la section 2, on montrera alors que les résonances sont exponentiellement proches
des valeurs propres d’un opérateur de Dirac “a potentiel modifié”. Dans la section 3, on
adaptera les techniques de [4, Section 10] pour préciser le comportement asymptotique de
la partie imaginaire d’une résonance de forme dans le cas ou le puits U est ponctuel et non
dégénéré. En particulier pour la premiére résonance, on montrera que:

Sz(h) = —Ch*F e~ 7 (1 + O(h)),

e ou d est un entier dépendant de la géométrie du bord de I'ile (génériquement égal a 2,
malis valant par exemple 0 pour un potentiel a symétrie sphérique),

e ou (' dépend du potentiel V(z) mais pas de h,

e et ou S) est la distance d’Agmon du puits & la mer (la distance d’Agmon est associée a
la métrique (1 — (V(z) — E)?)dz? comme on le verra dans la section 2.1).

2 Résonances de forme.

Commencons par définir ce qu’est un puits pour 'opérateur de Dirac.

2.1 Puits, distance d’Agmon, probléme modifié.

Soit E € IR le niveau d’énergie au voisinage duquel on souhaite étudier les propriétés
spectrales de D(h).
Soit ; la projection de T*IR® = IR} x IR} sur IR..

Pour I'opérateur de Schrodinger de symbole p(z,€) = &2 + V(z), on définit les puits
microlocaux comme les composantes connexes de la surface d’énergie E définie par:

OF = {(:c,{)/p(m,ﬁ) —-E= O}’

et on en déduit les puits en projetant og sur IR3 a 'aide de .
Pour 'opérateur de Dirac de symbole

Dy(z,8) = 3. ayé; + as + V(2).1s, (4)

i=1
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on définit de maniére analogue les puits microlocaux comme les composantes connexes de:
og = {(z,£)/Dv(z,€&) — E admet 0 pour valeur propre}.

Le symbole Dy possede deux valeurs propres, chacune double:

P(2,6) = V(z) £ /1 + £, (5)
donc la surface d’énergie E posséde deux composantes disjointes ot et o~ d’équations res-
pectives p* = E et p~ = E. On montre facilement que la projection sur IR3 de la surface
d’énergie est donnée par:

{o/(V(z) - B = 1}. (6)

Pour simplifier, on supposera dans la suite que E = 0, quitte & modifier le potentiel V().
Les puits sont donc les composantes connexes de I’ensemble {z/V (z) > 1}U{z/V(z) < —1}.

Pour étudier les propriétés spectrales d’un opérateur de Dirac, on utilise des estimations
L? & poids qui permettent par exemple d’établir la décroissance de fonctions propres 3 1’aide
de la distance d’Agmon. On montre (cf [12, Proposition 2.1]) la:

Proposition 1 Soit V(z) € C%, soit ¢ une fonction uniformément lipschitzienne de IR® d
valeurs dans IR et soit u € H*(IR®,@*). Alors, on a:

h? sz \Y4 (efu) |2 dx + /R3 (1 — P |V¢o|2) e%|ul2 =
=R ( [ €% (Dv(h)Dy(h)ulul dw) , (7)

o D_V(h) = hZ?:l Olij + Qg — V($)14

L’équation (7) conduit & associer la distance d’Agmon d(z,y) & la métrique:

(1-V*(2)) da”. (8)

Elle permet a Wang ([12]) de montrer des résultats analogues  ceux de [3] sur les fonctions
propres et les valeurs propres d’opérateurs de Dirac a puits multiples. Néanmoins, au lieu
de comparer a des problemes de référence du type de Dirichlet, il est techniquement plus
simple pour l'opérateur de Dirac de comparer & des problémes modifiés.

“Modifier un probleme” associé & un puits U; du potentiel V(z) consiste & modifier le
potentiel V(z) au voisinage de tous les puits Uy distincts de U; en sorte que:

e U; soit le seul puits du potentiel modifié V,
o l'inégalité V2 < V2 soit respectée.

(On montre sans difficultés que c’est possible).
Notons:

By(U,S) = {z/d(U,z) < S}, (9)
la boule de rayon .S pour la distance d’Agmon d. Si Sp est la distance d’Agmon du puits U;
au puits Uy le plus proche, on peut s’arranger pour avoir un potentiel modifié V qui coincide

avec V sur By(U, S, —n), n > 0. Un autre choix de potentiel modifié ne change alors les
valeurs propres que de 1’ordre de:

_259—e(m) .
e” &, lime(n)=0.
n—0
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2.2 Hypotheses.

Nous sommes maintenant en mesure de donner les hypothéses sur le potentiel V(z). On
suppose toujours qu’on s’intéresse aux résonances proche du niveau d’énergie £ = 0.
Nous faisons les hypothéses de [8, Section 1] qu’on rappelle brievement:

o Il existe deux fonctions r, R € C*(IR?, IR") telles que:

1.r>1,rR > 1,
2.

Vae N, 3C,/ |8%r|<C.rR™™, |8°R| < C,R™®,
3. V est analytique sur IR® et s’étend analytiquement au domaine:

D = {z/|Sz| < R(Rz)/C},
4. |V(2)| < Cr(Rz), VzeD.

F(z,{) = ri(z) + &,

qui contolera les dérivées en £ des symboles.

On note alors:

¢ Il existe une fonction fuite G(z,¢) € C=(IR®, IR), impaire en £ et telle que:
1. pour a, B € IN? vérifiant || + |B] > 1, il existe Cqap tel que:
10.05G| < Copi' " *R'P,
2. En dehors d’un compact de IR®, on a:

Hy (G)(2,€) 2 r(2)/C s pt(,8) =0, (10)
Hy-(G)(2,€) 2 r(2)/C si p(2,€) =0,

Dans la suite, on notera :
ot = {(2,8)/p*(2,§) =0}, o~ ={(z,€)/p (2,¢) =0}
3. 10:G(z,€)| < C(1+|R¢])

En rajoutant une hypothese d’uniformité de (10) par rapport aux fonctions d’échelles 7 et R
(Hypothese [8, (1.9)]), on peut alors appliquer le [8, Théoréme 1.5] qui permet de définir les
résonances en limite semi-classique. De plus, les espaces résonnants sont de dimension paire

([8, Théoreme 2.4]).
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Remarque 2 Comme indiqué en introduction, I’Hypothése (10) entraine que les résonances
ont une partie imaginaire négative (cf [9, Théoréme 1.18]). Ce résultat est également valable
pour les résonances d’énergie négative, ce qui est en contradiction avec le résultat obtenu en
définissant les résonances par la technique de la dilatation analytique développée par Aguilar
et Combes pour l'opérateur de Schrodinger et adaptée par Seba ([10, Théoréme 1]) dans le
cas de l'opérateur de Dirac.

En fait, B.Helffer et A.Martinez ont montré dans [1] que les définitions du type microlocal
et du type “dilatation analytique” sont compatibles lorsque l'on peut choisir comme fonction

d’échelle:
r(z) =1, R(z)=+V1+ 22,
et comme fonction fuite:
G(o,€) = w.¢.

Il faut donc comparer les signes des résonances définies par ces deux théories.

La dilatation analytique revient a effectuer une rotation des énergies dans le compleze
([10, figure 1]) dans le sens des aiguilles d’une montre, c’est-a-dire que le spectre essentiel
positif tourne vers le demi-plan inférieur et le spectre essentiel négatif tourne vers le demi-
plan supérieur. Dot le résultat:

Le produit de la partie imaginaire d’une résonance par son énergie est négatif.

Par contre le choiz des signes dans (10) “tord” les energies vers le demi-plan compleze
inférieur ce qui explique que la partie imaginaire d’une résonance soit toujours négative.

Il semble d’ailleurs impossible de changer de sens et signe ['une seulement des deuz inéga-
lités de (10). On ne peut que changer les deuz inégalités simultanément. En effet, lorsqu’on
prouve le [8, Théoréme 1.5] qui définit les résonances, on doit montrer que le symbole de
Uopérateur D(h) — z — défini de l'espace de Sobolev a poids H(A,7) dans H(Awg,1) —
est elliptique (en-dehors d’un compact) a la fois pour des z tels que:

o 3z > ¢ (le symbole est alors globalement elliptique et D(h) — z est inversible),

o —t < 3z < ¢ (le symbole n'est alors elliptique qu’en-dehors d’un compact et des réso-
nances peuvent apparaitre).

C’est la [8, Propostion 1.4] qui nous donne ce résultat d’ellipticité, pour des z appartenant

a l’ensemble: 1

t
Q, = —EF| < — —-——<Gz<T
r={z€d/ Rz |_20, o =92 5 },
ou C est une grande constante positive et T est arbitraire. En relisant la preuve de cette Pro-
posttion 1.4, on s’apercoit alors que changer 'une seulement des inégalités de (10) obligerait

a diminuer Q, en un ensemble:

1 t

qui ne contient plus 'ensemble {z/ Tz > e} lorsque h est assez petit (rappelons que € est

fizé, alors que t est dans un intervalle du type |0,to(h)], ot to(h) tend vers 0 lorsque h tend
vers 0).
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Remarquons que la théorie n’interdit pas d’avoir simultanément une “fuite” vers les puits
de type V(z) > E + 1 et vers les puits du type V(z) < E — 1. Les effets de ces fuites
s’additionnent et diminuent alors le temps de vie de ’état quantique. Ce qui doit se traduire
par une partie tmaginaire de résonance plus grande en valeur absolue (chaque type de puits
apportant une contribution négative ¢ Iz). On arrive a la conclusion suivante:

Le choiz de signes identiques dans (10) équivaut a dire que les contributions des deux types
de puits s’additionnent.

Revenons a la comparaison avec le choiz de signe de la théorie de la dilatation ana-
lytique. On souhaiterait pouvoir choisir de prendre des parties imaginaires positives pour
des résonances d’énergie négative. Or dans la théorie microlocale, le choiz du signe est une
convention locale (valable au voisinage d’un niveau d’énergie E ). Il nous suffit donc de chan-
ger de convention (c’est-d-dire changer simultanément les deux inégalités de (10)) lorsqu’on
étudie des résonances d’énergie négative. Notons que dans ce cas, les deur types de puits
apporteront une contribution positive a la partie imaginaire des résonances.

On rajoute les hypotheses de “puits dans une ile”, c’est-a-dire qu’on suppose ’existence
d’un compact U inclus dans un ouvert connexe O tels que:

V(z)|21sizeU, |V(z)|<lsizeO-U, |V(z)|>1sizgO.

