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Résonances pour l'opérateur de Dirac-II.
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Université de Paris-Sud
Bâtiment 425
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Abstract
This paper is a continuation of [8]. We study the shape resonances of the Dirac operator

in the semi-classical limit and prove that they live exponentially near the real axis. The
exponential decay is measured by the Agmon's distance between the well and the sea. If the
well is ponctuai and non-degenerated, we can state precisely the asymptotic behaviour of
the imaginary part of the first resonance.

Résumé
Cet article est la suite de [8]. On étudie ici les résonances de forme de l'opérateur de Dirac

en limite semi-classique et on prouve qu'elles se localisent exponentiellement près de l'axe
réel. La décroissance exponentielle est mesurée à l'aide de la distance d'Agmon entre le puits
et la mer. Lorsque le puits est ponctuel et non dégénéré, on peut préciser le comportement
asymptotique de la partie imaginaire de la première résonance.
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1 Introduction.
L'opérateur de Dirac est défini sur C°°(1R3;Œ4) par:

3

D(h) hYaJDJ + a4 + V(x)I4, (1)
3=1

où les Qj,j6[i,4] sont des matrices carrées d'ordre 4 de trace nulle qui anticommutent:

ociOLj + cnjOi 26ij, (2)

où /4 est la matrice identité et où V(x) est le potentiel.
Dans [8, section 1], nous avons montré que sous certaines hypothèses (analyticité sur

le potentiel V(x) et existence d'une fonction fuite G), on pouvait voir l'opérateur D(h) —

z, z £ Œ, comme un opérateur pseudo-différentiel agissant sur des espaces de Sobolev à

poids H(Ata,m) définis à l'aide de la fonction fuite G. Le symbole de D(h) — z étant alors

elliptique à l'infini, on en déduisait qu'au voisinage d'un réel E il n'y avait qu'un nombre fini
de valeurs de z pour lesquelles l'opérateur D(h) — z n'était pas inversible, ces valeurs étant
les résonances.

Dans cet article, on va renforcer les hypothèses permettant de définir les résonances dans
le cas général pour préciser la localisation et le comportement asymptotique (quand h tend
vers 0) des résonances de forme.

Avant de définir les résonances de forme pour l'opérateur de Dirac, il nous faut d'abord
rappeler brièvement ce qu'est une résonance de forme pour l'opérateur de Schrôdinger

P(h) -h2A + V(x), (3)

défini sur C°°(lRn,W). Supposons que le potentiel V(x) [voir Figure 1] vérifie:
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• V(x) < E si x £ U, U un compact de IRn (le puits),

• V(x) > E si x £ O — U, O un ouvert pas forcément borné de Rn (l'ile),

• V(x) <Es\x£Rn-0(\& mer).

V(x)

*, île0 ¦ rr île0
mer M puits U mer M

Figure 1: Puits dans une île.

Montrons maintenant heuristiquement comment de tels potentiels peuvent générer des

résonances. Considérons un état quantique noté <j>(x,t) (i.e. à tout instant t, 4>(-,t) £ L2(1R%,(F))

d'énergie E localisé à l'intérieur du puits U à l'instant t 0. En mécanique classique, une
particule d'énergie E ne peut franchir une barrière de potentiel V(x) > E. Mais en mécanique

quantique, une particule peut franchir une telle barrière (c'est l'effet tunnel). Dans
notre cas, on observerait que l'état <j> se délocalise au cours du temps en fuyant vers la mer
O par effet tunnel (la probabilité d'observer la particule à l'intérieur d'un compact K fixé
décroit exponentiellement avec le temps). L'état <f>(x, t) est proche d'une fonction résonnante
w2 (au sens de la norme L2(K)) vérifiant:

D(h)uz(x,0) zuz(x,0)

L'évolution au cours du temps de la fonction résonnante est donnée par l'équation:

ihdtuz(x,i) D(h)uz(x,t),

donc la norme L2(K) de uz décroit exponentiellement avec le temps:

\uAxA)\l,1(K) e * \uz(x,ti)\L*(K)

La constante de décroissance exponentielle (inverse du temps de demi-vie de l'état quantique
<j>) ne dépend que de la partie imaginaire de la résonance, d'où l'intérêt d'essayer de préciser
îrz (qui doit être négative). On peut d'ailleurs montrer que la partie imaginaire des résonances
est négative lorsqu'on utilise la définition microlocale de Helffer-Sjöstrand. Ce point sera
explicité à la Remarque 2 (p. 7).
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Dans le cas de l'opérateur de Schrôdinger, B.Helffer et J.Sjöstrand ([4, section 9]) ont
montré que les résonances sont exponentiellement proches des valeurs propres d'un problème
de Dirichlet sur un compact K de l'île. Plus précisément, il existe une bijection b entre
résonances et valeurs propres proches de E telle que:

b(p)-p Ot(e-2-^),

où 5o est la distance d'Agmon entre le puits U et la mer M. On peut rendre e aussi petit
que l'on veut en choisissant le compact K proche du bord de l'île.

Pour l'opérateur de Dirac, il nous faudra préciser ce qu'on entend par "puits dans une
île". Dans la section 2, on montrera alors que les résonances sont exponentiellement proches
des valeurs propres d'un opérateur de Dirac "à potentiel modifié". Dans la section 3, on
adaptera les techniques de [4, Section 10] pour préciser le comportement asymptotique de

la partie imaginaire d'une résonance de forme dans le cas où le puits U est ponctuel et non
dégénéré. En particulier pour la première résonance, on montrera que:

$z(h) -Ch^e-2-^-(l + 0(h)),

• où d est un entier dépendant de la géométrie du bord de l'île (génériquement égal à 2,
mais valant par exemple 0 pour un potentiel à symétrie sphérique),

• où C dépend du potentiel V(x) mais pas de h,

• et où So est la distance d'Agmon du puits à la mer (la distance d'Agmon est associée à

la métrique (1 — (V(x) — E)2)dx2 comme on le verra dans la section 2.1).

2 Résonances de forme.
Commençons par définir ce qu'est un puits pour l'opérateur de Dirac.

2.1 Puits, distance d'Agmon, problème modifié.
Soit E £ M le niveau d'énergie au voisinage duquel on souhaite étudier les propriétés

spectrales de D(h).
Soit nx la projection de T*R3 R3X x R3 sur R3X.

Pour l'opérateur de Schrôdinger de symbole p(x,Ì) Ì2 + V(x), on définit les puits
microlocaux comme les composantes connexes de la surface d'énergie E définie par:

<TE {(x,i)/p(x,i)-E 0},

et on en déduit les puits en projetant cte sur R3 à l'aide de nx.
Pour l'opérateur de Dirac de symbole

Dv(x,i) Yot& + ccA + V(x).h, (4)
i=i
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on définit de manière analogue les puits microlocaux comme les composantes connexes de:

cje {(x,i)/Dv(x,i) — E admet 0 pour valeur propre}.

Le symbole Dy possède deux valeurs propres, chacune double:

Pt(x,t) V(x)±y/ï+P, (5)

donc la surface d'énergie E possède deux composantes disjointes a+ et a~ d'équations
respectives p+ — E et p" E. On montre facilement que la projection sur R3 de la surface

d'énergie est donnée par:
{x/(V(x) - E)2 > 1}. (6)

Pour simplifier, on supposera dans la suite que E 0, quitte à modifier le potentiel V(x).
Les puits sont donc les composantes connexes de l'ensemble {x/V(x) > l}l){x/V(x) < —1}.

Pour étudier les propriétés spectrales d'un opérateur de Dirac, on utilise des estimations
L2 à poids qui permettent par exemple d'établir la décroissance de fonctions propres à l'aide
de la distance d'Agmon. On montre (cf [12, Proposition 2.1]) la:

Proposition 1 Soit V(x) £ C°°, soit <j> une fonction uniformément lipschitzienne de R3 à

valeurs dans R et soit u £ H2(R3,(F4). Alors, on a:

h2J^\v(eîu)\2dx + J3(l-V2-\Vj>\2)e£\u\2

» (J
3

e% (D_v(h)Dv(h)u\u)(Ii dx) (7)

où D-V(h) hJ23=1 ajDj + a4- V(x).I4.
L'équation (7) conduit à associer la distance d'Agmon d(x,y) à la métrique:

(l - V2(x)) dx2. (8)

Elle permet à Wang ([12]) de montrer des résultats analogues à ceux de [3] sur les fonctions

propres et les valeurs propres d'opérateurs de Dirac à puits multiples. Néanmoins, au lieu
de comparer à des problèmes de référence du type de Dirichlet, il est techniquement plus
simple pour l'opérateur de Dirac de comparer à des problèmes modifiés.

"Modifier un problème" associé à un puits Uj du potentiel V(x) consiste à modifier le

potentiel V(x) au voisinage de tous les puits Uk distincts de Uj en sorte que:

• Uj soit le seul puits du potentiel modifié V,

• l'inégalité V2 < V2 soit respectée.

(On montre sans difficultés que c'est possible).
Notons:

Bd(U,S) {x/d(U,x)<S}, (9)

la boule de rayon S pour la distance d'Agmon d. Si So est la distance d'Agmon du puits Uj
au puits Uk le plus proche, on peut s'arranger pour avoir un potentiel modifié V qui coïncide
avec V sur B^(U, So — v), ri > 0. Un autre choix de potentiel modifié ne change alors les

valeurs propres que de l'ordre de:

e i» hm£(77) 0.
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2.2 Hypothèses.
Nous sommes maintenant en mesure de donner les hypothèses sur le potentiel V(x). On

suppose toujours qu'on s'intéresse aux résonances proche du niveau d'énergie E 0.

Nous faisons les hypothèses de [8, Section 1] qu'on rappelle brièvement:

• Il existe deux fonctions r,R £ C°°(R3,R+) telles que:

1. r > l,rR> 1,

2.

Va £ N, 3CJ \Ôaxr\ < CarR-a, \%!R\ < CA1-*,

3. V est analytique sur JR3 et s'étend analytiquement au domaine:

D {x/\5x\ < R($x)/C},

A. \V(x)\ < Cr($tx), Vx£D.

On note alors:

r(x,Ì) Jr2(x)+Ì2,
qui contôlera les dérivées en Ì des symboles.