On appelle O I'ile, U le puits, et M = IR* — O la mer.
On va renforcer I’hypothese d’existence de fonction fuite. Notons encore:

p(z,€) = p*p(2,6) = V¥(z) -1 - ¢~
On remplace ’'Hypothese (10) par:

r’(z)

C

On peut alors montrer comme dans [4, Proposition 9.2] la:

r*(z)

C

H,(G) < — si (z,6) €0t N M, Hy(G)> si (z,6) €0~ NM. (1)

Proposition 3 Soit So = d(U, M) la distance d’Agmon du puits a la mer (cf Figure 2, p.
9). Alors B4(U, So) est relativement compacte.

Fixons pour la suite de cette section n > 0 assez petit. Soit:

Mo = By(U, So — n). (12)
On modifie si nécessaire la fonction fuite G de telle sorte que:
G(z,§) =0 size M. (13)

Soit D® = Dyo(h) = Dy, un opérateur de Dirac modifié (au sens de la section 2.1) hors
de M, de telle sorte que U soit le seul puits du potentiel modifié V° et plus précisément:

e qu’il existe € tel que |VO(z)| <1 — ¢ si z¢ My,
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M
Figure 2: By(U, So).

® que ]8£V0($)| < C,.

On peut alors montrer que D° est essentiellement autoadjoint de domaine H*'(IR?,C*) comme
opérateur non-borné de L? (cf [7] par exemple).

On suppose qu’il existe une famille d’intervalles compacts I(h), tendant vers {0} si h tend
vers 0, et une fonction a(h) vérifiant:

e Pour tout € > 0, il existe C. > 0 tel que:

£

a(h) > Cee™%,  Sp(D°) N {(I(h) + [~2a(h),2a(k)]) — I(R)} =0,  (14)

Sp(D°) N I(h) = {p1(h), -, pm(h)}; (15)
chaque valeur propre étant répétée autant de fois que sa multiplicité.

Les résultats sur la fonction de comptage (cf [2, Théoreme 5.8] dans le cas de 'opérateur
de Schrodinger ou [6]) permettent de supposer que dans des cas “raisonnables”, on peut
décomposer le spectre en intervalles I(h) vérifiant (14). En effet, si on note N(A, u,h) le
nombre de valeurs propres de D°(h) situées dans l'intervalle [\, p], alors on montre ’estima-
tion grossiére:

N(A, p, k) = O(h=™),

pour Ny assez grand et on a méme une asymptotique:

N k) = C(u= 73 (14+0(Vh)) .

2.3 Localisation des résonances.

Soit b(h) une fonction tendant vers 0 lorsque h tend vers 0 et telle que b(h) > a(h).
Notons:

Qh) = {z €@/ dist(Rz,I(h)) < a(h), |Sz| < b(h)}. (16)
On a le:
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Théoréme 4 Il existe une bijection b entre les valeurs propres du “probléme modifié” D°
situées dans l'intervalle I(h) et les résonances de l'opérateur de Dirac Dy (h) situées dans le
rectangle 2(h) telle que:

b(ui) — i = O (—‘&)

» lime(n) = 0. (17)
Ici, la bijection tient compte des multiplicités des résonances et des valeurs propres.

On prouve ce Théoréme exactement comme B.Helffer et J.Sjostrand ont montré le théo-
réeme analogue pour l'opérateur de Schrodinger ([4, Proposition 9.6]). L'idée de la preuve
consiste a caractériser les résonances de D(h) par 'annulation d’un déterminant d’'une ma-
trice carrée d’ordre m A l’aide d’un probléme de Grushin. Cette matrice est alors proche
de la matrice obtenue en considérant 1'opérateur modifié D° (on estime 1’écart a partir de
résultats sur la décroissance exponentielle des noyaux de résolvantes d’opérateurs modifiés
obtenus avec les inégalités L? & poids (7)). D’oui 'on déduit une bijection entre les pu;(h) et
les résonances de D(h). On peut consulter les détails de la preuve pour l’'opérateur de Dirac

dans [9, Section 2.3].

2.4 Fonctions résonnantes.

Dans cette section, on construit une base de fonctions résonnantes a partir des fonctions
propres de D, puis on estime la taille des fonctions résonnantes d’abord sur IR* tout entier
a l’aide d’estimation sur le noyau de (D(h) — z)~!, puis on précise ces estimations en-dehors
de B4(U, Sp). Introduisons encore quelques notations commodes pour la suite:

e On dira qu’une quantité g(h) est un O (e‘cﬁ‘) si:

Vn>0, 3e(n)>0,3C,/ lg(h)| < Cre~ 5™, lime(n) = 0. (18)

n—0

e Soit f: IR®* IR® —» IRt
On dira que le noyau Kp d’un opérateur P agissant de L? dans H' est un O(e~f/*) si
pour tout zo,yo € IR?, pour tout gy > 0, il existe un voisinage W de zo et un voisinage
V de yo tels que:

| P wy = |u|Lz(V)é (e‘ﬂih'ﬂ e‘hﬂ) , pour u supporté dans V. (19)

2.4.1 Construction des fonctions résonnantes

Soit (¢;j(h))1<j<m une base de vecteurs propres de D, donc telle que:

(D° = pj)p; = 0.

Soit F' la somme directe des espaces résonnants F, associées aux résonances z de D(h) situées
dans Q(h) et 7 la projection sur F' (définie ci-dessous). Posons:

1 -
vilh,t,Gon) = mr(xs) = 5= [ (2 = D) xsde, (20)
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o ou x € C§°(My) vaut 1 dans By(U, S — 21)

® ol 7 est un contour rectangulaire contenu dans (), contenant I(h) et non exponen-
tiellement proche de I(h).

Dans la suite, on notera aussi ¥; = x¢;.

La dépendance de v; par rapport aux parameétres t et G se trouve dans la projection 7p.
Or, on peut montrer, en déformant la fonction fuite comme lorsqu’on voulait prouver que
I’ensemble des résonances ne dépendait pas de t et G ([4, Théoreme 8.5]), que:

Siw € C°, 7Fw ne dépend ni de ¢ ni de G pour h assez petit.
Soit:
rj = (D — p;)¥; = [D, xlg;.
En regardant le support de x et la décroissance des fonctions propres de D°, on a:

T'j = OFJ (6—i(v_’::ﬁ) — O (6_%9_) ’ (21)

et de plus r; est supporté en dehors de By(U, So — 27).
Par définition de r;, on a:

(D = 2); = rj + (4 — 25,
et en multipliant par (z — g;)(z — D)™,

—(z — )75 = (2 = p)(z = D) 7'r; — (2 = D)y,
d’ou, en intégrant:
v — i = Tt — by = 5 [ (2 = D) (s — ) i (22)

211

Comme r; vérifie 'estimation (21), il nous reste a obtenir des estimations sur la résolvante
(2— D)~! pour mieux connaitre les fonctions résonnantes v; (le comportement des fonctions
propres d’un opérateur de Dirac a été étudié par Wang: [12]).

2.4.2 Estimations sur la résolvante (z — D)%,

Soit:
d(z,y) = min(d(z,y), 250 — d(U,z) — d(U, y)). (23)
On montre comme dans [4, Proposition 9.8] la:
Proposition 5 Soit I'(h) un sous-ensemble de Q)(h) tel que pour tout € > 0, il existe C. > 0
tel que dist(L(h), {g1(R), ..., gm(R)}) > Cle=/h.
Alors pour t > 0 assez petit, il existe h(t) > 0 tel que pour h €)0,h(t)],z € T'(h),e > 0,
on ait uniformément par rapport a z:

e la norme de lopérateur (D — z)™? agissant de H(A4,1) dans H(A.,7) se majore par
C'E,tes/h.

Kp-(z,y) = 0 (752, (24)
pour (z,y) € Ba(U, S). .



1088 Parisse H.P.A.

2.4.3 Estimation des fonctions résonantes avec perte de &.

On a le:

Théoreme 6 On a uniformément dans My:

b=y = 0 (2522 (25)
S7 on note: ( ) (U, 50)
) d(U,z) siz € By(U, 50

sle) = { So sinon, (26)

alors pour tout compact K CC IR® et tout ¢ > 0, on a uniformément en h:

slx

ol = 1 (e— h“) , zekK, (27)

et de méme pour les dérivées. Ict la majoration ne dépend pas de 1.

Encore une fois, la preuve est semblable a celle utilisée pour 1'opérateur de Schrodinger
dans [4, Théoreme 9.9]. Elle consiste & utiliser les estimations (24, 22) et a regarder le lieu
ou est supporté r;.

On en déduit facilement le:

Corollaire 7 Les fonctions vy, ..., v,, forment une base de F et la matrice de l'opérateur D
restreint a F' dans cette base est de la forme:

Diag(p;) + O (e“z_ffl) :

2.4.4 Estimation des fonctions résonnantes avec gain de ¢.

Avec le Théoreme 6 et le Corollaire 7, on a pour x € K compact:
2Sp+s(z)—e(n)
(D—#j)vjzo(e' B n),

et de méme lorsqu’on dérive. D’oli sur K — By(U, Sp):

(D~ y)o; = O (e755). (28)

En appliquant les inégalités & poids (7), et en contrélant v; au bord de 'ouvert O — By(U, So)
a ’aide de (27), on montre facilement la:

Proposition 8 Pour tout compact K CC O — By(U, So), il existe o > 0 tel que:
;=0 (e‘s " ) (29)

uniformément sur K (et de méme pour les dérivées).
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Ce résultat n’est pas optimal lorsqu’on est proche d’un point du bord de I'ile situé & une
distance (d’Agmon) du puits supérieure & Sy. Un tel point est dit de type 2, par opposition
aux points de By(U, Sp) N dO qui sont dits de type 1. Mais I’hypothese renforcée d’existence
d’une fonction fuite (11) va nous permettre de montrer la:

Proposition 9 Pour tout compact K de O — By(U, Sp), il existe un voisinage Q de K dans
IR® et un réel g9 > 0 tels que:

Sg+¢
0= 0 (%), (30)
uniformeément sur () (et de méme pour les dérivées).

Preuve de la Proposition 9.
Encore une fois, on suit la preuve de B.Helffer et J.Sjostrand ([4, p.129-132]).

¢ L’idée de la preuve est qu’aucune trajectoire du flot hamiltonien H,+ ou de H,- issue
d’un point de dO ne peut revenir au bord de I’ile & cause de I’hypothese renforcée (11).
Donc une telle trajectoire ne peut atteindre un point de type 2 & partir d’un point de
type 1 (ou inversement). Comme ’éloignement de ces trajectoires devrait entrainer un
gain de décroissance exponentielle pour les fonctions résonnantes et comme en-dehors
de B4(U, Sp) le chemin le plus court vers le puits U en restant dans I’ile est de longueur
strictement plus grande que Sy, on aura une décroissance exponentielle des fonctions
résonnantes pres des points de type 2 “meilleure” que Sp.

e Justification du fait que les trajectoires du flot hamiltonien de p ne peuvent contenir
qu’un point de ile.
Soit y(s) = (z(s),£(s)) une trajectoire de H, telle que v(0) = (x2,0) ol z, € O (dans
la suite z, sera un point de type 2 mais cela s’applique aussi & un point de type 1).
On a alors z(s) = z(—s) et £(s) = —&(—s). Si z(s) € OO pour un réel so non nul, alors
on a z(s — sg) = r(s + o) et en particulier z(2s0) = z(0).
La bicaractéristique + est donc périodique de période 25y donc reste dans un compact.
Ceci contredit I’hypothése (11).