• Il existe une fonction fuite G(x, Ì) £ C°°(R?, R), impaire en Ì et telle que:

1. pour a, ß £ IN3 vérifiant |a| + \ß\ > 1, il existe Caß tel que:

\dadpG\ < C^r^R1-0,

2. En dehors d'un compact de R?, on a:

Hp+(G)(x,i)>r(x)/C Sip+(x,i) 0, (10)

Hp-(G)(x,i)>r(x)/C sip-(x,i)=0,

Dans la suite, on notera :

fa {(x,Ì)/p+(x,Ì) 0}, V {(x,Ì)/p-(x,Ì) 0}

3. \dxG(x,i)\<C(l + \$i\)

En rajoutant une hypothèse d'uniformité de (10) par rapport aux fonctions d'échelles r et R
(Hypothèse [8, (1.9)]), on peut alors appliquer le [8, Théorème 1.5] qui permet de définir les

résonances en limite semi-classique. De plus, les espaces résonnants sont de dimension paire
([8, Théorème 2.4]).
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Remarque 2 Comme indiqué en introduction, l'Hypothèse (10) entraîne que les résonances
ont une partie imaginaire négative (cf [9, Théorème 1.18]). Ce résultat est également valable

pour les résonances d'énergie négative, ce qui est en contradiction avec le résultat obtenu en

définissant les résonances par la technique de la dilatation analytique développée par Aguilar
et Combes pour l'opérateur de Schrôdinger et adaptée par Seba ([10, Théorème 1]) dans le

cas de l'opérateur de Dirac.
En fait, B.Helffer et A.Martinez ont montré dans [1] que les définitions du type microlocal

et du type "dilatation analytique" sont compatibles lorsque l'on peut choisir comme fonction
d'échelle:

r(x) 1, R(x) Vl + x2,

et comme fonction fuite:
G(x,i) x.i.

Il faut donc comparer les signes des résonances définies par ces deux théories.
La dilatation analytique revient à effectuer une rotation des énergies dans le complexe

([10, figure 1]) dans le sens des aiguilles d'une montre, c'est-à-dire que le spectre essentiel

positif tourne vers le demi-plan inférieur et le spectre essentiel négatif tourne vers le demi-
plan supérieur. D'où le résultat:

Le produit de la partie imaginaire d'une résonance par son énergie est négatif.

Par contre le choix des signes dans (10) "tord" les energies vers le demi-plan complexe
inférieur ce qui explique que la partie imaginaire d'une résonance soit toujours négative.

Il semble d'ailleurs impossible de changer de sens et signe l'une seulement des deux inégalités

de (10). On ne peut que changer les deux inégalités simultanément. En effet, lorsqu'on
prouve le [8, Théorème 1.5] qui définit les résonances, on doit montrer que le symbole de

l'opérateur D(h) — z — défini de l'espace de Sobolev à poids H(AtG,r) dans H(A{gA) —
est elliptique (en-dehors d'un compact) à la fois pour des z tels que:

• Ö2 > e (le symbole est alors globalement elliptique et D(h) — z est inversible),

• —t < 'Sz < e (le symbole n'est alors elliptique qu'en-dehors d'un compact et des

résonances peuvent apparaître).

C'est la [8, Propostion I.4] qui nous donne ce résultat d'ellipticité, pour des z appartenant
à l'ensemble:

Qt {z£Œ/ \*z-E\<±, -^<*z<T},
où C est une grande constante positive et T est arbitraire. En relisant la preuve de cette
Proposition I.4, on s'aperçoit alors que changer l'une seulement des inégalités de (10) obligerait
à diminuer fi< en un ensemble:

{*€*/ \**-E\<±, -±<^<^},
qui ne contient plus l'ensemble {z/ ^sz > e} lorsque h est assez petit (rappelons que e est

fixé, alors que t est dans un intervalle du type ]0,to(h)], où t0(h) tend vers 0 lorsque h tend
vers 0).



1084 Parisse H.P.A.

Remarquons que la théorie n'interdit pas d'avoir simultanément une "fuite" vers les puits
de type V(x) > E + 1 et vers les puits du type V(x) < E — 1. Les effets de ces fuites
s'additionnent et diminuent alors le temps de vie de l'état quantique. Ce qui doit se traduire

par une partie imaginaire de résonance plus grande en valeur absolue (chaque type de puits
apportant une contribution négative à Qz). On arrive à la conclusion suivante:

Le choix de signes identiques dans (10) équivaut à dire que les contributions des deux types
de puits s'additionnent.

Revenons à la comparaison avec le choix de signe de la théorie de la dilatation
analytique. On souhaiterait pouvoir choisir de prendre des parties imaginaires positives pour
des résonances d'énergie négative. Or dans la théorie microlocale, le choix du signe est une
convention locale (valable au voisinage d'un niveau d'énergie E). Il nous suffit donc de changer

de convention (c'est-à-dire changer simultanément les deux inégalités de (10)) lorsqu'on
étudie des résonances d'énergie négative. Notons que dans ce cas, les deux types de puits
apporteront une contribution positive à la partie imaginaire des résonances.

On rajoute les hypothèses de "puits dans une île", c'est-à-dire qu'on suppose l'existence
d'un compact U inclus dans un ouvert connexe O tels que:

\V(x)\ > 1 si x £ U, \V(x)\ < 1 si x £ O - U, \V(x)\ > 1 si x£ O.

On appelle O l'île, U le puits, et M R? — O la mer.
On va renforcer l'hypothèse d'existence de fonction fuite. Notons encore:

p(x,Ì)=p+p-(x,Ì) V2(x)-l-Ì2.
On remplace l'Hypothèse (10) par:

HP(G)<-r-^P-s\(x,i)£a+nM, HP(G) > ^P-si (x,() e (r-H M. (11)

On peut alors montrer comme dans [4, Proposition 9.2] la:

Proposition 3 Soit So d(U,M) la distance d'Agmon du puits à la mer (cf Figure 2, p.
9). Alors Bd(U,So) est relativement compacte.

Fixons pour la suite de cette section r/ > 0 assez petit. Soit:

M0 Bd(U,So-v)- (12)

On modifie si nécessaire la fonction fuite G de telle sorte que:

G(x,i) 0 si a: € M0. (13)

Soit D° Dyo(h) Dm0 un opérateur de Dirac modifié (au sens de la section 2.1) hors
de M0 de telle sorte que U soit le seul puits du potentiel modifié V° et plus précisément:

• qu'il existe e tel que |V°(a:)| < 1 — e si x£ M0,



Vol. 65, 1992 Parisse 1085

U 0

So

M

Figure 2: Bd(U,S0).

que |â*V0(x)| < Cx.

On peut alors montrer que D° est essentiellement autoadjoint de domaine /?1(iR3,ff4) comme
opérateur non-borné de L2 (cf [7] par exemple).

On suppose qu'il existe une famille d'intervalles compacts 1(h), tendant vers {0} si h tend

vers 0-, et une fonction a(h) vérifiant:

• Pour tout e > 0, il existe Cc > 0 tel que:

a(h)>C€e-*, Sp(D0)n{(I(h) + [-2a(h),2a(h)])-I(h)} H>, (14)

Sp(D°)nl(h) {fi1(h),...,pm(h)}, (15)

chaque valeur propre étant répétée autant de fois que sa multiplicité.

Les résultats sur la fonction de comptage (cf [2, Théorème 5.8] dans le cas de l'opérateur
de Schrôdinger ou [6]) permettent de supposer que dans des cas "raisonnables", on peut
décomposer le spectre en intervalles 1(h) vérifiant (14). En effet, si on note N(\,fi,h) le
nombre de valeurs propres de D°(h) situées dans l'intervalle [\,fi\, alors on montre l'estimation

grossière:

N(\,fi,h) 0(h~N°),

pour N0 assez grand et on a même une asymptotique:

N(\, p, h) C(\i - \)h~' (l + 0(Vhj)

2.3 Localisation des résonances.

Soit 6(A) une fonction tendant vers 0 lorsque h tend vers 0 et telle que b(h) > a(h).
Notons:

Q(h) {z£(F/ dist(3b,1(h)) < a(h), |3fz| < b(h)}. (16)

On a le:
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Théorème 4 // existe une bijection b entre les valeurs propres du "problème modifié" D
situées dans l'intervalle 1(h) et les résonances de l'opérateur de Dirac Dy(h) situées dans le

rectangle fi(A) telle que:

b(ßl) - (it O (e-2^) lim£(7/) 0. (17)

Ici, la bijection tient compte des multiplicités des résonances et des valeurs propres.

On prouve ce Théorème exactement comme B.Helffer et J.Sjöstrand ont montré le
théorème analogue pour l'opérateur de Schrôdinger ([4, Proposition 9.6]). L'idée de la preuve
consiste à caractériser les résonances de D(h) par l'annulation d'un déterminant d'une
matrice carrée d'ordre m à l'aide d'un problème de Grushin. Cette matrice est alors proche
de la matrice obtenue en considérant l'opérateur modifié D° (on estime l'écart à partir de

résultats sur la décroissance exponentielle des noyaux de résolvantes d'opérateurs modifiés
obtenus avec les inégalités L2 à poids (7)). D'où l'on déduit une bijection entre les fii(h) et
les résonances de D(h). On peut consulter les détails de la preuve pour l'opérateur de Dirac
dans [9, Section 2.3].

2.4 Fonctions résonnantes.
Dans cette section, on construit une base de fonctions résonnantes à partir des fonctions

propres de D°, puis on estime la taille des fonctions résonnantes d'abord sur R3 tout entier
à l'aide d'estimation sur le noyau de (D(h) — z)-1, puis on précise ces estimations en-dehors
de Bd(U, So)- Introduisons encore quelques notations commodes pour la suite:

On dira qu'une quantité q(h) est un Ö (e clh) si:

Vr/>0, 3e(v) > 0,3CJ \q(h)\ < Cne~%e^, lim£(7?) 0. (18)

• Soit / :R3*R3 -* R+
On dira que le noyau Kp d'un opérateur P agissant de L2 dans H1 est un 0(e~slh) si

pour tout x0, j/o £ JR?, pour tout £o > 0, il existe un voisinage W de x0 et un voisinage
V de yo tels que:

l^wl/Tfvv) |u|i2(V)Ô e" »' e
*

pour u supporté dans V. (19)

2.4.1 Construction des fonctions résonnantes

Soit (<^,(A))i<j<m une base de vecteurs propres de D°, donc telle que:

(D° - w)w 0.

Soit F la somme directe des espaces résonnants Fz associées aux résonances z de D(h) situées
dans fl(h) et irF la projection sur F (définie ci-dessous). Posons:

Vj(h,t,G,fi) *F(x<Pj) ¦?-.[(*- Dr'x^dz, (20)
Z7TÎ J-r
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• où x € Cg°(M0) vaut 1 dans Bd(U, S0 - 2?/)

• où 7 est un contour rectangulaire contenu dans Q,(h), contenant 1(h) et non
exponentiellement proche de 1(h).

Dans la suite, on notera aussi i[)j Xfj-
La dépendance de Vj par rapport aux paramètres t et G se trouve dans la projection irp-

Or, on peut montrer, en déformant la fonction fuite comme lorsqu'on voulait prouver que
l'ensemble des résonances ne dépendait pas de i et G ([4, Théorème 8.5]), que:

Si w £ Cq30, ttfw ne dépend ni de i ni de G pour h assez petit.

Soit:

rj (D- //j)V>j [D,x]<Pj.

En regardant le support de x et la décroissance des fonctions propres de D°, on a:

r3 Oc (e-^) ô (e-*) (21)

et de plus rj est supporté en dehors de Bd(U, S0 — 2r[).
Par définition de rj, on a:

(D - z)ipj rj + (uj - z)ipj,

et en multipliant par (z — pj)(z — D)"1,

-(z - p,)-1^ (z- pj)(z - £)-fa -(z- £>)-Vi,

d'où, en intégrant:
1 f

vj - x[j TTpipj -i,J -—.(z- D)-\z - pf)' rjdz. (22)
Im Jj

Comme rj vérifie l'estimation (21), il nous reste à obtenir des estimations sur la résolvante

(z — D)'1 pour mieux connaître les fonctions résonnantes v3 (le comportement des fonctions

propres d'un opérateur de Dirac a été étudié par Wang: [12]).

2.4.2 Estimations sur la résolvante (z — D)"1.

Soit:

d(x, y) mm(d(x, y), 2S0 - d(U, x) - d(U, y)). (23)

On montre comme dans [4, Proposition 9.8] la:

Proposition 5 Soit T(h) un sous-ensemble de il(h) tel que pour tout e > 0, il existe Cc > 0

tel que dist(T(h),{px(h), ...,nm(h)}) > Cfae^fa
Alors pour t > 0 assez petit, il existe h(t) > 0 tel que pour h £]0, h(t)[, z £ T(h),£ > 0,

on ait uniformément par rapport à z:

• la norme de l'opérateur (D — z)~l agissant de H(At,\) dans H(At,f) se majore par

K(D-.z)-.{x,y) 0[e-^A1), (24)

pour (x,y) £ Bd(U,So).
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2.4.3 Estimation des fonctions résonantes avec perte de e.

On a le:

Théorème 6 On a uniformément dans Mo:

^-^ôfe-^^y (25)

sfx\ J d(U,x) six£ Bd(U,So) /26x

Si on note:

aty —
J

5o sinon,

alors pour tout compact K CC R3 et tout e > 0, on a uniformément en h:

vj(x) O (Vfa^1) x £ K, (27)

et de même pour les dérivées. Ici la majoration ne dépend pas de rj.

Encore une fois, la preuve est semblable à celle utilisée pour l'opérateur de Schrôdinger
dans [4, Théorème 9.9]. Elle consiste à utiliser les estimations (24, 22) et à regarder le lieu
où est supporté rj.

On en déduit facilement le:

Corollaire 7 Les fonctions vx, ...,um forment une base de F et la matrice de l'opérateur D
restreint à F dans cette base est de la forme:

Diag(fij) + O e

2.4.4 Estimation des fonctions résonnantes avec gain de e.

Avec le Théorème 6 et le Corollaire 7, on a pour x £ K compact:

2Sq + -'(*)-'(i)
(D — Pj)vj O e

et de même lorsqu'on dérive. D'où sur K — Bd(U, So)'-

(D - H)vj O (r^) (28)

En appliquant les inégalités à poids (7), et en contrôlant v3 au bord de l'ouvert O — Bd(U, So)
à l'aide de (27), on montre facilement la:

Proposition 8 Pour tout compact K CC O — Bd(U,So), il existe e0 > 0 tel que:

Vj 0 (e-3**) (29)

uniformément sur K (et de même pour les dérivées).
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Ce résultat n'est pas optimal lorsqu'on est proche d'un point du bord de l'île situé à une
distance (d'Agmon) du puits supérieure à So- Un tel point est dit de type 2, par opposition
aux points de Bd(U, So) fl dO qui sont dits de type 1. Mais l'hypothèse renforcée d'existence
d'une fonction fuite (11) va nous permettre de montrer la:

Proposition 9 Pour tout compact K de O — Bd(U, So), il existe un voisinage fl de K dans
R3 et un réel £0 > 0 tels que:

Vj O (e"***) (30)

uniformément sur A (et de même pour les dérivées).

Preuve de la Proposition 9.
Encore une fois, on suit la preuve de B.Helffer et J.Sjöstrand ([4, p.129-132]).

• L'idée de la preuve est qu'aucune trajectoire du flot hamiltonien Hp+ ou de Hp- issue
d'un point de dO ne peut revenir au bord de l'île à cause de l'hypothèse renforcée (11).
Donc une telle trajectoire ne peut atteindre un point de type 2 à partir d'un point de

type 1 (ou inversement). Comme Péloignement de ces trajectoires devrait entraîner un
gain de décroissance exponentielle pour les fonctions résonnantes et comme en-dehors
de Bd(U, So) le chemin le plus court vers le puits U en restant dans l'île est de longueur
strictement plus grande que So, on aura une décroissance exponentielle des fonctions
résonnantes près des points de type 2 "meilleure" que So-

• Justification du fait que les trajectoires du flot hamiltonien de p ne peuvent contenir
qu'un point de l'île.
Soit 7(5) (x(s),i(s)) une trajectoire de Hp telle que 7(0) (x2,0) où x2 £ dO (dans
la suite x2 sera un point de type 2 mais cela s'applique aussi à un point de type 1).

On a alors x(s) x(—s) et i(s) —i(—s). Si x(s0) £ dO pour un réel so non nul, alors

on a x(s — s0) x(s + s0) et en particulier x(2s0) x(0).
La bicaractéristique 7 est donc périodique de période 2s0 donc reste dans un compact.
Ceci contredit l'hypothèse (11).

En effet, soit ]Xl,T+[ l'intervalle maximal de définition de 7. Si V(x2) —1 alors
d'après (11) on a:

7(s) £ fa, Hp(G)(7(s)) < -Ç.
Comme dsG(^(s)) Hp(G), on en déduit que:

±0(7(5)) < ——r(x(s))R(x(s)), pour ± s > s0.
O

Si V(x2) 1, on a:

±G(j(s)) > — r(x(s))R(x(s)) pour ± s > s0.

En particulier, on a:

->T.
lim G(7(*)) ±00.
±V(7(0»
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• Représentons maintenant les espaces H(At,.) à l'aide d'une transformée de F.B.l. adaptée

à A0 (et pas à Ata). Le poids exponentiel intervenant dans la définition des H(At, 1)

devient ([4, p.130-131]):
Gt(a) tG(a) + 0(t2rR).

Le symbole de D n'est pas elliptique si p 0, donc on va faire une étude microlocale
de v Vj le long d'une bicaractéristique de p issue d'un point 7(0) (x2,0), où x2 est

un point de type 2. On a 11/(12)1 1- Si par exemple V(x2) 1, alors:

lim G(7(s)) -00.

On rappelle que la transformée de F.B.l. Tv vérifie:

G(x t
Tv £ L2(A0,e-<*dxdi),

donc Tvj est exponentiellement petit "au voisinage de 7(T_)".
Plus précisément, si on fixe 6 > 0, il existe sx tel que:

Ö(7(-*x))>-(« + efo))-

On prend deux voisinages fl0 CC Ai de la projection sur x de 7Q—si,0]). D'après (27)
et comme 7 ne rencontre pas de point de type 1, la fonction v est uniformément un
0€ (er(s°-e)lh\ sur fli. Soit xo € G^ (Ai) une troncature valant 1 sur A0. Alors, on a:

Xov Oe

et il existe ß > 0 tel que:

Txov -Ole <•

uniformément dans un voisinage de ~f(—sx).

D'après (28), on a:

(D - P])xov [D,xo]v -f O f e

et de plus [D, Xo] est supporté loin de la bicaractéristique. Il faut alors appliquer un
analogue du théorème de propagation des singularités analytiques le long des bicaracté-
ristiques pour un opérateur de type principal réel (cf [11, Théorème 9.1]) à l'opérateur
matriciel D. On montrera dans l'Appendice (Section B) comment on peut adapter la
démonstration de [11, Théorème 9.1] à l'opérateur de Dirac.

On en conclut alors qu'il existe un réel £0 > 0 et un voisinage A2 de x2 tels que:

/ %+«.
Ole

unifomément dans A2.

Si on avait eu ^(2:2) —1, il aurait fallu partir de la limite s —> T+ et de l'inégalité:

G(7(si)< ~(e(ri) + a)

pour sx assez grand. On peut aussi changer le signe de t (renverser le temps).
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Remarque 10 Si on regarde dans cette représentation les espaces H(At, ¦), on voit que

v £ H(At, fi) si Tv est exponentiellement petit le long des trajectoires entrantes de p+ et p~
et peut être exponentiellement grand le long des trajectoires sortantes.