En effet, soit |T_,T,[ l'intervalle maximal de définition de 7. Si V(z;) = —1 alors
d’apres (11) on a:

(%]

T

v(s) € 0¥, Hy(G)(1(s)) < —=-
Comme 0,G(v(s)) = Hy(G), on en déduit que:

+G(y(s)) < *ér(w(s))R(m(s)), pour £ s > so.

Q)

Si V(z3) =1, on a:
+G(y(s)) > -é-,r(x(s))R(x(s)) ponrick 5 2 8.

En particulier, on a:

lim G(y(s)) = £oo.

5=T1v(+(0))
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e Représentons maintenant les espaces H(A;,.) a I’aide d’une transformée de F.B.1. adap-
tée d Ao (et pas & Ayg). Le poids exponentiel intervenant dans la définition des H(A,,1)
devient ([4, p.130-131)):

Gi(a) = tG(a) + O(t*#R).

Le symbole de D n’est pas elliptique si p = 0, donc on va faire une étude microlocale
de v = v; le long d’une bicaractéristique de p issue d’un point 4(0) = (z3,0), ou z; est
un point de type 2. On a |V(z;)| = 1. Si par exemple V(z;) = 1, alors:

lirjrg G(y(s)) = —oo.
On rappelle que la transformée de F.B.I. T'v vérifie:

Tv € L*(Ao, e 252 dode),

donc T'v; est exponentiellement petit “au voisinage de v(7-)".

Plus précisément, si on fixe § > 0, il existe s, tel que:

G(v(=s1)) > —(6 +&(n)).

On prend deux voisinages o CC §; de la projection sur z de y([—s1,0]). D’apres (27)
et comme 7 ne rencontre pas de point de type 1, la fonction v est uniformément un
O, (e_(SO‘E)/h) sur 4. Soit xo € C§° (1) une troncature valant 1 sur 2. Alors, on a:

Sg—¢
XoU = Oe (e“—pf—) ,

et il existe § > 0 tel que:
Sg+8
Txov =0 (e__oh_') :
uniformément dans un voisinage de y(—s,).
D’apres (28), on a:
_25
(D =)o = D, xolo + 0 (),
et de plus [D, xo] est supporté loin de la bicaractéristique. Il faut alors appliquer un
analogue du théoreme de propagation des singularités analytiques le long des bicaracté-
ristiques pour un opérateur de type principal réel (cf [11, Théoreme 9.1]) a 'opérateur

matriciel D. On montrera dans I’Appendice (Section B) comment on peut adapter la
démonstration de [11, Théoreme 9.1] & 'opérateur de Dirac.

On en conclut alors qu'il existe un réel g > 0 et un voisinage €0, de z; tels que:
_ SQ-}-cQ
v = (0] (6 h ) ,
unifornément dans 5.

Sion avait eu V(z,) = —1, il aurait fallu partir de la limite s — T, et de P'inégalité:

~

G(v(s1) < —(e(n) + @)

pour s; assez grand. On peut aussi changer le signe de ¢ (renverser le temps).
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Remarque 10 Si on regarde dans cette représentation les espaces H(Ay,.), on voit que
v € H(Ay,.) si Tv est exponentiellement petit le long des trajectoires entrantes de p* et p~
et peut étre exponentiellement grand le long des trajectoires sortantes.

Comme:

H,; = p+Hp— + p~ Hp+,

et comme p = 0 si et seulement si pt =0 oup™ =0, on a surot:
H,=p Hy+ = —=24/1 4+ £*Hpe,

H, = p*H,- = 2,/1 + £2H,,-

Donc sur ot, la bicaractéristique de p est celle de pt parcourue en sens inverse (et d une
vitesse différente) et sur 0™, la bicaractéristique de p est celle de p~ parcourue dans le méme
Sens.

Finalement T'v est exponentiellement petit le long des trajectoires de p entrantes sur o~
et sortantes sur o,

et sur o~ :

3 Cas du puits ponctuel non dégénéré.

Comme dans la section précédente, on s’intéresse aux valeurs propres et aux résonances
proches du niveau d’énergie E = 0. On suppose que V est analytique sur IR et que les
hypotheses de la section 2 sont vérifiées. On suppose de plus que le puits U est réduit a
un point P que 'on prendra pour origine de IR?. Enfin, on suppose que le puits P est non
dégénéré, c’est-a-dire que le hessien de V est non dégénéré.

Comme P est un extrémum de V', on suppose donc que V" (P) est défini positif si V(P) =
—1 et que V”(P) est défini négatif si V(P) = 1. Dans le premier cas, il apparait aussi des
résonances pour l'opérateur de Schrodinger muni du potentiel V(z), alors que le second cas
n’a pas d’analogue (on peut qualifier ce cas de résonances d’antimatiére). En choisissant une
base dans laquelle V' est diagonal, on peut écrire:

V(z) =£(-1+= ZA22+0 ), #£\;>0. (31)

On veut appliquer le Théoréme 4. On commence donc par localiser les valeurs propres d'un
probleme modifié. Pour cela, on dispose des résultats de Wang ([12]). Rappelons brievement
ceux qui nous intéressent ici.

e La distance d’Agmon:

d:z —d(z) := ¢(z) := d(z, P)

est C'* au voisinage du puits P. On montre d’ailleurs qu’elle est analytique en appli-
quant les résultats de [3, section 4].

e Pour C' > 0 donné, il existe hg > 0 tel que le spectre de 'opérateur de Dirac a un
puits ponctuel non dégénéré (tel qu'en dehors d’un voisinage de P on ait V?(z) <
1 -6, é6 > 0) Dy(h) dans l'intervalle [-Ch, C'h] soit constitué de valeurs propres
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pour h < hg. De plus ces valeurs propres admettent un développement asymptotique
en puissances demi-entiéres de h et sont, modulo O(h%?), de la forme:

3
1
€a = fah, oOU s = Z)\j(&j + -2-), a € IN3. (32)
i=1

C’est le sens du [12, Théoreme 3.9]. En choisissant des intervalles I(h) du type [ah, bh]
ol a, b ne sont pas des p,, on vérifie alors I’'Hypothese (14).

On appelle “premiere valeur propre”, la valeur propre correspondant a a = 0. Il existe
C' > 0 et hg > 0 tels que, pour h < hg, cette valeur propre soit la seule valeur propre
(de multiplicité deux) de 'opérateur de Dirac & un puits ponctuel non dégénéré dans

'intervalle [-C'h, C'h)].

Remarquons encore que si V(P) = 1, alors ces valeurs propres sont négatives (puisque
les A; le sont) tandis que si V(P) = —1, ces valeurs propres sont positives.

e Les vecteurs propres correspondant a la premiere valeur propre admettent un déve-
loppement asymptotique en puissance entieres de h (construction BKW C*: cf [12,
Théoreme 4.4] ).

On peut ainsi souhaiter connaitre le développement asymptotique de la premiere réso-
nance, c’est-a-dire de la résonance associée a la premiere valeur propre d’un probléeme modifié.
Il en existe une d’apres le Théoreme 4 puisqu’on peut isoler la premiere valeur propre du
reste du spectre par un écart de l’ordre de inf(|A;|)h qui n’est pas exponentiellement petit.

On va tout d’abord montrer que le calcul de la partie imaginaire d’une résonance se ramene
a évaluer une intégrale de surface prise dans la mer, au voisinage des points du bord de I'ile
issus d’une géodésique réalisant la distance d’Agmon Sy du puits P a la mer M. Ensuite, on
approchera cette intégrale a ’aide de développements BKW des fonctions résonnantes. I
faudra donc prolonger ces constructions d’un voisinage du puits P le long d’une géodésique
minimale jusqu’au bord de I'ile, puis traverser ce bord. Pour cela, on utilise la méthode de
B.Helffer et J.Sjostrand ([4, Section 10]) qui nécessite des constructions BKW analytiques.

3.1 Réduction au calcul d’une intégrale de surface.

Soit W un ouvert borné de IR® que I’on choisira plus loin. Pour faire apparaitre la partie
imaginaire d’une résonance, on part de l’identité:

2iSz(v|v) = (2v]v) — (v|2v),

ou (.|.) est le produit scalaire sur L?(W) et v une fonction de L*(W).
Ici, on prendra v dans ’espace résonnant associé a la résonance z, v est bien dans L%(W)
puisque W est borné. On a alors:

2:3z(v[v) = (D(h)v|v) 2wy — (v|D(h)v)L2(w).

Comme D(h) = h E?:I a;D; + a4 + V(2).14 est formellement autoadjoint, il ne va rester
qu’un terme de bord. Plus précisément, supposons que W ait pour équation:

oW = {z € R*/w(z) =0}, weC™,
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ol on choisit w sortant. Alors on applique la formule de Stokes, et on obtient:

, 3 ds.
2032(v|v) 2wy = hjfaw ((Z a_,-Djw)v|v) IV?,:T' (33)
J=1

On cherche & estimer la partie principale de cette intégrale de bord. D’apres le Théoreme
4, on sait que Sz est “de l'ordre de e~2%/% Donc sur W, la fonction résonnante v doit
étre de I'ordre de e=0/% sinon la contribution principale de I'intégrale s’annulera. Vu la taille
des fonctions résonnantes (Proposition 6), on choisira W tel que:

Ba(U, S5) C W, (34)
qui assure que sur W, la fonction v n’est pas trop grande. On rajoute la condition
Je>0, VeeW, 1-Vz)>—¢, (35)

qui est compatible avec (34) et signifie que W “ne s’enfonce pas trop loin dans la mer”
(lorsqu’on prolongera les constructions BKW hors de 1'ile, on utilisera des méthodes de
type analytique qui donnent des prolongements prés du bord de I'ile seulement).