Comme:

Hp =p+Hp- +p~Hp+,

et comme p 0 si et seulement si p+ 0 ou p~ 0, on a sur er+ :

Hp p-Hp+=-2^/l+Ì2HP+,

et sur a~ :

Hp=p+Hp-=2\Jl+i2Hp-.
Donc sur <7+, la bicaractéristique de p est celle de p+ parcourue en sens inverse (et à une
vitesse différente) et sur o~, la bicaractéristique de p est celle de p~ parcourue dans le même

sens.
Finalement Tv est exponentiellement petit le long des trajectoires de p entrantes sur a~

et sortantes sur a+.

3 Cas du puits ponctuel non dégénéré.
Comme dans la section précédente, on s'intéresse aux valeurs propres et aux résonances

proches du niveau d'énergie E 0. On suppose que V est analytique sur R3 et que les

hypothèses de la section 2 sont vérifiées. On suppose de plus que le puits U est réduit à

un point P que l'on prendra pour origine de iR3. Enfin, on suppose que le puits P est non
dégénéré, c'est-à-dire que le hessien de V est non dégénéré.

Comme P est un extrêmum de V, on suppose donc que V"(P) est défini positif si V(P)
— 1 et que V"(P) est défini négatif si V(P) 1. Dans le premier cas, il apparaît aussi des

résonances pour l'opérateur de Schrôdinger muni du potentiel V(x), alors que le second cas
n'a pas d'analogue (on peut qualifier ce cas de résonances d'antimatière). En choisissant une
base dans laquelle V" est diagonal, on peut écrire:

V(x) ±(-l + l-Y\2x2) + o(x2), ±Xj>0. (31)
fa=i

On veut appliquer le Théorème 4. On commence donc par localiser les valeurs propres d'un
problème modifié. Pour cela, on dispose des résultats de Wang ([12]). Rappelons brièvement
ceux qui nous intéressent ici.

• La distance d'Agmon:
d : x —> d(x) := <j>(x) := d(x, P)

est G°° au voisinage du puits P. On montre d'ailleurs qu'elle est analytique en appliquant

les résultats de [3, section 4].

• Pour C > 0 donné, il existe h0 > 0 tel que le spectre de l'opérateur de Dirac à un
puits ponctuel non dégénéré (tel qu'en dehors d'un voisinage de P on ait V2(x) <
1 — S, 8 > 0) Dv(h) dans l'intervalle [—Ch,Ch] soit constitué de valeurs propres
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pour h < h0. De plus ces valeurs propres admettent un développement asymptotique
en puissances demi-entières de h et sont, modulo 0(h3'2), de la forme:

3 i
ea pah, où fia Y ^i(ai + 9)) a € ^fa (32)

C'est le sens du [12, Théorème 3.9]. En choisissant des intervalles 1(h) du type [ah,bh]
où a, b ne sont pas des /xa, on vérifie alors l'Hypothèse (14).

On appelle "première valeur propre", la valeur propre correspondant à a 0. Il existe
G' > 0 et ho > 0 tels que, pour h < h0, cette valeur propre soit la seule valeur propre
(de multiplicité deux) de l'opérateur de Dirac à un puits ponctuel non dégénéré dans

l'intervalle [-C'h,C'h].
Remarquons encore que si V(P) 1, alors ces valeurs propres sont négatives (puisque
les Aj le sont) tandis que si V(P) — 1, ces valeurs propres sont positives.

• Les vecteurs propres correspondant à la première valeur propre admettent un
développement asymptotique en puissance entières de h (construction BKW G°°: cf [12,

Théorème 4.4]

On peut ainsi souhaiter connaître le développement asymptotique de la première
résonance, c'est-à-dire de la résonance associée à la première valeur propre d'un problème modifié.
Il en existe une d'après le Théorème 4 puisqu'on peut isoler la première valeur propre du
reste du spectre par un écart de l'ordre de inf(|Aj|)/t qui n'est pas exponentiellement petit.

On va tout d'abord montrer que le calcul de la partie imaginaire d'une résonance se ramène
à évaluer une intégrale de surface prise dans la mer, au voisinage des points du bord de l'île
issus d'une géodésique réalisant la distance d'Agmon So du puits P à la mer M. Ensuite, on
approchera cette intégrale à l'aide de développements BKW des fonctions résonnantes. Il
faudra donc prolonger ces constructions d'un voisinage du puits P le long d'une géodésique
minimale jusqu'au bord de l'île, puis traverser ce bord. Pour cela, on utilise la méthode de

B.Helffer et J.Sjöstrand ([4, Section 10]) qui nécessite des constructions BKW analytiques.

3.1 Réduction au calcul d'une intégrale de surface.
Soit W un ouvert borné de R3 que l'on choisira plus loin. Pour faire apparaître la partie

imaginaire d'une résonance, on part de l'identité:

2i$sz(v\v) (zv\v) — (v\zv),

où (.|.) est le produit scalaire sur L2(W) et v une fonction de L2(W).
Ici, on prendra v dans l'espace résonnant associé à la résonance z, v est bien dans L2(W)

puisque W est borné. On a alors:

2i^sz(v\v) (D(h)v\v)Lnw) - (v\D(h)v)L2(w).

Comme D(h) hYfi^-i a3D3 + a4 + V(x).I4 est formellement autoadjoint, il ne va rester
qu'un terme de bord. Plus précisément, supposons que dW ait pour équation:

dW ={x£ R3Iuj(x) 0}, co£ C°°,
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où on choisit w sortant. Alors on applique la formule de Stokes, et on obtient:

2i*z(v\v)LHW) hJJaw ((Y<*iDju,)v\v\ ^. (33)

On cherche à estimer la partie principale de cette intégrale de bord. D'après le Théorème
4, on sait que Sz est "de l'ordre de e~2S°lhri. Donc sur dW, la fonction résonnante v doît
être de l'ordre de e~s°th sinon la contribution principale de l'intégrale s'annulera. Vu la taille
des fonctions résonnantes (Proposition 6), on choisira W tel que:

Bd(U,So)cW, (34)

qui assure que sur dW, la fonction v n'est pas trop grande. On rajoute la condition

3e > 0, Vx £ W, 1 - V2(x) > -e, (35)

qui est compatible avec (34) et signifie que W "ne s'enfonce pas trop loin dans la mer"
(lorsqu'on prolongera les constructions BKW hors de l'île, on utilisera des méthodes de

type analytique qui donnent des prolongements près du bord de l'île seulement).
D'après la Proposition 9, v continue de décroître exponentiellement dans O — Bd(U,So).

Donc seuls les voisinages de dO fi Bd(U, So) apporteront une contribution non négligeable
devant e~2 "' Soit donc Ai une réunion de voisinages de tous les points de type 1. Alors, il
existe £o > 0 tel que:

**(,W™ h J JdwnQi ((gaiD^^ + O (e-^) (36)

On verra plus loin que le symbole de la fonction BKW qui approche v admet une singularité

au bord de l'île. On rajoute donc une hypothèse sur W:

36 >0, 1 - V2(x) < -6, xedWnSli. (37)

3.2 Construction BKW analytique.
3.2.1 Construction près du puits P.

D'après [12], on sait effectuer la construction BKW C°° pour la première valeur propre.
Mais pour passer à des constructions analytiques, il n'existe actullement pas de méthode
explicite permettant de construire les fonctions BKW pour l'opérateur de Schrôdinger. La
seule méthode connue est celle de [3, Section 4] et nous allons nous y ramener en effectuant
une diagonalisation pseudo-différentielle par blocs 2 x 2 de l'opérateur de Dirac dans la
classe des opd analytiques à l'aide d'un théorème de B.Helffer et J.Sjöstrand (Harper II: [5,

Proposition 3.2.1]).
Comme précédemment, on s'intéresse aux propriétés spectrales près du niveau d'énergie

E 0. On suppose que le potentiel V est analytique sur R3 et a un puits ponctuel P non
dégénéré. On suppose enfin qu'en-dehors d'un voisinage de P, on a l'inégalité V2 < 1 — 6

pour un réel 6 > 0. Dans ces conditions, il existe G > 0 et h0 > 0 tels que, pour h < h0,



1094 Parisse H.P.A.

le spectre de l'opérateur de Dirac D(h) soit constitué de valeurs propres dans l'intervalle
[—Ch, Ch]. Il existe une bijection 6 entre le spectre de D(h) et l'ensemble:

3 1
{ea fiah}, où Ha Y ^i(aj + ô)' a e -^3' e* °^ ^i es^ défini en (31),

telle que:
b(p)-p 0(hi).

Fixons un triplet a et notons e fiah. Supposons qu'il existe N0 triplets d'entiers

ai, ...,ajv0 tels que /iQl \ia. Alors, on a le:

Théorème 11 II existe £0 > 0 tel que le spectre de l'opérateur D(h) dans l'intervalle
[h(e — £0), h(e + e0)] est constitué de 2N0 valeurs propres (comptées avec multiplicité). Ces

valeurs propres sont des réalisations de symbole analytiques semi-classiques:

fit(h) ~ hYek,lh2,
k=0

i.e., pour tout G > 0, il existe e > 0 tel que:

Pl - Yek.'h2 O (e"*)

(38)

(39)

Les vecteurs propres correspondants wi(x, h) sont sur un voisinage fl du puits P des réalisations

de symbole analytiques semi-classiques:

w,(x,h)~e « Ywi<Jh2''
k=0

i.e., pour tout G > 0, il existe e > 0 tel que:

i
e h (wi — 2_^wk,lh2 U I e M.

fc=i

(40)

(41)

L>(0)

Le terme "semi-classique" signifie que l'on somme sur des puissances demi-entières de h.

Si 2N valeurs propres admettent le même développement asymptotique que px sans lui
être forcément égale, on dira que /ii a pour multiplicité asymptotique 2N. Le [12, Théorème
3.9] montre alors que l'on peut choisir la bijection 6 de telle sorte qu'à fi correspondent 2N
valeurs propres de D(h) telles que:

b(p) - p 0(h°°).

Preuve du Théorème 11.
Dans toute la suite, on supposera pour fixer les idées que V(P) — — 1, le cas V(P) 1 se

traite exactement de la même façon.
On choisit un voisinage complexe ilx du puits P sur lequel on a:

3<5€]0,l/2[, V(x)<8-1.
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1ère étape: diagonalisation pseudo-différentielle par blocs.