D’apres la Proposition 9, v continue de décroitre exponentiellement dans O — By(U, Sp).
Donc seuls les voisinages de d0 N By(U, Sy) apporteront une contribution non négligeable
devant e~2%/" Soit donc O une réunion de voisinages de tous les points de type 1. Alors, il
existe €9 > 0 tel que:

i=1

g 4 dS _ 2Sp+e
213z(v|v) 2wy = h/ /Berﬂl ((Z aijw)vlv) |Vi)“|/ + 0 (e "gh_e') (36)

On verra plus loin que le symbole de la fonction BKW qui approche v admet une singu-
larité au bord de I'lle. On rajoute donc une hypothese sur W:

36>0, 1-V¥¢z)< -6 z€dWnQ. (37)

3.2 Construction BKW analytique.
3.2.1 Construction prés du puits P.

D’apres [12], on sait effectuer la construction BKW C* pour la premiére valeur propre.
Mais pour passer a des constructions analytiques, il n’existe actullement pas de méthode
explicite permettant de construire les fonctions BKW pour 'opérateur de Schrodinger. La
seule méthode connue est celle de [3, Section 4] et nous allons nous y ramener en effectuant
une diagonalisation pseudo-différentielle par blocs 2 x 2 de 'opérateur de Dirac dans la
classe des opd analytiques a I’aide d’un théoréme de B.Helffer et J.Sjostrand (Harper II: [5,
Proposition 3.2.1]).

Comme précédemment, on s’intéresse aux propriétés spectrales pres du niveau d’énergie
E = 0. On suppose que le potentiel V est analytique sur IR® et a un puits ponctuel P non
dégénéré. On suppose enfin qu’en-dehors d’un voisinage de P, on a l'inégalité V2 < 1 —§
pour un réel 6 > 0. Dans ces conditions, il existe C > 0 et ko > 0 tels que, pour h < hyo,
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le spectre de 'opérateur de Dirac D(h) soit constitué de valeurs propres dans I’intervalle
[—Ch,Ch]. 1l existe une bijection b entre le spectre de D(h) et I’ensemble:

3
i s
{ea = pah}, ol po = A(e;+ 5), a € IN®, et ol )\; est défini en (31),
=1

telle que:
b(p) — p = O(h%).
Fixons un triplet o et notons e = p,h. Supposons qu’il existe Ny triplets d’entiers
o, ..., an, tels que p,, = po. Alors, on a le:

Théoréme 11 Il existe €9 > 0 tel que le spectre de lopérateur D(h) dans lintervalle
[h(e — €0), h(e + €o)] est constitué de 2Ny valeurs propres (comptées avec multiplicité). Ces
valeurs propres sont des réalisations de symbole analyliques semi-classiques:

(k) ~ Y exih3, (38)
k=0

i.e., pour toult C' > 0, il existe € > 0 tel que:
a
Ch .

Hl — Z ek,;hg = O (e_i) s (39)
k=1

Les vecteurs propres correspondants wi(x, h) sont sur un voisinage ) du puits P des réalisa-
tions de symbole analytiques semi-classiques:

wi(z, h) ~ e_i(hEl Z wk,ghg, (40)
k=0
i.e., pour tout C' > 0, il existe € > 0 tel que:
#x) ﬁ k ¢
e (w — Z W, h?) =0 (e_ﬁ) " (41)
= L2()

Le terme “semi-classique” signifie que I’on somme sur des puissances demi-entiéres de h.

Si 2N valeurs propres admettent le méme développement asymptotique que gy sans lui
étre forcément égale, on dira que p; a pour multiplicité asymptotique 2N. Le [12, Théoreme
3.9] montre alors que ’on peut choisir la bijection b de telle sorte qu’a u correspondent 2N
valeurs propres de D(h) telles que:

b(u) — = O(R%).

Preuve du Théoréme 11.

Dans toute la suite, on supposera pour fixer les idées que V(P) = —1, le cas V(P) =1 se
traite exactement de la méme facon.

On choisit un voisinage complexe {2, du puits P sur lequel on a:

36 €]0,1/2[, V(z)<§—1.
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lére étape: diagonalisation pseudo-différentielle par blocs.

Commencons par rappeler quelques notations de HarperlI ([5]). Soit F un espace vectoriel
de dimension finie et { un ouvert de @7 x @¢. Notons:

.%amg)z{Azlmhd - C?@ZE)},

h — A(,.h)
I’ensemble des applications A telles que ’application:
(z,€) — W A(z, ¢, h)

soit uniformément bornée par rapport & k, i.e. pour tout couple (a, 8) € (IN3)?, il existe une
constante C, s telle que, pour tout h €]0, ho] et (z,£) € 2, on ait:

hi

020f A(z,6,h)| < Cass.

On prendra ici E = L(@*,d*), 'espace vectoriel des endomorphismes de @*. On définit
Ianalogue “formel analytique” de S}(f2, E) par:

oaf A(.T,E,h) ~ EjEN thj(a:v‘f):
S Q,E)={ A€ Sy A;e 8, E),
|4;] < G717

Dans toute la suite, on utilisera la quantification de Weyl des symboles et on omettra I’indice
w qui apparait dans [5, Section 3]. De méme, on oublie I'indice /& dans le signe de composition
des symboles.

L’ensemble Sg‘af(Q,E) muni de la loi de composition “#” des symboles est alors une
algebre.

On dit aussi que A(z,&) € SQ’af(Q, E) est formellement autoadjoint si:
V(z,6) € ANQY, AT, E) = (A(z, )", ou ={zel%zecN}.
Enfin, on dit que A(z, ) est formellement unitaire si:
(A(z, )" = A7(z,)
(i veut appliquer la:

Proposition 12 (/5, Proposition 3.2.1])
Soit A € S,?'“f(ﬂ, E) vérifiant:

Ao(a:wf) = ( Aél)l A?Z)Z ) (42)

dist(spAy', spA2?) > 6 > 0 pour tout (z,£) € (. (43)



1096 Parisse H.P.A.

A est formellement autoadjoint. (44)

Alors, il existe U(z,€,h) € So'af(ﬂ) inversible et formellement unitaire tel que:

A

U‘l#A#Uz( 0 3

). Ap-ap AP (15)

Au niveau des opérateurs, comme on travaille sur le réel, on a:
Op(U)” = Op(U™") + O (7 ),

0p)0p(a10p(t) = ( PP )0 (),

ot O(e~%/") signifie que le reste, en tant qu’opérateur de L?(IR3;T*), est de norme plus petite
que Ce*/" pour un réel & > 0 (uniformément en fonction de h €]0, ko).

Pour appliquer la Proposition 12, il nous faut déja diagonaliser le symbole principal de
Dy (z,€). On montre facilement qu’une matrice de passage permettant de diagonaliser la
matrice Dy (z,£) est donnée par:

VIHEL+ T, éaja

W) = ; 46
o VVIFEWVIFE +1) )

et on a:
W=H(&) Dy (z, )W (¢) = ( p+612 p"o.Iz ) ' (#7)

De plus, la matrice W est unitaire (si £ € IR®). Si on choisit @ comme le produit cartésien
QU x Q¢ du domaine Q, par le domaine Q; défini par:

0 ={eeq I8gl<z 15523}, (18)

on vérifie que U et Dy sont des éléments de Sg’a‘f(ﬂ, E). En effet, si £ € ., alors on a

R(1+ £%) > § donc /T + & est analytique et, de plus:

P (z,€) —p(x,6) 2 1. (49)

Il existe donc un symbole W formellement unitaire, tel que:

A= WDy (2, ) #W = ( e ) + WL VAW, (50)

0 pI

Le symbole A vérifie (42, 44). De plus, ’Equation (49) entraine (43) avec 6 = 1.
On peut donc appliquer la Proposition 12 et en déduire 'existence d’un opd analytique
U de symbole dans la classe Sfj’af(ﬂ) tel que:

UD(hU =P + 0 (e;n‘l) , (51)
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ou l'opérateur P est donné par:
+
P= ( o ) , (52)
I'opérateur P* [respectivement P~] ayant pour symbole principal pt1; [p~I).
2éme étape: étude de lopérateur P =U"'D(h)U.
On cherche maintenant des symboles analytiques formels u et E tels que:
(P~ hE) (ue™%) = 0. (53)

Si on écrit u = (ug4,u_) avec uy € €% I’Equation (53) devient:

(Pt — hE)(uype®?) =0 (54)
(P~ — hE)(u_e™®?) =0 °
On rappelle que 'on est au voisinage de V(z) = —1. Comme le symbole principal de P~
est p_.I3, on en déduit que P~ — hE est elliptique (pour h assez petit). Donc u_ = 0.
D’autre part, on a:
2
P*(2,6) = pd + O(I2,¢P), o pf(z,€) = %5 + (V(0)zl2). (55)

Le symbole p{ est le symbole d’un opérateur de Schrédinger avec potentiel quadratique
(“oscillateur harmonique”). On est alors essentiellement ramené i la situation de [3]. La
seule différence réside dans la dimension (2 au lieu de 1) mais n’est pas essentielle car le
symbole principal de Pt est diagonal.

On effectue donc la tranformation de FBI défini en [3, (3.11)] (c’est la transformée
adaptée & la phase analytique ¢). On note alors Pt P’opérateur tel que:

P*T = TP, (56)

et on se raméne & 1'étude de 'opérateur Q+ = AP+, A\ =h"1.

Introduisons les classes de symboles formels qui permettaient d’effectuer la construction
BKW pour l'opérateur de Schrodinger. Soit S™*(§),,&?) I’ensemble des symboles formels
“semi-classiques” w(z, h) définis sur €2, et dont le développement:

w(z,h) ~ > w; ,x°h3
Jentier, seN3

ne contient que des termes tels que:

S 4 | s . k
—m — > ——m.
] — ] J 2 — 2
Ce qui revient a dire que, en notant x une troncature valant 1 pres du puits, on a pour
chaque mondme du développement de w(z, h):

/w,-,sh'%:;r:s)((ac)e_gghﬂ =0 (h!?s“"‘) ;



1098 Parisse H.P.A.

On note aussi ST le sous-ensemble de S™* composé des symbole analytiques (au sens de

(41)).

On écrit alors que:

Q+ = Qo.[z + Q+ = QO.I2, Qo = Z m“aa,g(?f + ag,0- (57)
lee|=181=1

L’opérateur Qo conserve les espaces S™*(IR3,@') et Popérateur Q — Qo.I, agit de S™* dans
S§™#+1 On peut donc appliquer la méthode de [3, Section 4] et on montre le:

Théoréme 13 Si E n’appartient pas au spectre de Qo, alors l'opérateur Q* — E réalise une
bijection de S™*(Q,,0?) dans S™*(Q,,E?).

On suit maintenant [3, Section 3] pour chercher les développements asymptotiques (for-
mels mais pas encore analytiques) des vecteurs propres et des valeurs propres BKW de I'opé-
rateur U~ D(h)U et on applique ce Théoréme 13. On montre ainsi, comme pour ’opérateur
de Schrodinger, que les symboles formels sont en fait des symboles analytiques formels au voi-
sinage du puits. C’est-a-dire qu’il existe 2Ny symboles formels analytiques (semi-classiques)
ex(h) et 2Ny symboles analytiques ui(z, k) tels que:

UTD(R)U — ex(h))(ur(z, h)e *@/*) = 0. (58)

(Remarquons qu'il y a en fait au plus Ny symboles e, distincts, chacun ayant une multiplicité
paire). On en déduit donc

(D(h) — ex(R))(vi(z, h)e /™) = 0, (59)
ou vk(z, h) est le symbole analytique formel défini par:
ez, h)e= % = Ulup(z, h)e™ ). (60)

En prenant des réalisations de ces symboles analytiques formels (au sens de [11, Exemple
1.1]), nous avons donc des fonctions ji;(k) et des vecteurs w(z, h) tels que:

32 (D(R) — ji(h)) (e_ﬂhﬂ*&)z(w, h)) —0(e %),
Apres avoir regroupé les valeurs propres ayant le méme développement asymptotique qu’un

p fixé, on considere I’espace propre correspondant £ et I’espace £ engendré par les ty(z, k)
correspondant & g. On applique alors la [3, Proposition 2.5] et on en déduit que:

d(£,€)=0 (e %),

ce qui entraine alors le Théoreme 11.
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3.2.2 Prolongement le long d’une géodésique minimale.

Soit 4 une géodésique (pour la métrique d’Agmon) issue du puits P et contenue dans I'ile
O. On va prolonger le symbole analytique formel dans un voisinage {2 de 4. On cherche donc
a résoudre 1’équation:

e (D(h) ~ hE(h))(w(z, h)e™F) =0, (61)
ou hE(h) est un des symboles formels du Théoréme 11 dont on écrira le développement sous
la forme:

hE(h) ~ i enh™, (62)

la somme portant sur des n € IN.

On va d’abord chercher quelles sont les équations que doivent vérifier les éléments du
développement de w(z,h) et on en déduira que le symbole w(z,h) peut étre prolongé en
un symbole formel (mais pas forcément analytique). Ensuite on montrera que ce symbole
formel est solution d’une équation de transport dont le symbole principal est diagonal et on
en déduira, a 'aide d’un résultat de I’Appendice, que le symbole formel est bien analytique.

On remplace donc w(z, k) par 2, w,(z)h"™ dans ’Equation (61) ce qui donne':

(Pv + h(Q — E(h))) i weh™ = O(h%), (63)
n=0
Py = iiajqﬁj tas+ Vi, Q=) o;D;, ¢;=0;¢. (64)
j:l =1

Pour tout z, la matrice Py admet deux valeurs propres doubles

V(z) £ /1 |Vg?

dont 1'une est nulle en vertu de I’équation éiconale. Il est donc naturel de décomposer €* en
tout point z € IR® en somme directe orthogonale de deux espaces vectoriels de dimension
2 dont I'un est Ker Py(z). Mieux, on décompose le fibré trivial * au-dessus d’un ouvert
en une somme orthogonale de deux fibrés de rang 2 dont 1'un est Ker Py. Ces fibrés sont
analytiques. En fait on montre que:

g
Ci= Ker Py ¥ Ker Py, Poy=—i% a;o; +ou— Vil (65)

J=1

Utilisant (65), on écrit w; = u; + v;, olt u; € Ker Py et ot v; € Ker P_y.
On décompose alors (63) en puissances de h, et on obtient pour les puissances m > 1
demi-entieres: .
PVUm + Q(um—l + vm—l) = E en(um—n + U'ﬁ‘n—n)’ (66)
n=1

ol la somme porte sur des n € 2IV.

10n somme toujours sur des n € %IN
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A ce rang, les inconnues sont u,,_, et v,,. Comme v,, € Ker P_y, on en déduit que:
Pyv, = 2a40,
d’ou ’on tire v, en fonction de t,_1:
1 m
Um = 50"4 (Z en(um—n + vm—n) - Q(um—l + ’Um—l)) v Po=U12 = 0. (67)
n=1
Le calcul de u,,_; s’effectue en écrivant que v,, doit étre une section du fibré Ker P_y:
P—V (Z en(um—n + vm—n) - Q(um—l - Um—l)) =0. (68)
n=1

Cette équation admettra une solution u,,_; dans Ker Py car PyP_y = 0. On peut s’en
convaincre en exhibant une base de Ker Py et en écrivant le systeme différentiel 2 x 2 vérifié
par les deux coordonnées de u,,_;.

Grace a la relation:

;) 3
PvQ+QPy =) a;D;V+2) ¢;0; + Ag, (69)

=1 =1

I'Equation (68) est équivalente? a:

3 3
(——-2‘/61 == Z O!ijV -2 Z¢jaj — Aqb) Um-1 =
j=1

7=1
m-—1 m—1
2V Z Enlm_n + P_v (Z €nVUm—n — va_l) (70)
n=1 n=1

Paramétrons la géodésique 4 a 'aide de la distance euclidienne. La partie différentielle de
I'Equation (70) devient le long de la géodésique v:

3
> 4i0; = |V¢|0,. (71)

j=1
Comme |V¢| = v/1 — V2 en vertu de ’équation éiconale, le coefficient de J; ne s’annule pas
sur O — {P}. On peut donc prolonger u,,_; le long de toute géodésique issue du puits P a

’aide de (70, 71). Ce prolongement est unique.
Remarquons encore pour la suite que la premiére équation de transport s’écrit:

(—2V61 - 23: a;D;V — Ad—2v/1 — Vzas) uo(z(8)) =0, wo(z) = uo(z). (72)

Notons qu’en regardant (70, m = 1) au voisinage du puits P, on peut déterminer e;. Lorsque
e1 est “simple”, c’est-a-dire qu’il n’existe qu’un triplet (n;,ny,n3) € IN? tel que:

1 A¢(l ) L \ ’, .
= — + Y niA; ; 1 73
ey VP) ( 5 2 n;jA; |, oules A; sont définis en (31), (73)

20On rappelle que %1 € Ker Py.
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alors les équations de transport (70) donnent un algorithme de construction du symbole
w(z, k).
Ainsi, on peut prolonger le symbole BKW w(z,h) au voisinage de 7. Le prolongement
est unique. On obtient bien sir un symbole formel qui n’est pas forcément analytique.
Soit:

P =(D_y + hE(h))(Dy — hE(h)) = —A+1— (V — hE(h))* + h zaja,-pjv. (74)

J=1
On a au niveau des symboles formels analytiques dans un voisinage du puits P:

eﬂhﬂP(we_ﬁf?)

= 0.

On observe alors que P est un opérateur différentiel de symbole analytique et de symbole
principal diagonal p.I4 ol p est le symbole d’un opérateur de Schrédinger avec comme po-
tentiel 1 — V2,

Par définition, une géodésique minimale pour la métrique d’Agmon de l'opérateur de
Dirac avec potentiel V est une géodésique pour la métrique d’Agmon pour P’opérateur de
Schrédinger avec potentiel 1 — V2.

Au voisinage ) de 4, on peut donc appliquer le Théoréme 23 de I’Appendice qui permet
d’affimer ’existence d’un symbole analytique formel w(z, k) tel que sur :

2 =o.

eﬂf?IlP(ﬁ)e‘
Mais on vient de montrer que le symbole w s’étend en un symbole formel w’ qui vérifie la
meéme équation au sens des symboles formels. D’autre part, le prolongement par les équations
de transport pour I'opérateur P est aussi unique. Donc on a forcément @ = w’ sur . On en
conclut ainsi que w’ est analytique.
A T'aide des inégalités a poids (7), on montre comme dans [3, preuve de (5.43)], que
I'on peut propager ’estimation (41) du Théoreme 11 & un voisinage encore noté (1 de la
géodésique 4.

3.2.3 Passage de l'ile a la mer.

On s’intéresse au prolongement des solutions BKW & ’extérieur de I’ile prés d’un point
Q de type 1 (réalisant le minimum de la distance puits-mer). La méthode de prolongement
est identique a celle utilisée pour 'opérateur de Schrodinger dans [4, Section 10], on va donc
juste rappeler les résultats sans démonstrations et fixer les notations utiles pour la suite (les
énoncés sont suivis de la référence des énoncés correspondants de [4]). Dans cette section,
on notera parfois d(z) la phase ¢(z) et méme f(x) + So = d(z) = ¢(z).

Soit donc 4 une géodésique allant de P & Q que I’on parameétre par v(—o0) = P,v(0) = Q.
Soit A la variété des (z,Vd(z)) pour z dans un voisinage de v([—o0,0]). De ’équation
éiconale, on déduit:

A Cq {0}, olg(z,6) =&~ (1-V?). (75)
On notera encore (s) = (v(s), Vd(y(s))) ’élément de A de projection +(s).
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La variété A est aussi la variété stable sortante associée au flot hamiltonien H, de ¢ dont
les courbes intégrales sont données par:

= Beq(z(t), £(t)) = 26(2)
{ = Buq(z(t),&()) ' (76)

Or H, ne s’annule pas au voisinage de @) en vertu de I’hypothese de fonction fuite renforcée
(11). Dans un voisinage ouvert de 4([—o0,0]), on peut donc prolonger A en une variété
H,-invariante fermée contenue dans ¢~'{0}. Bien siir, on ne peut pas paramétrer A par sa
premiere composante au voisinage de 4(0) = (Q,0). En effet, si 7 désigne la projection sur
IR2, alors m(A) C O et comme Q € JO, dr ne peut étre bijectif en (Q,0).

Soit H I’hypersurface de A ol la projection 7 sur IR3 est singuliére et

C = n(H)

YISy

la “caustique”.
En (Q,0), comme % = 2¢(t) = 0, on a:

H,(Q,0) C dr(Q,0).

En fait, on peut montrer que Ker dn(Q) = Vect H,(Q@,0). Comme H,(Q,0) est transverse a
H, on en déduit que C est une hypersurface analytique de IR3, contenue dans O et tangeante
a d0 au point Q.

Si on choisit le systéme de coordonnées de telle sorte que Ty(00) ait une équation de la
forme z3 = 0 (avec ¢ = (2, z3)), alors:

1-V*z)=—-Cazs+ W(z), W(z)=0(z?),
avec C > 0 si on choisit judicieusement le sens de I’axe des z3. Alors,
H,(Q,0) = —C0,.
On peut donc paramétrer la variété A par (a',£3) pres de Q). En fait, il existe une fonction
analytique g telle que:
{ z3 = Ogg(a’,&s)

¢ = Owg(a,&s)

avec g(0) = dg(0) = 0. L’hypersurface H a pour équation 0,9 = 0.
En utilisant 1’équation éiconale et sa dérivée par rapport a £3, on peut montrer que
’équation de H se met sous la forme:

& =6&(), &l2')=0(z"),

ou {3 est une fonction analytique.
Comme A = (z,Vd(z)) pres de ¥, on a:

f(x) = d(a:) —So = VCots (.13353 + g(wlv 63)) ’ (77)

si on choisit bien le point critique. Le calcul des points critiques donne alors:

€ =&+ /—K(z3 + b(a"), bz) =0(z?), K >0. (78)
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Comme f(v(s)) croit en méme temps que z3(7y(s)), il faut alors choisir le signe “4+”. On
obtient finalement:

f(z) = a(z) + x385(2") + G(z, —\/73 + b)), (79)

ou G est analytique et ou G(z,s) = O(s*). L’Equation (79) nous permet de prolonger f au
domaine z3 4 b(z’) > 0 de deux fagons suivant le choix de la branche de la racine carrée (qui
équivaut au choix du point critique):

f(z) = filz) £ifa(z), fi€ R. (80)

On peut alors montrer que f; > 0 en-dehors de I'ile O et que f; est nul uniquement pour
les points issus des points de type 1 en suivant les courbes intégrales du flot hamiltonien de
g(z,1€). Ces points sont aussi les points tels qu’il existe ¢ < 0 vérifiant:

exp(tVfay(z) € {y € C/f(y) = 0}.