Commençons par rappeler quelques notations de Harperll ([5]). Soit E un espace vectoriel
de dimension finie et fl un ouvert de W3 x <F|. Notons:

dm«.!,, ]0fao] - Gr(fl,£) Ì
Sh(U,E)-^A. h ^ A^h) j,

l'ensemble des applications A telles que l'application:

(x,i)-+VA(x,i,h)
soit uniformément bornée par rapport à h, i.e. pour tout couple (a, ß) £ (N3) il existe une
constante Caß telle que, pour tout h £]0, ho] et (x,i) £ fl, on ait:

v\daxdfA(x,i,h)\<caß.

On prendra ici E C{fffiA,W4), l'espace vectoriel des endomorphismes de (T4. On définit
l'analogue "formel analytique" de 5°(fl, E) par:

-tO.af
A(x,i,h) ~T,jeNtiA3(x,i),

S°h'al(n,E) {A £ S°J A3 £ S°(Q,E),
{ \Aj\< G'+V J

Dans toute la suite, on utilisera la quantification de Weyl des symboles et on omettra l'indice
w qui apparaît dans [5, Section 3]. De même, on oublie l'indice h dans le signe de composition
des symboles.

L'ensemble Sh' (fl, E) muni de la loi de composition "#" des symboles est alors une
algèbre.

r
On dit aussi que A(x, i) £ 5°'a (fl, E) est formellement autoadjoint si:

V(z,£)e Anfic, A(x,J) (A(x,i)Y, °ù Slc {z£(F6/z £ A}.

Enfin, on dit que j4(a;,£) est formellement unitaire si:

(A(x,Ì))' A-1(x,Ì).

On veut appliquer la:

Proposition 12 ([5, Proposition 3.2.1])
Soit A £ Sl'af(Çl, E) vérifiant:

¦
Ao(*,Ç)=(f ;,) (42)

dis^spAl1, spA22) >8>0 pour tout (x, i) £ A. (43)
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A est formellement autoadjoint. (AA)

Alors, il existe U(x,i,h) £ S°'aJ(iì) inversible et formellement unitaire tel que:

U~1#A#U=^ A°22), Ä£ K\ À202 Al2, (45)

Au niveau des opérateurs, comme on travaille sur le réel, on a:

Op(f/)* Op(C/-1) + 0(e^),

Op(U)-*Op(A)Op(U) °pif1] 0p(°AM) + O (efa)

où 0(e~elh) signifie que le reste, en tant qu'opérateur de L2(R3;(Pi), est de norme plus petite
que Ce~e'h pour un réel £ > 0 (uniformément en fonction de h £]Q,h0]).

Pour appliquer la Proposition 12, il nous faut déjà diagonaliser le symbole principal de

Dv(x,i). On montre facilement qu'une matrice de passage permettant de diagonaliser la
matrice Dy(x,Ì) est donnée par:

v^fa^faja),
^vT+FtyrTFTï)

et on a:

W-\i)Dv(x,i)W(i)=(P+Qh p_°7J. (47)

De plus, la matrice W est unitaire (si Ì £ R3). Si on choisit A comme le produit cartésien
Ax x A^ du domaine Ax par le domaine A^ défini par:

Ae {£€(F3/ |9fc|<i, 1 < i < 3}, (48)

on vérifie que U et Dy sont des éléments de S£'a (A,£). En effet, si Ì £ A£, alors on a

K(l + i2) > \ donc \/l + £'2 est analytique et, de plus:

P+(x,Ì)-p-(x,Ì)>l. (49)

Il existe donc un symbole W formellement unitaire, tel que:

A W-1#Dv(x,i)#W P+Qh p°h + [W-1,V]#W. (50)

Le symbole A vérifie (42, 44). De plus, l'Equation (49) entraîne (43) avec 6=1.
On peut donc appliquer la Proposition 12 et en déduire l'existence d'un opd analytique

U de symbole dans la classe 5°'a (A) tel que:

K-1D(h)U P-rO(ez^), (51)
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où l'opérateur P est donné par:

P+ 0

o p- (52)

l'opérateur P+ [respectivement P~] ayant pour symbole principal p+I2 \p~I2].

2ème étape: étude de l'opérateur P =U~1D(h)U.

On cherche maintenant des symboles analytiques formels u et E tels que:

(P - hE) (ue-*) 0. (53)

Si on écrit u (u+,u_) avec u± £ W2, l'Equation (53) devient:

(P+ - hE)(u+e-^h) =0
(P- - hE)(u_e-'t>lh) 0 ' (54)

On rappelle que l'on est au voisinage de V(x) — 1. Comme le symbole principal de P"
est p-.I2, on en déduit que P~ — hE est elliptique (pour h assez petit). Donc u_ 0.

D'autre part, on a:

P+(x,t)=pt + 0(]x,i]3), oùP+(x,i) Ç + (V"(0)x\x). (55)

Le symbole pj est Ie symbole d'un opérateur de Schrôdinger avec potentiel quadratique
("oscillateur harmonique"). On est alors essentiellement ramené à la situation de [3]. La
seule différence réside dans la dimension (2 au lieu de 1) mais n'est pas essentielle car le

symbole principal de P+ est diagonal.
On effectue donc la tranformation de FBI défini en [3, (3.11)] (c'est la transformée

adaptée à la phase analytique <j>). On note alors P+ l'opérateur tel que:

P+T TP+, (56)

et on se ramène à l'étude de l'opérateur Q+ AP+, A A-1.
Introduisons les classes de symboles formels qui permettaient d'effectuer la construction

BKW pour l'opérateur de Schrôdinger. Soit Sm'k(ilx,(T2) l'ensemble des symboles formels
"semi-classiques" w(x, h) définis sur A^ et dont le développement:

w(x, h) ~ V, WjtSxsh?
Jentier, sgJV3

ne contient que des termes tels que:

]s\ k
J > -m, j + —>--m.

Ce qui revient à dire que, en notant x une troncature valant 1 près du puits, on a pour
chaque monôme du développement de w(x, h):

jwhMxsx(x)e-^ O (ftfam)
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On note aussi S™'k le sous-ensemble de Sm'k composé des symbole analytiques (au sens de

(41)).
tOn écrit alors que:

Q+ Qo-h + Q+- Qo-h, Qo= Y xaa",ßdßx + °o,o. (57)
\a\=\ß\=l

L'opérateur Q0 conserve les espaces Sm,k(R?,(L) et l'opérateur Q — Qo-h agit de Sm'k dans
Sm'k+1. On peut donc appliquer la méthode de [3, Section 4] et on montre le:

Théorème 13 Si E n'appartient pas au spectre de Qo, alors l'opérateur Q+ — E réalise une

bijection de S™'k(Slx,Œ2) dans S™'k(Qxß2).

On suit maintenant [3, Section 3] pour chercher les développements asymptotiques
(formels mais pas encore analytiques) des vecteurs propres et des valeurs propres BKW de
l'opérateur U~lD(h)U et on applique ce Théorème 13. On montre ainsi, comme pour l'opérateur
de Schrôdinger, que les symboles formels sont en fait des symboles analytiques formels au
voisinage du puits. C'est-à-dire qu'il existe 2A^0 symboles formels analytiques (semi-classiques)
ek(h) et 2Aro symboles analytiques Uk(x,h) tels que:

(U^D^U - ek(h))(uk(x, A)e-"*w//l) 0. (58)

(Remarquons qu'il y a en fait au plus N0 symboles ek distincts, chacun ayant une multiplicité
paire). On en déduit donc

(D(h) - ek(h))(vk(x, h)e-*W'h) 0, (59)

où Vk(x, h) est le symbole analytique formel défini par:

Vk(x,h)e~ * =U(uk(x,h)e~ <• (60)

En prenant des réalisations de ces symboles analytiques formels (au sens de [11, Exemple
1.1]), nous avons donc des fonctions fii(h) et des vecteurs ü>i(x, h) tels que:

e^(D(h) - p(h)) (e-^m(x, h)) O (e-2)

Après avoir regroupé les valeurs propres ayant le même développement asymptotique qu'un
fi fixé, on considère l'espace propre correspondant E et l'espace £' engendré par les û>i(x, h)
correspondant à ß. On applique alors la [3, Proposition 2.5] et on en déduit que:

d(€,€') 0(e-^),
ce qui entraîne alors le Théorème 11.
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3.2.2 Prolongement le long d'une géodésique minimale.

Soit 7 une géodésique (pour la métrique d'Agmon) issue du puits P et contenue dans l'île
O. On va prolonger le symbole analytique formel dans un voisinage A de 7. On cherche donc
à résoudre l'équation:

e^(D(h) - hE(h))(w(x,h)e-^) 0, (61)

où hE(h) est un des symboles formels du Théorème 11 dont on écrira le développement sous
la forme:

00

hE(h) ~ Y enhn, (62)
n=l

la somme portant sur des n £ \IN.
On va d'abord chercher quelles sont les équations que doivent vérifier les éléments du

développement de w(x,h) et on en déduira que le symbole w(x,h) peut être prolongé en

un symbole formel (mais pas forcément analytique). Ensuite on montrera que ce symbole
formel est solution d'une équation de transport dont le symbole principal est diagonal et on
en déduira, à l'aide d'un résultat de l'Appendice, que le symbole formel est bien analytique.

On remplace donc w(x,h) par Yl^Lo wn(x)hn dans l'Equation (61) ce qui donne1:

00

(Pv + h(Q -E(h))) Y wnhn 0(h°°), (63)
n=0

3 3

Pv iYa3<t>3+a4 + V.I4, Q YajD3, <j>5 drf. (64)
3=1 i=i

Pour tout x, la matrice Py admet deux valeurs propres doubles

V(x) ±Jl- IWP

dont l'une est nulle en vertu de l'équation éïconale. Il est donc naturel de décomposer (F4 en
tout point x £ R3 en somme directe orthogonale de deux espaces vectoriels de dimension
2 dont l'un est Ker Pv(x). Mieux, on décompose le fibre trivial (Z"* au-dessus d'un ouvert A
en une somme orthogonale de deux fibres de rang 2 dont l'un est Ker Py. Ces fibres sont
analytiques. En fait on montre que:

j. 3

Œ& Ker Pv + Ker P.y, P„v -iYMj Aa4- V.I4. (65)
j=i

Utilisant (65), on écrit Wj Uj + Vj, où u3 £ Ker Pv et où v3 £ Ker P-y.
On décompose alors (63) en puissances de h, et on obtient pour les puissances m > 1

demi-entières:
m

PvVm + Q(um_i + Um_i) Y en(um-n + Vm-n), (66)
n=\

où la somme porte sur des n £ \1N.