Soit
I'=Cnao.

Génériquement, on a I' = {@} alors que pour un potentiel & symétrie sphérique, on a au
contraire I' = 90.

B.Helffer et J.Sjostrand montrent dans [4, Remarque 10.3] la:
Remarque 14 [l y a équivalence entre:

e C a un contact d’ordre 2 exactement avec 0 le long de T, 1.e.

1 - Vig(z) = dist (2,T)?, (81)

v

oi “1 —V2” désigne la restriction de 1 —V? 4 C.

o [ = fic s’annule @ lordre 2 exzactement sur T, i.e.

F(z) = dist (,T)2 | (82)

Dans ce cas, lensemble G des z tels que fi(z) = 0 est une sous-variété analytique de IR®
vérifiant:
codim paG = codim T, (83)

(et vaut 2 dans les cas génériques). De plus, on a:
fi(z) ~ dist (z,G)* uniformément dans x3 + b(z') > 0. (84)

Il nous faut encore prolonger le symbole w(z,h). L’idée consiste & “changer de repré-
sentation” pres de la caustique comme précédemment. On peut alors prolonger le symbole
analytique a(z', &3, h) correspondant & w(z, k) en résolvant les équations de transport induites
le long du prolongement de 4. L’analyticité permet alors de construire un prolongement de
w(x, h) a 'extérieur de I'ile & partir de la bijection entre w et a.
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Soit a(z’,&3,h) un symbole analytique formel semi-classique. On montre que pour un
contour ¢(z) C @ bien choisi, la fonction:

z3éato(z' €3)
h

u(z, h z,h a(z’,&,h)e” dés, 85)
(@h) = 1@)(e,h) = == [ a(a'é0,h) 3 (
est au voisinage de tout point situé dans la zone z3 + b(z") < 0 (du méme coté que P de la

caustique C) de la forme:
i

u(z,h) ~ a(z, h)e'Jhﬂ,

ou a est un symbole analytique formel semi-classique. La correspondance ¢ — @ est une
bijection.

Donc un symbole BKW pourra se mettre sous la forme I(a) dans l'ile au voisinage de
@. 11 faut maintenant “faire passer D(h) sous l'intégrale I(a)” pour obtenir I’équation de
transport sur a. On remarque que la [4, Proposition 10.5] s’applique aussi a l'opérateur
D(h), la partie délicate de la transformation était en effet le passage du potentiel V(z) sous
I'intégrale:

Proposition 15 ([, Théoréme 10.5])
Il existe un voisinage U de @) et un réel €, > 0 tels que:

?

D@ ) =z [ e Dl o, kDo bk (e Ra)dts = O ()

uniformément pour ¢ € U, avec:
5 2
= h Z aij + (1363 + V(.T’, haga).
Jj=1

(Dans cette derniére expression, il faudrait remplacer les matrices canoniques «; par des

combinaisons linéaires de ces matrices pour tenir compte du changement de coordonnées
!

r — (z',23)).

On suppose donc que ae™f/* est une solution BKW associée & une valeur propre u dans
un voisinage de la géodésique v allant de P vers (). Puisque la correspondance a — a est
bijective, on sait que prés de la projection sur (z’,£3) de ¥(s), s <0, on a:

é

(D(h) — hE(h))ae™%) = O(e™h), 6> 0. (86)

o(e'éa)
e (
L’Equation (86) entraine des équations de transport pour a qui font intervenir un opérateur
de transport dont la partie différentielle est un champ de vecteur dont la projection de
%(s), |s| < € est une courbe intégrale. On peut ainsi prolonger a & tout un voisinage de la
projection de la géodésique en conservant ’Equation (86).

On peut donc définir I(a)(z, h) dans tout un voisinage du point @), et particulierement a
I'extérieur de I'ile.

Soit 2N la multiplicité asymptotique de la valeur propre y. On a finalement la:
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Proposition 16 ([4, Théoréme 10.9]) N
Il existe un voisinage ) de v([—00,0]), il existe des fonctions uy,...,usny € C®(€2) et des
symboles analytiques aq, ..., asn:

e ¥ aj,,,(m)h'%,

—ocoLwl2m;

définis dans Q—C qui prolongent les constructions BKW le long de la géodésique ~. Il existe
alors un réel e5 > 0 tel que:

o Sur tout compact de Q) — C, elS0tRN/hyy - est une réalisation de h=3/1q;
So+®RSf

eihz(D(h) — iiju; =0 (e" D ) uniformément dans Q;

Remarque 17 Si on revient & la forme I(a) de ae=#/", on s’apercoit en appliquant un
théoreme de la phase stationnaire que:

(e) = lim /1 -Viy)lal*(y), (87)

existe et n’est pas identiquement nul.
En faisant le produit scalaire de I’Equation de transport (72) avec uo(z(s)), on trouve:

—(2Vey + Ag)(uo|uo) = (Z a;D;Vuplug) + 2V1 — V(O,uoluo).

=1

Comme E?__J a;D;V est antihermitienne, et comme O;(uplug) = 2(0suo|uo), on peut méme
réécrire (z) sous la forme:

t 2Ve 2Ve1+40

¥(z) = 1a(0) lim /1~ V2(y)e™ P VST (5(s))ds, (59)

ot l'on parameétre la géodésique d Uaide de la distance euclidienne de telle sorte que y(t) = y.

Posons encore sur QN O : , (=)
@i = h"1a;(z, h)e” " (89)

et, comme dans la section 2,
v = 7r(xp;)- (90)
On note ici F' 'espace résonnant associé aux 2N résonances exponentiellement proches de
i, et ou x est une troncature.
Comme dans [4, Théoréme 10.10], si on pres d'un point z; de type 1 tel que V(zy) = —1,
alors le choix du signe dans (80) est imposé par ’appartenance de v a H(Ag, m). Comme on

est alors dans la situation analogue a celle de 'opérateur de Schrédinger, on peut montrer
qu'il faut choisir le signe moins:

f=h-if
Si V(z;) = 1, on doit prendre au contraire f = f; + i f2. Alors les v; forment une base de F
et I’écart entre fonction résonnante et fonctions BKW prolongées est estimé par le:
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Théoréme 18 ([4, Théoréme 10.10])
Quitte a diminuer §) autour de y([—o00,0]), il existe un réel €3 > 0 tel que:

u; —v; = O(1)e™" En uniformément sur Q. (91)

Ici, on a noté s(z) = d(z) si z € Ba(P,So) et s(z) = So sinon.

3.3 Valeur de $z.

On se place maintenant pres d’une valeur propre p de multiplicité asymptotique 2N (au
sens de la section 3.2). Pour N, assez grand, on sait alors que I’intervalle I(h) = [u—h™2, p+
h™2] contient exactement 2N valeurs propres et les hypotheses (14, 15) de la section 2.2 sont
vérifiées en prenant a(h) = h™2. Nous avons donc 2N résonances® exponentiellement proches
de p. En particulier pour la premiére résonance, on a N = 1 et on peut prendre N; = 2. On
considere I'une de ces 2N résonances et une fonction résonante v associée. On veut exploiter
I’équation (36).

Nous allons maintenant remplacer la fonction résonnante v dans (36) par son approxima-
tion BKW de la Section 3.2.

D’aprés le Théoreme 18, on peut,, modulo une erreur d’ordre O(e~(2%+¢)/h) remplacer
dans € la fonction v par une combinaison linéaire de fonctions BKW de la forme:

2N 2my H(z)+S
S rh S ajufahiie R (92
1=1 v=-—00

* |n|=1,

® a;j2m; est normalisé, c’est-a-dire que si V est un voisinage du puits P:

2m;
RS 6, (x)h e R =14 0(h), (93)

L3(v)
o f(z)+ So est le prolongement de la phase de la forme:

f(:E) + S() = fl(.’L') :I: ng(w) + 50,
ou f; € IRt et ol on choisit le méme signe que V(Q).

L’Equation (36) devient:

(14 O(h))Sz = %f/aan (Z aijwvlv) Cllézui' (94)

i=1

On en déduit le résultat de majoration de la partie imaginaire des résonances:

30n compte les multiplicités. En fait, il y a au plus N résonances distinctes.
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Théoréme 19 Les 2N résonances exponentiellement proches de p vérifient:
3Co >0, 0< —Sz(h) < CohV/3-2mexlmi)e =23, (95)

ou la définition des m;jep2n) a €té donnée d la Proposition 16 .

Notons encore qu’en revenant a I’équation (70, m = 1), on obtient une majoration explicite
des m; par e; du type:

< — €1 _%E_:;:l)\.? i
—  2V(P)inf(|};])

On montre aussi que la partie imaginaire des résonances admet un développement asymp-
totique:

max(m;)

Théoréme 20 Il existe 2N réalisations fi(h) de symboles formels analytiques tels que:

2

~ Sz(k) = filh)e (96)
ou les z(h) sont les 2N résonances exponentiellement proches de p.

On s’intéresse maintenant plus précisément a la premiére résonance mais le développement
ultérieur des calculs s’applique aux autres résonances. Pour la premiére valeur propre, on
sait que N = 1,m; = my = 0. On suppose de plus qu’au sens de la Remarque 14:

00 a un contact d’ordre 2 exactement avec C le long de T (97)

(Ici I' désigne I'intersection de ’ensemble des points de type 1 avec la caustique C).

On va donc appliquer (94) en choisissant W (et w) vérifiant (34,35,37). En fait, on va
choisir une famille W, d’ouverts tendant vers le bord de I'ile. Comme Sz ne dépend pas de
I'ouvert choisi, on pourra faire tendre ¢ vers 0 pour obtenir une expression plus explixite de
Xz,

Calcul de Sz a s fixé.
On pose:
we = fy—¢, OW.={w. =0} (98)
On a alors Vw, = V f,.
On écrit maintenant I’équation “Pyay = 0" vérifiée a I’extérieur de I'ile par le symbole
principal aq de la fonction BKW':

+ (Z a;0jfa +aq + V(CB).I4) oh =1 (Z ajajfl) . (99)

i=1

L’Equation (94) devient:

(14 O0(k))Sz =0 (e - (100)

_2eQ+SQ )
h

h _3 _ohi=)+S0 dSaw
_é—//awml e+ VLeJaolan) + B) A2 ' IV fol”
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B= & (23: aijf1a0|ao) + O(h), (101)

i=1
(pour les autres résonances le reste O(k) devient O(v/h)),

o les signes + sont ceux de V au point de type 1 au voisinage duquel on est.