'On somme toujours sur des n e iN
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A ce rang, les inconnues sont um_i et vm. Comme vm £ Ker P_v, on en déduit que:

Pyvm 2a4vm,

d'où l'on tire vm en fonction de um-X:

Vm 2a4 Y e"("m-n + Vm-n) ~ Q(«m-1 +Vm-l)\ V0 Vx/2 0. (67)

Le calcul de um_i s'effectue en écrivant que vm doit être une section du fibre Ker P-y:

P-V i Y e4u«i-n + Vm_n) - <5(um_l + »m-l) j 0. (68)

Cette équation admettra une solution wm_i dans Ker Py car PyP-y 0. On peut s'en

convaincre en exhibant une base de Ker Py et en écrivant le système différentiel 2x2 vérifié

par les deux coordonnées de um_i.
Grâce à la relation:

3 3

P-vQ + QPy Y (XjDjV + 2 Y *A + A& (69)
j=\ j=\

l'Equation (68) est équivalente2 à:

3 3 \
-2Vex -Ya3D3V-2Y4>3d3 ~ AA «m-i

3=1 3=1 /
m—1 /m—1 \

2V Y enUm-n + P-V f Y envm-n ~ Qvm-\ j (70)
n=l Vn=l /

Paramétrons la géodésique 7 à l'aide de la distance euclidienne. La partie différentielle de

l'Equation (70) devient le long de la géodésique 7:

Y^,jd3 \v<j>\ds. (7i)

Comme |V^| \/\ — V2 en vertu de l'équation éïconale, le coefficient de ds ne s'annule pas
sur O — {P}- On peut donc prolonger um_i le long de toute géodésique issue du puits P à

l'aide de (70, 71). Ce prolongement est unique.
Remarquons encore pour la suite que la première équation de transport s'écrit:

-2Vex - Y <*jDjV -A<j>- 2\/l - V2ds j u0(x(s)) 0, w0(x) u0(x). (72)

Notons qu'en regardant (70, m 1) au voisinage du puits P, on peut déterminer ex. Lorsque

ei est "simple", c'est-à-dire qu'il n'existe qu'un triplet (ni,n2,"3) £ IN3 tel que:

1 (a4>(P)
T

3=1

ex — —^—- -f- Yrn3^3 ' °ù ^es ^3 son* définis en (31), (73)

2On rappelle que um_x 6 Ker Py.
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alors les équations de transport (70) donnent un algorithme de construction du symbole
w(x, h).

Ainsi, on peut prolonger le symbole BKW w(x,h) au voisinage de 7. Le prolongement
est unique. On obtient bien sûr un symbole formel qui n'est pas forcément analytique.

Soit:

3

P (D-y + hE(h))(Dv - hE(h)) -A + 1 - (V - hE(h))2 + h £ a}DjV. (74)
3=1

On a au niveau des symboles formels analytiques dans un voisinage du puits P:

e " P(we h 0.

On observe alors que P est un opérateur différentiel de symbole analytique et de symbole
principal diagonal p.I4 où p est le symbole d'un opérateur de Schrôdinger avec comme
potentiel 1 - V2.

Par définition, une géodésique minimale pour la métrique d'Agmon de l'opérateur de

Dirac avec potentiel V est une géodésique pour la métrique d'Agmon pour l'opérateur de

Schrôdinger avec potentiel 1 — V2.
Au voisinage A de 7, on peut donc appliquer le Théorème 23 de l'Appendice qui permet

d'affimer l'existence d'un symbole analytique formel w(x, h) tel que sur fl:

Oïl Dr~ _*t£iX „e h P(we h — Q.

Mais on vient de montrer que le symbole w s'étend en un symbole formel w' qui vérifie la
même équation au sens des symboles formels. D'autre part, le prolongement par les équations
de transport pour l'opérateur P est aussi unique. Donc on a forcément w w' sur A. On en
conclut ainsi que w' est analytique.

A l'aide des inégalités à poids (7), on montre comme dans [3, preuve de (5.43)], que
l'on peut propager l'estimation (41) du Théorème 11 à un voisinage encore noté A de la
géodésique 7.

3.2.3 Passage de l'île à la mer.

On s'intéresse au prolongement des solutions BKW à l'extérieur de l'île près d'un point
Q de type 1 (réalisant le minimum de la distance puits-mer). La méthode de prolongement
est identique à celle utilisée pour l'opérateur de Schrôdinger dans [4, Section 10], on va donc
juste rappeler les résultats sans démonstrations et fixer les notations utiles pour la suite (les
énoncés sont suivis de la référence des énoncés correspondants de [4]). Dans cette section,
on notera parfois d(x) la phase 4>(x) et même f(x) + S0 d(x) <f>(x).

Soit donc 7 une géodésique allant de P kQ que l'on paramètre par 7(—00) P, 7(0) Q.
Soit A la variété des (x,Vd(x)) pour x dans un voisinage de 7([—00,0]). De l'équation
éïconale, on déduit:

ACq-'iO}, oùq(x,Ì) Ì2-(l-V2). (75)

On notera encore 7(5) (7(5), Vd(f(s))) l'élément de A de projection f(s).
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La variété A est aussi la variété stable sortante associée au flot hamiltonien Hq de q dont
les courbes intégrales sont données par:

r | diq(x(t),i(t)) 2i(t)
\ f dxq(x(t),i(t)) ¦ l >

Or Hq ne s'annule pas au voisinage de Q en vertu de l'hypothèse de fonction fuite renforcée
(11). Dans un voisinage ouvert de 7Q—00,0]), on peut donc prolonger A en une variété

//^-invariante fermée contenue dans <?_1{0}. Bien sûr, on ne peut pas paramétrer A par sa

première composante au voisinage de 7(0) (Q,0). En effet, si ir désigne la projection sur
R3, alors 7t(A) C O et comme Q £ dO, dir ne peut être bijectif en (Q, 0).

Soit H l'hypersurface de A où la projection 7r sur R3 est singulière et

G *(H)
la "caustique".

En (Q,0), comme ^ 2£(r) 0, on a:

Hq(Q,0) C dir(Q,0).

En fait, on peut montrer que Ker dir(Q) Vect Hq(Q, 0). Comme Hq(Q, 0) est transverse à

H, on en déduit que G est une hypersurface analytique de R3X, contenue dans O et tangeante
à dO au point Q.

Si on choisit le système de coordonnées de telle sorte que Tq(ÔO) ait une équation de la
forme x3 0 (avec x (x',x3)), alors:

1-V2(x) -Cx3 + W(x), W(x) 0(x2),

avec G > 0 si on choisit judicieusement le sens de l'axe des x3. Alors,

Hq(Q,0) =-Cd(3.

On peut donc paramétrer la variété A par (x', £3) près de Q. En fait, il existe une fonction
analytique g telle que:

Z3 di3g(x',i3)
C dx,g(x',i3) '

avec g(0) dg(Q) 0. L'hypersurface H a pour équation d23g 0.

En utilisant l'équation éïconale et sa dérivée par rapport à £3, on peut montrer que
l'équation de H se met sous la forme:

6 £(*'), tc3(x') 0(x'2),

où £3 est une fonction analytique.
Comme A (x, Vrf(x)) près de 7, on a:

f(x) d(x) -So v.c6 (*3& + <?(fa 6)), (77)

si on choisit bien le point critique. Le calcul des points critiques donne alors:

Ì3 Ìc3±s/-K(x3 + b(x')), b(x') 0(x12), IO0. (78)
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Comme f(f(s)) croît en même temps que x3(*j(s)), il faut alors choisir le signe "+". On
obtient finalement:

f(x) a(x') + x3ic3(x') + G(x, -y/x3 + b(x')), (79)

où G est analytique et où G(x,s) 0(s3). L'Equation (79) nous permet de prolonger / au
domaine x3 + b(x') > 0 de deux façons suivant le choix de la branche de la racine carrée (qui
équivaut au choix du point critique):

f(x) fx(x)±if2(x), f,£R. (80)

On peut alors montrer que /; > 0 en-dehors de l'île O et que /i est nul uniquement pour
les points issus des points de type 1 en suivant les courbes intégrales du flot hamiltonien de

q(x,ii). Ces points sont aussi les points tels qu'il existe t < 0 vérifiant:

exp(tVf2(x) £{y£ C/f(y) 0}.

Soit

r g n do.

Génériquement, on a F {Q} alors que pour un potentiel à symétrie sphérique, on a au
contraire T 80.

B.Helffer et J.Sjöstrand montrent dans [4, Remarque 10.3] la:

Remarque 14 II y a équivalence entre:

• G a un contact d'ordre 2 exactement avec dO le long de T, i.e.

1-Vj|(x) dist(x,T)2, (81)

où "1 — V?c" désigne la restriction de 1 — V2 à C.

• / f\c s'annule à l'ordre 2 exactement sur T, i.e.

f(x) dist(x,T)2. (82)

Dans ce cas, l'ensemble G des x tels que f\(x) 0 est une sous-variété analytique de R3
vérifiant:

codim rîG codim cT, (83)

(et vaut 2 dans les cas génériques). De plus, on a:

fi(x) ~ dist (x,G)2 uniformément dans x3 + b(x') > 0. (84)

Il nous faut encore prolonger le symbole w(x,h). L'idée consiste à "changer de
représentation" près de la caustique comme précédemment. On peut alors prolonger le symbole
analytique a(x', i3, h) correspondant à w(x, h) en résolvant les équations de transport induites
le long du prolongement de 7. L'analyticité permet alors de construire un prolongement de

w(x, h) à l'extérieur de l'île à partir de la bijection entre w et a.
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Soit a(x',Ì3,h) un symbole analytique formel semi-classique. On montre que pour un
contour £(x) C (F3 bien choisi, la fonction:

u(x,h) I(a)(x,h) -L j a(x',i3,h)e-''i^'',i')di3, (85)
Vh JC(x)

est au voisinage de tout point situé dans la zone x3 + b(x') < 0 (du même côté que P de la
caustique G) de la forme:

u(x, h) ~ à(x, h)e~ h

où â est un symbole analytique formel semi-classique. La correspondance a —? ô est une
bijection.

Donc un symbole BKW pourra se mettre sous la forme 7(a) dans l'île au voisinage de

Q. Il faut maintenant "faire passer D(h) sous l'intégrale 1(a)" pour obtenir l'équation de

transport sur a. On remarque que la [4, Proposition 10.5] s'applique aussi à l'opérateur
D(h), la partie délicate de la transformation était en effet le passage du potentiel V(x) sous

l'intégrale:

Proposition 15 ([4, Théorème 10.5])
Il existe un voisinage U de Q et un réel ex > 0 tels que:

B/(i)+ciD(h)(I(a)(.,h))--t= [ e-^D(x',i3,hDx,,hdt3,h)(e-îa)di3 O (e-
y/h ->C{x) \

uniformément pour x £ U, avec:

2

D hY CjDj + asis + V(x', hdi3).
3 1

(Dans cette dernière expression, il faudrait remplacer les matrices canoniques aj par des

combinaisons linéaires de ces matrices pour tenir compte du changement de coordonnées

x -> (x',x3)).

On suppose donc que at~^h est une solution BKW associée à une valeur propre /i dans

un voisinage de la géodésique 7 allant de P vers Q. Puisque la correspondance a —? ä est
bijective, on sait que près de la projection sur (x', f3) de 7(5), s < 0, on a:

eiLié*1((b(h)-hE(h))ae-i)=0(e-ï), 8 > 0. (86)

L'Equation (86) entraîne des équations de transport pour a qui font intervenir un opérateur
de transport dont la partie différentielle est un champ de vecteur dont la projection de

î(s)i lsl ^ £ est une courbe intégrale. On peut ainsi prolonger a à tout un voisinage de la
projection de la géodésique en conservant l'Equation (86).

On peut donc définir I(a)(x,h) dans tout un voisinage du point Q, et particulièrement à

l'extérieur de l'île.
Soit 2Af la multiplicité asymptotique de la valeur propre fj,. On a finalement la:
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Proposition 16 ([4, Théorème 10.9])
Il existe un voisinage fl de ~y([—oo,0]), il existe des fonctions ux,...,u2n £ G°°(fl) et des

symboles analytiques ax, ...,a2N-'

a3= Y a3Ax)h~A
— oo<i2<2mj

définis dans fl —G qui prolongent les constructions BKW le long de la géodésique 7. // existe
alors un réel e2 > 0 tel que:

• Sur tout compact de A — G, e(So+x^lhUj est une réalisation de h~3l*aj.

,3,1 _ 1 _£o±*/\• ft4 + 2Uj O (e h \

• e <• (D(h) — fij)u3 O le s J uniformément dans A;

Remarque 17 Si on revient à la forme 1(a) de ae Aht on s'aperçoit en appliquant un
théorème de la phase stationnaire que:

rp{x) lim JÌ - V2(y)]à\2(y), (87)
y—xÇC "

existe et n'est pas identiquement nul.
En faisant le produit scalaire de l'Equation de transport (72) avec uo(x(s)), on trouve:

-(2Vex + A^)(u0|«o) (Y ajDjVu0\u0) + 2^1 - V2(dsu0\u0)
3=1

Comme Ylj=i OrjDjV est antihermitienne, et comme ds(uo\uo) 2(9suo|uo), on peut même
réécrire ip(x) sous la forme:

r[(x) |â|2(0) lim sj\ - V2(y)e~^ A/tw(7(s))ds, (88)

où l'on paramètre la géodésique à l'aide de la distance euclidienne de telle sorte que ^(t) y.

Posons encore sur A fl O :

<Pj h~*a3(x,h)e~ " (89)

et, comme dans la section 2,

V] tf(xVì)- (90)

On note ici F l'espace résonnant associé aux 2A^ résonances exponentiellement proches de

p,, et où x est une troncature.
Comme dans [4, Théorème 10.10], si on près d'un point x2 de type 1 tel que V(x2) —1,

alors le choix du signe dans (80) est imposé par l'appartenance de u à H(Ata, m). Comme on
est alors dans la situation analogue à celle de l'opérateur de Schrôdinger, on peut montrer
qu'il faut choisir le signe moins:

/ /l - IÎ2-

Si V(x2) 1, on doit prendre au contraire / /1 + if2- Alors les v3 forment une base de F
et l'écart entre fonction résonnante et fonctions BKW prolongées est estimé par le:
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Théorème 18 ([4, Théorème 10.10])
Quitte à diminuer A autour de 7Q—00,0]), il existe un réel e3 > 0 tel que:

Uj — Vj 0(l)e * uniformément sur A. (91)

Ici, on a noté s(x) d(x) si x £ Bd(P, So) et s(x) So sinon.

3.3 Valeur de Sz.

On se place maintenant près d'une valeur propre p de multiplicité asymptotique 2N (au
sens de la section 3.2). Pour N2 assez grand, on sait alors que l'intervalle 1(h) [fi — hNl,p +
hNl] contient exactement 2N valeurs propres et les hypothèses (14, 15) de la section 2.2 sont
vérifiées en prenant a(h) /fa2. Nous avons donc 2N résonances3 exponentiellement proches
de fi. En particulier pour la première résonance, on a N 1 et on peut prendre N2 2. On
considère l'une de ces 2/V résonances et une fonction résonante v associée. On veut exploiter
l'équation (36).

Nous allons maintenant remplacer la fonction résonnante v dans (36) par son approximation

BKW de la Section 3.2.

D'après le Théorème 18, on peut,, modulo une erreur d'ordre 0(e~(2S°+e)/h), remplacer
dans Ai la fonction v par une combinaison linéaire de fonctions BKW de la forme:

2JV 2mj

£^-3/4 Y «ifa^-'/V^, (92)
2N 2m,

j l W= — OO

• M i,

• ûj,2m, est normalisé, c'est-à-dire que si V est un voisinage du puits P:

2m,
h~3/4 Y a3,v(x)h-A2e-^ 1 + 0(h), (93)

L»(V)

• /(x) + So est le prolongement de la phase de la forme:

/(x) + 5o /i(x)±i/2(x) + 5o,

où fi £ R+ et où on choisit le même signe que V(Q).

L'Equation (36) devient:

(1 + 0(h))3tz A / / (Y a3D3u3v\v) ^
On en déduit le résultat de majoration de la partie imaginaire des résonances:

(94)

On compte les multiplicités. En fait, il y a au plus N résonances distinctes.
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Théorème 19 Les 2N résonances exponentiellement proches de p vérifient:

3Go>0, 0<-^(/ì)<C0/ì-1/2_2max(m')e-2^, (95)

où la définition des Tij,j€[i,2jv] a été donnée à la Proposition 16

Notons encore qu'en revenant à l'équation (70, m 1), on obtient une majoration explicite
des mj par ei du type:

/ \ s- ei ~ 2 £fal ^3
max(m^ - -2V(JP)inf(|AJ|)-

On montre aussi que la partie imaginaire des résonances admet un développement
asymptotique:

Théorème 20 // existe 2N réalisations fi(h) de symboles formels analytiques tels que:

-Zz,(h) f,(h)e-*-%L, (96)

où les zi(h) sont les 2N résonances exponentiellement proches de p..

On s'intéresse maintenant plus précisément à la première résonance mais le développement
ultérieur des calculs s'applique aux autres résonances. Pour la première valeur propre, on
sait que N 1, mx m2 0. On suppose de plus qu'au sens de la Remarque 14:

dO a un contact d'ordre 2 exactement avec C le long de T (97)

(Ici T désigne l'intersection de l'ensemble des points de type 1 avec la caustique G).
On va donc appliquer (94) en choisissant W (et u>) vérifiant (34,35,37). En fait, on va

choisir une famille Wc d'ouverts tendant vers le bord de l'île. Comme 'Sz ne dépend pas de

l'ouvert choisi, on pourra faire tendre e vers 0 pour obtenir une expression plus explixite de
$Sz.

Calcul de 5z à s fixé.
On pose:

w, /a - e, dW€ K 0}. (98)

On a alors Vw£ V/2.
On écrit maintenant l'équation "Pva0 0" vérifiée à l'extérieur de l'île par le symbole

principal a0 de la fonction BKW:

± \Y<*3d,h + a4 + V(x).lA a0 1 (l>AM • (99)

L'Equation (94) devient:

(l + O(/0)32 O(e-2£flTrfa - (100)

-- / / ± ((a4 + V.I4)ao\a0) + R) h'
2 J Jdwnn,

3 „/i(i)+Sq dSgw
"2e "

IV/2!
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R=± X>^fai«o|«o +0(h), (101)

(pour les autres résonances le reste 0(h) devient 0(y/h)),

• les signes ± sont ceux de V au point de type 1 au voisinage duquel on est.

Etudions l'exposant C"îA<*)/*.
Soit CE l'ensemble des x contenus dans un voisinage de T tels que /2(x) e et soit

r£ cc n {/i o}.

L'hypothèse (97) permet de montrer que:

A(*)ic. 4.(*,r.). (102)

où c/c"e(x,rE) a le même comportement que la distance euclidienne de x à Tc restreinte à Ce.

On déduit de (102) que V/i 0 sur Tt puisque /i 0 sur Te. On va donc appliquer un
lemme de la phase stationnaire à (100). On obtient ainsi:

(l + 0(h))e2J?Sz -h(hir)l f ±(((a4 + V.I4)ao\a0) + R)h-ï^^f], (103)

• où d est la codimension de T€ dans Cc (dans les cas génériques, il n'y a qu'un seul point
de type 1 donc d 2),

• et où Fe(x) est le hessien de fx\c, pris le long du sous-espace de TCC orthogonal à TTe.