Etudions 1’exposant e~2/1(2)/h,
Soit C, I’ensemble des z contenus dans un voisinage de I' tels que fa(z) = € et soit

FE = Cs N {f] = 0}
L’hypothese (97) permet de montrer que:

h(z)c, = d5, (2,T.), (102)

ou de, (z,I'.) a le méme comportement que la distance euclidienne de z a I, restreinte a C..
On déduit de (102) que V f; = 0 sur I, puisque f; = 0 sur ['.. On va donc appliquer un
lemme de la phase stationnaire a (100). On obtient ainsi:

(14 0(h))e ™Sz = —%h(hw)gf + (((ag + V.Iy)aolao) + R) k™2 sl (103)

Ie F.|Vf|

e ou d est la codimension de I'c dans C, (dans les cas génériques, il n’y a qu’un seul point
de type 1 donc d = 2),

e et ou F. () est le hessien de fy|¢, pris le long du sous-espace de T'C, orthogonal a TT..
Comme V f; = 0 sur I'., le reste R est un O(h). Et de plus ’équation éiconale devient sur

io
Vfl = V7P -1 (104)

Si on décompose ay € @* suivant ces deux premieres composantes et ses deux derniéres

composantes ag = (a},a?), et que 'on utilise la définition des matrices «; a partir des
matrices de Pauli* 0;,;ep1 30
0 g; : Ig 0
= <9 <3 =
Q; ( o; 0 ) 3 1 S71 S 3, Q4 ( 0 _"12 ) (105)

on déduit de I’équation (99) le systeme:

[
o

Y 0i0ifaad+(1+V)ay = 0 (106)
S5 0i0if2a5 + (=1 + V)a§ =

“Ces matrices sont hermitiennes, de trace nulle et anticommutent:

0;j0 +0ko; = 2(5;,‘}]5.
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En utilisant ces équations et le fait que les o; sont hermitiennes, on montre qu’en-dehors de
I'ile:

(V = 1)|ad[2 = (V + 1)]ab]". (107)

Limite lorsque ¢ tend vers 0.
Lorsque € — 0, I, — T et, d’apres la Remarque 17, +/V2 — 1|ao|*(y) tend vers une limite
non identiquement nulle notée v¢(z) si y € ', tend vers z € I'. Le déterminant F.(y) du

hessien transversal de fi)c, tend vers le déterminant F'(z) du hessien de f|c restreint a
lorthogonal de TT pris au point z.
Si V(z) = 1, ’Equation (107) entraine que

e a; est négligeable devant a2.

o VVZ —T1|d?|(y) — 1 (z) d’aprés le premier item.
Si V(z) = —1, on a alors

e a? est négligeable devant a},

o VT Tlall(y) = (z).

On développe alors ((as + V.I4)aglag) en utilisant la définition (105) de ay. Un calcul
simple donne:

lim((as + V.Iy)aolao)/VV? — 1 = £¢(z). (108)
L’Equation (103) devient finalement:
2ﬂ1c\. ]- d
e“rFz=—=h"7 r2 d.S' + O(h) (109)
2 (./ /F (z) )

ou F(z) est le hessien de fyc restreint & 'orthogonal de TT et ot ¢(z) est donné & la
Remarque 17 .

Exemple: potentiel & symétrie sphérique.
Soit V un potentiel & symétrie sphérique tel que:

Vir)y=-1+ %/\Zrz +o(r?), ‘A >0,

au voisinage de r = 0.
On montre alors que:

- r 1
=v1- vzg, é(r) = f VI =V2%(s)ds, A= :—Q&(rzarcﬁ) = ;;&(rzx/l - Vi),
0
d’ou 'on déduit que:

Ag

5 & 0, In(r?v/1 = V2), o i £/l VA1) (110)

e2/1 — VZ(e).




1110 Parisse H.P.A.

Les normalisations pour ’énergie et le symbole principal BKW sont données par:

3 X
er=>3X al’(0) = /=

T

Revenons maintenant a I’Equation (109). Vu la symétrie sphérique, il n’y a pas de hessien
transversal et on a:

d =0, T estunesphérederayon R,R>0, F(z)=1, %(z)=1.

Nous avons donc:
25 1

Jz=—e"F —=
Vh
ou il reste a déterminer v a l’aide des Equations (88) et (110):

2x B2 (1 4 O(k)),

g s)ds
b@) == lim AL gt S A
t—R,e—0 12 \/7?

Ecrivant encore £* comme: R
£

ds
B PP /. <
on en déduit finalement que:

1 -2 gy ()
Sz = —-2——— 2 (AR o \s7F 1-v2
=t © Gle

s)ds

(14 O(h)), (111)
ou on rappelle que:
R 1
- / VI=V2(s)ds, V(r) = =1+ 2X* + oro(r?).
0

Notons encore que par rapport aux normalisations “physiques”, on a, en notant A la
constante de Planck, m la masse de la particule soumise a I’Equation de Dirac, ¢ la vitesse
de la lumiére et W le potentiel auquel est soumis la particule (exprimé en unités d’énergie):

b=ty Vo=,

me’ me? 32 physique = M S2Bquation (111)°

A Appendice: Singularités analytiques.

Dans cet appendice, on souhaite étendre le [11, Théoréeme 9.1] (propagation des singulari-
tés analytiques pour un opérateur différentiel de type principal réel) a l'opérateur de Dirac.
On montrera aussi comment on peut adapter ce théoréeme & la situation de la preuve de la
Proposition 9. On commence par rappeler les notations de [11], et en particulier on pose:

A= (112)

1
=

On étudie le domaine ou A — +o0.
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A.1 Ensemble de fréquences analytiques.

Soit £ un ouvert de@™ et ¢ :  — IR une fonction continue. On définit I’espace Hioc(n,d')
comme ’ensemble des fonctions u:

(z2,A) € x Ry — u(z,A) €0,
telles que:
e u est holomorphe en z pour tout A > 0,
e pour tout compact K C 1 et tout € > 0, il existe C, telle que:

[u(2,A)] < C.X®@+), (113)

On définit alors:
HIQ,0Y) = {u(z, ) = (un,uz, ..., w) : @ x RY @'/ u; € HOYQ,T)},

et de méme ’espace H}SOC(Q,M;(G’)), ou M,;(€) désigne I’ensemble des matrices | x [ &
coefficents complexes.

On dit que u = 0 dans H}soc(ﬂ,(l') sl existe € > 0 tel que:
lu(z, A)| < CeM=)=2),

Lorsque ¢ = 0, on parle de I’ensemble des symboles analytiques.

On peut définir une classe globale Hy(2,Z") en utilisant un recouvrement de § par des
ouverts Qs. Un élément formel u de Hy(,d") est défini par la donnée des représentants
locaux ug € H(}JOC(Q,@,G”) vérifiant ug = ug dans Hioc(ﬂﬁ N Qer).

Si ax(z), k =0,1,2,... est une suite de fonctions holomorphes sur § a valeurs dans @
[respectivement dans @' et M;(@)] telles que pour tout & CC €, on ait:

lak(2)| < (Ca)¥H'k*, ke N, zeq,

alors on peut définir (cf [11, Exemple 1.1]) un symbole analytique formel sur §2 en associant
a tout ouvert Q CC Q le symbole:

AeCq

ag= Y ax(2)A7k

k=0
On dit que a est un symbole analytique calssique et on écrit:

o0

a(z,A) ~ 3 an(2)A7".

k=0

Soit maintenant (zo, &) € T*(IR") — {0} et #(z,a) une fonction analytique définie dans un
voisinage de (o, (zo,&o)) telle que:

‘;S(axv (amaf)) =0, Br‘»b(aza (am Olg)) = ¢ (114)
Sd(z, (az, a¢)) = Clz — a,? pour z,a téels. (115)
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Soit a(z, a, A) un symbole analytique classique & valeurs dans € défini et inversible dans un
voisinage de (zo, (g, £o)-

Définition [[11, Définition 6.1]

Soit u € D'(X x R**,@'), ot X est un ouvert contenant zo. On dit que &y n’est pas dans
Pensemble de fréquences analytiques de u en xzq si:

/ei’\"s(”’“)a(:c,a, N x(z)u(z)dz (116)

est a décroissance exponentielle lorsque A — oo, uniformément pour a dans un voisinage
réel de (z0,&0) (Ici, x € C§°(X) est une troncature valant 1 prés de xp).

De méme, on dit que & n’est pas dans Uensemble de fréquence analytique de u € D'(X,T")
en xo st o n’est pas une fréquence analytiqgue de chacune des | composantes de u en xo.

On peut montrer que cette définition ne dépend ni du choix de la troncature x ni du choix
du symbole analytique classique inversible a ni du choix d’une phase ¢ vérifiant (114, 115).

Soit u € D'(X,C). Soit C I’ensemble des (z,£) de T*X — {0} tels que £ n’est pas une
fréquence analytique de u en (z,£). Par définition, ’ensemble des fréquences analytiques de
u est I’ensemble:

W F,(u) = T*(X) — {0} — C. (117)
De méme, on définit W F, ;(u) pour une distribution u € D'(X,T").

Remarque 21 La notation WF, a été choisie par analogie au front d’onde analytique. En
effet, si u ne dépend pas de \, WF,(u) est le front d’onde analytique de u.

Soit D un opérateur différentiel a coefficient matriciels [ x [ analytiques et de symbole
principal inversible en (z,£p). On montre alors 1’équivalence:

(z0,&0) € WE(Du) & (zo,é0) € WF, (u). (118)

Dans la suite, on ne supposera plus que D(zg, &) est elliptique.

A.2 Propagation des singularités analytiques.

Dans cette section, on suppose au contraire que D(z,&) n’est pas inversible. On va voir
qu’on peut quand méme donner un résultat sur WF, (u) dans certains cas.

Soit P un opérateur matriciel [ x [, différentiel, a coefficients analytiques et de symbole
principal diagonal:

p(.’L‘,E).Iz, tel que P(x(th) = 0.
On a le:

Théoréme 22 On suppose que H, admet une courbe intégrale réelle:
v :[-a,a] - T*X -0,
telle que 7(0) = (z0,&s).

SiueD(X,q et si:
W E,y(Pu) 0 ([—aal) = D, (19)
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e ou bien y([—a,a]) C WF, (u),
e ou bien y([—a,a]) N WEF, (u) = 0.

Preuve.

On reprend la preuve du [11, Théoreme 9.1]. 1l suffit essentiellement d’y remplacer @’ par
@'. La méthode utilisée est “I’optique géométrique”.
Pour a = (ay, a¢), soit:

(z — ag)?

5 , wed@ —{0}. (120

v(z,a,\) = €M@y Gz, 0) = (2 — ag)oe + i
Soit m 1'ordre de 'opérateur P. Définissons:
. - 1
Q(z, Dz, A) = A" Pz,D,), D, = XDx.

L’opérateur ) a pour symbole principal:

‘I(:Ev é)Il = P(SC, E)Il

On cherche a construire une approximation de

w(t,z,a, ) = e "?v(z, o, A))

pour « proche de (xzo,&p) et pour t € [—a,a]. On aura ainsi, a des exponentiellement petits
pres:

— Oy(w(t, ., a, N)|u)gz = M (P*vlu)e = M (w(t, ., o, A)|Pu)ge, (121)
d’ou 'on déduira que:

— Oy(w(t, ., a0, A)|u)rz =0, (122)

puisque WF, )( Pu)N~([~a, a]) = 0. Enfin, on verra qu’il est facile de se convaincre que (122)
donne le Théoreme 22.

On cherche donc a résoudre approximativement:

DH—Qw = 0
{UJ((O,:E,Q,)A) = v(z,a,A) (123)

On procede par la méthode d’optique géométrique. Commengons par chercher la phase de
w. Soit ¢(t, z, ) la solution locale de 1’équation:

e +q(z,Vap) =0, ¢(0,2,0) = ¢(z,0). (124)

Puisque le symbole principal de P est diagonal, le symbole principal de P* est P, le conjugué
de p. Or v est une bicaractéristique réelle de p, donc aussi de . On a donc pour o = ap =
(330,50), (¢, &) = (1) et a assez petit:

o(t,z,0) =0, Vop(t,z,0) =&, SV ot zi,0)>>0. (125)
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Lorsque a est proche de ap, ¢(t,.,a) est une petite perturbation de ¢(t,.,ap), donc le
minimum de S(t, ., ) est proche de 0 et est atteint en un point #;(e) proche de z;. De
plus,

'gt = Vop(t, 24(a), @)
est proche de &;.
De ces constatations et du fait qu’un voisinage de la géodésique v¥([—a,a]) n’est pas

dans ’ensemble de fréquences analytiques de Pu, on déduit facilement que, modulo un
exponentiellement petit:

[ et TPu(z) = 0. (126)
On cherche maintenant w sous la forme:
) o0
w(t,z, 0, A) = alt,z, @, A)e?*E=eN | ol g~ 3 ar(t, 2, a)A7F
k=0
est a trouver parmi les symboles analytiques classiques. Le systéeme (123) donne la suite
d’équations de transport:
LaO = 01 a’{)lt:O == UO)
Lal + fl(ao) = 0, 6111'3:0 == 0,

4 : : (127)
Lay + fk(ao, ---,ak-—l) = 0, Qlt=0 = 0,

o L = (0, + Vyq(z,V).0:).I; + s(z,a) est I'opérateur de transport (s(z,«) est une
matrice carrée d’ordre [ & coefficients analytiques),

¢ fi(ao,...,ak—1) est une expression linéaire a coefficients analytiques de dérivées d’ordre
quelconque de ay, ..., ap_;.

On peut résoudre ces équations successivement dans un domaine complexe indépendant
de k. En appliquant le Théoréeme 23, on montrera que les a; vérifient les estimations qui
permettent d’affirmer que @ est un symbole analytique. Admettons-le pour I'instant.

Notons donc encore par a(t, z, @, A) une réalisation de ce symbole analytique classique et
soit w = ae*¢, Alors (D; + @)w est a décroissance exponentielle uniforme d’apres le systeme
(123) et w(0,z,a,X) = v(z, o, \) d’apres le systeme (127).

Quitte a multiplier u par une troncature, on peut supposer que le support de u est proche
de zo. Alors, les égalités (121) sont vraies modulo des termes & décroissance exponentielle et
I'égalité (126) entraine bien 122).

En intégrant (122) par rapport a ¢, on montre que pour tout ty € [—a,al:

(v(., @, A)|u) = (w(to, -, o, A)|u). (128)

On en déduit Palternative du Théoreme 22.
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Il nous reste & montrer que les équations de transport (127) admettent un solution ana-
lytique.

Soit P(z,D,, ) un opd analytique, formel, classique, d’ordre 0, défini pres de (o, o), de
symbole principal diagonal p.I;, vérifiant:

p(z0,€0) =0, Vep(zo,&0) # 0.

Soit ¢ une fonction holomorphe définie pres de z, telle que:
p(z,Vep(z)) =0, V(o) = o (129)
Soit H C @™ une hypersurface complexe passant par ¢ et telle que:
Vep(zo,€0).V, est transverse a H en zo.

Apres un changement de variable, on se raméne au cas ou 7o = 0 et ou H a pour équation
Z» = 0. On note encore z = (z', z,,).
On a alors le:

Théoréme 23 Soient v(z, A) et u(z', \) des symboles analytiques formels classiques d’ordre
0 d valeurs dans @', définis prés de = Ogn et de 2’ = Ogn—1.
Alors, il existe un symbole u dans la méme classe tel que:

Ae" M Pey = v, uy = i (130)

La preuve de ce Théoréme est tout a fait analogue a celle du [11, Théoréme 9.3] a laquelle
on renvoie.

Pour conclure la preuve du Théoreme 22, il nous faut encore vérifier que le systéme (123)
satisfait aux hypotheses du Théoréme 23.

Le temps ¢ joue le rdle de la variable z, du théoreme. L’hypersuface H a pour équation
z, = 0. L’opd P(z, D, \) est ici:

D-'En + Q(Ira D-‘D': A):

dont le symbole principal est:

p(:lt,ﬁ) = (gn + ‘1'(‘7"75'))-]1-

Dans notre cas, il faut considérer a, comme un parametre dans la définition (120) et a,
comme {'. On a (0) = (z{,£;) et (z0)n = 0, (éo)n = 0. En ce point, on vérifie que:

o g(zg, &) = p(7(0)) = 0,5 il faudra encore s’assurer que le champ hamiltonien ne s’annule
pas,

e D’apres (124, 120),

V(@ 2n=0) = €, By (e, 20 = 0) = —q(1(0)) = 0,

d’ol la deuxiéme partie de ’hypothese (129).

®Ici p désigne le symbole principal de I'opérateur P du Théoréme 22.
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La premiére partie de 'hypothése (129) est satisfaite en vertu de ’équation (124). De plus
le champ:

vf(ﬁn + Q(xrvéi))(’Y(O))vz = vf’p-vx’ o azu

est transverse & H en o et non nul. Ainsi, le champ hamiltonien ne s’annule pas.

Toutes les hypothéses du Théoréme 23 sont donc satisfaites. Ceci conclut la preuve du
Théoreme 22.

B Fin de la preuve de la Proposition 9.

Dans la proposition (9), on étudiait une fonction résonnante v; dans un voisinage (}; de la
projection 7, (y([—s1,0])) sur RS2 d’une bicaractéristique v([—s1,0]) du symbole p*(z,§). On
notait xo une troncature a support dans ; et valant 1 sur £y un voisinage de 7.(y([—s1,0]))
tel que Qo CC ﬂ]_.

La bicaractéristique issue de 7(0) ne rencontrait pas les points de type 1 (i.e. les points
du bord de l'ile situés & une distance d’Agmon Sy du puits P), on avait donc:

‘ﬁ"—’) _ (131)

Xov; = O, (e' R

On savait de plus que pour une transformée de FFBI T adaptée & Ao, il existait § > 0 tel
que:

Txovj =0 (eFEQT:_ﬁ) (132)

uniformément dans un voisinage de v(—s;). Enfin,

(D(R) = ;) x0v; = [D, xolvj + O (6_25’?) : (133)

L’Equation (133) entraine:

(D-y(h) + 3)(D(R) = 5} xovs) = w+ O (2F), (134)

ou w est une fonction de support disjoint de 2. Si l'on calcule 'opérateur composé, on
obtient:

3
Pi=(D_y +p;)(Dy — p;) = =A+1—(V = ;)" + h Y e;D;V,
=1
et on s’apercoit que P est un opérateur du type de ceux étudiés dans cet appendice. Son
symbole principal est en effet diagonal, puisque p; = O(h), il vaut:

(2 +1-V¥x).Iy=ptp .1y = p.1, (135)

On rappelle de la Remarque 10 que la bicaractéristique issue du point @ = 7(v(0)) (de type
2) pour p est la bicaractéristique de p* issue de Q donc 7.
On se retrouve ainsi dans une situation analogue a celle du Théoréme 22 a condition de

remplacer la fonction u par er Xov; et de changer la phase ¢ en la phase de la transformée
FBI adaptée a Ap. L’Equation (134) est équivalente a I’hypothese (119) du Théoreme 22,
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alors que ’Equation (132) est 1’équivalent de I’absence de “front d’onde analytique” en un
point de la bicaractéristique (en y(—s;) ici).

On reprend donc la preuve du Théoréme 22, mais on remplace “étre a décroissance expo-
nentielle” par “étre un O(e~(%0+8)/) pour un réel § > 0”.

On rappelle que A = % Ainsi, en notant Q(m,bx,/\) = AM="P*(z,D,) oh m = 2 est
'ordre de P, on cherche w tel que:

{ (f)t_*_Q)w = 0
w(0,z,a,)) = v(z,a,A) ’

oll v(z, a, A) = e*#(#:2) est ’exponentielle de la phase ¢ de la transformée de FBI T adaptée
a Ao = RG:

#(z,a) = (z — az)ag + iM(a)(az — z)°.
L'Hypothese (134) entraine alors ’équivalent de (126):

(w(t,.,a,A\)|Pvi(.,A))2 =0 (6—2,\50) ;

alors que:
(10, Vo, )z = 0
= fl (w( 3y Qy A)lv.J( ))L2 + (w(—sl,.,a, )\)IU]'(.,/\))L?. 5 O(e_)\(so+6 )
= [ MQu(t, o, M[o;(, )2+ (w(=s1,., 0, A)|v;(, M)z +  O(eE+9)
= [ Mw(ty ., @, )IP;( M2+ (w(=s1,., 0, A)[v;(-,A))rz +  O(e75+9)
= Gl ey + O(e=MSo+A)) 4+ O(e~MSot+6)),

en appliquant aussi (132).

Finalement, (w(0, ., a, A)|v;(., A))z2 est bien & décroissance exponentielle devant e=*%. En
utilisant ’estimation (131) et l'inverse & gauche S de T construit dans [8, Section 1.f], on
conclut que:

v; = O(e~*50+9))
pour un réel § > 0 dans un voisinage de 7,7(0).
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