Comme V/i 0 sur Tc, le reste R est un O(h). Et de plus l'équation éïconale devient sur
r£:

' "

|V/2| WïAAJ. (104)

Si on décompose a0 £ Œ4 suivant ces deux premières composantes et ses deux dernières

composantes a0 (al,al), et que l'on utilise la définition des matrices a,- à partir des

matrices de Pauli4 ff3,3e[i,3]'-

0 °3 \ ty,y,. „ __
/ h 0

a, 0 I' ^^3; Û4=l 0 -I2 W
on déduit de l'équation (99) le système:

r.„2 _l m _l T^^i^i — n
(106)Ef-i ^,-/2<xg + (i + VK o

T,U'7tdtf2a1o + (-l + V)a2o 0

4Ces matrices sont hermitiennes, de trace nulle et anticommutent:

a3ak + (TkCTj 2<5jiifc.
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En utilisant ces équations et le fait que les aj sont hermitiennes, on montre qu'en-dehors de

l'île:
0/-l)|a2|2 (V+lK|2. (107)

Limite lorsque e tend vers 0.
Lorsque e —> 0, Tc —? F et, d'après la Remarque 17, y/V2 — l|ao|2(y) tend vers une limite

non identiquement nulle notée ip(x) si y £ T£ tend vers x £ T. Le déterminant Fe(y) du
hessien transversal de fx\c, tend vers le déterminant F(x) du hessien de fi\c restreint à

l'orthogonal de Tr pris au point x.
Si V(x) 1, l'Equation (107) entraîne que

• aj est négligeable devant Oq-

• \/V2 — l\al\(y) —> 4>(x) d'après le premier item.

Si V(x) — 1, on a alors

• al est négligeable devant aj,

• VW=ï\al\(y) -, V(x).

On développe alors ((a4 + V.I4)ao\a0) en utilisant la définition (105) de a4. Un calcul
simple donne:

lim((a4 + V.I4)a0\a0)/VV2 - 1 ±i/>(x). (108)

L'Equation (103) devient finalement:

24a rx-
e » U2 'fa^l/r^^H' (109)

où F(x) est le hessien de fx\c restreint à l'orthogonal de 2T et où i[(x) est donné à la
Remarque 17

Exemple: potentiel à symétrie sphérique.
Soit V un potentiel à symétrie sphérique tel que:

V(r) -l + ^\2r2 + o(r2), 'X > 0,

au voisinage de r 0.

On montre alors que:

V<j> Vl-V2-, (fc) f" VTz:V2(s)ds, A<f> \dr(r2dr<f>) ^dJ^VT^V2),
r Jo r1 r'

d'où l'on déduit que:
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Les normalisations pour l'énergie et le symbole principal BKW sont données par:

* |a, W2(o) yf-

Revenons maintenant à l'Equation (109). Vu la symétrie sphérique, il n'y a pas de hessien

transversal et on a:

d 0, T est une sphère de rayon R,R>0, F(x) 1, il>(x) t[.

Nous avons donc:

Sz -e-2-^-\=2itR2i[(l + 0(h)),
y h

où il reste à déterminer %j> à l'aide des Equations (88) et (110):

fails - '-^=(s)ds
Mx) ip= lm -Af ^£3e J' 7^7?y '

Ecrivant encore £3 comme:
e3 R3e-3f^,

on en déduit finalement que:

Sz -2-
vxA/i
i=e-^(Afi)V3/oR('+7Aï)(^(l + 0(h)), (m)

où on rappelle que:

So f1" VÏ^V2(s)ds, V(r) -1 + ^-AV + or^o(r2).
Jo l

Notons encore que par rapport aux normalisations "physiques", on a, en notant h la
constante de Planck, m la masse de la particule soumise à l'Equation de Dirac, c la vitesse
de la lumière et W le potentiel auquel est soumis la particule (exprimé en unités d'énergie):

h W
h

^~A V=Z7^d2~1, 32lphysique mc2;hîEquation (lll)"

A Appendice: Singularités analytiques.
Dans cet appendice, on souhaite étendre le [11, Théorème 9.1] (propagation des singularités

analytiques pour un opérateur différentiel de type principal réel) à l'opérateur de Dirac.
On montrera aussi comment on peut adapter ce théorème à la situation de la preuve de la
Proposition 9. On commence par rappeler les notations de [11], et en particulier on pose:

A i. (112)

On étudie le domaine où A —> +oo.
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A.l Ensemble de frequences analytiques.
Soit A un ouvert de(T" et <f> : A —» R une fonction continue. On définit l'espace H^3C(ri,Œ)

comme l'ensemble des fonctions u:

(z, A) £ A x R+ -» u(z, A) £ (F,

telles que:

• u est holomorphe en z pour tout A > 0,

• pour tout compact K C A et tout e > 0, il existe G£ telle que:

|u(z,A)|<G4eA(*w+e>. (113)

On définit alors:

H\oc(tl,(C<) {u(z,\) (ux,u2,...,Ul) iilxR+^'/ m £ Hl0C(n,W)},

et de même l'espace //],oc(A, M\(ß)), où Af/((Z") désigne l'ensemble des matrices / x / à

coefficents complexes.
On dit que u 0 dans i/J0C(A,(Z') s'il existe e > 0 tel que:

K*,A)| <GeA(*W-c).

Lorsque </> 0, on parle de l'ensemble des symboles analytiques.
On peut définir une classe globale H^(Çl,Wl) en utilisant un recouvrement de A par des

ouverts A/j. Un élément formel u de H^,(Cl,Œl) est défini par la donnée des représentants
locaux uß £ hI°c(u0,Œ') vérifiant u0 ußl dans //],oc(A/a n üß>).

Si ak(z), k 0,1,2,... est une suite de fonctions holomorphes sur A à valeurs dans W

[respectivement dans (T' et Mi(W)] telles que pour tout A CC A, on ait:

\ak(z)\<(Ch)k+1kk, k£N, z£Ù,

alors on peut définir (cf [11, Exemple 1.1]) un symbole analytique formel sur A en associant
à tout ouvert A CC A le symbole:

aù= Y ak(z)*~k-
k=0

On dit que o est un symbole analytique calssique et on écrit:

oo

a(z,X) ~Yak(z)X~k-
k=0

Soit maintenant (x0,£o) € T*(Rn) — {0} et <j>(x,a) une fonction analytique définie dans un
voisinage de (x0, (x0,io)) telle que:

<f>(ax, (ax, a^)) 0, dx<j>(ax, (ax, a£)) q4 (114)

S(j)(x,(ax,aç)) > C\x — ax\2 pour x,a réels. (115)
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Soit a(x, a, A) un symbole analytique classique à valeurs dans W défini et inversible dans un
voisinage de (x0, (x0,io).

Définition [[11, Définition 6.1]
Soit u £ iy(X x R+*,(F), où X est un ouvert contenant x0. On dit que io n'est pas dans

l'ensemble de fréquences analytiques de u en Xo si:

J e'^{x'a)a(x,a,\)x(x)ujxjdx (116)

est à décroissance exponentielle lorsque A —* oo, uniformément pour a dans un voisinage
réel de (x0,io) (Ici, X € C™(X) est une troncature valant 1 près de x0).

De même, on dit que io n'est pas dans l'ensemble de fréquence analytique deu £ T>'(X,(J!
en Xo si io n'est pas une fréquence analytique de chacune des l composantes de u en Xq.

On peut montrer que cette définition ne dépend ni du choix de la troncature x ni du choix
du symbole analytique classique inversible a ni du choix d'une phase <j> vérifiant (114, 115).

Soit u £ V(X,W). Soit G l'ensemble des (x,i) de T"X - {0} tels que £ n'est pas une
fréquence analytique de u en (x,£). Par définition, l'ensemble des fréquences analytiques de

u est l'ensemble:

WFa(u) T*(X) - {0} - C. (117)

De même, on définit WFa,i(u) pour une distribution u £ V(X,Œl).

Remarque 21 La notation WFa a été choisie par analogie au front d'onde analytique. En
effet, si u ne dépend pas de A, WFa(u) est le front d'onde analytique de u.

Soit D un opérateur différentiel à coefficient matriciels / x / analytiques et de symbole
principal inversible en (x0,io)- On montre alors l'équivalence:

(x0,Ìo)£WFa,,(Du) O (x0,io)£WFatl(u). (118)

Dans la suite, on ne supposera plus que D(xo,Ìo) est elliptique.

A.2 Propagation des singularités analytiques.
Dans cette section, on suppose au contraire que D(x0, io) n'est pas inversible. On va voir

qu'on peut quand même donner un résultat sur WFa,i(u) dans certains cas.
Soit P un opérateur matriciel Z x /, différentiel, à coefficients analytiques et de symbole

principal diagonal:
p(x,i).Ii, tel que p(x0,Ìo) 0.

On a le:

Théorème 22 On suppose que Hp admet une courbe intégrale réelle:

7 : [—a, a] —» T*X — 0,

telle que 7(0) (x0,£o)-
Si u £ V'(X,Œ') et si:

WFaJ(Pu)n1([-a,a]) Hi, (119)
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• ou bien f([—a,a]) C WFa,i(u),

• ou bien f([—a, a]) f) WFaj(u) 0.

Preuve.
On reprend la preuve du [11, Théorème 9.1]. Il suffit essentiellement d'y remplacera? par

W La méthode utilisée est "l'optique géométrique".
Pour a (ax,a{), soit:

V(x,a,A) fa*<*'fa,o, <t>(x,a) (x-ax)ai + iiX ^, t^€ff'-{0}. (120)
fa2

2

Soit m l'ordre de l'opérateur P. Définissons:

Q(x, Dx, A) A"mP*(x, Dx), Dx jDx.

L'opérateur Q a pour symbole principal:

q(x,Ì).Ii =p(x,i).Ii.

On cherche à construire une approximation de

w(t, x, a, A) e~'tXQ(v(x, a, A))

pour a proche de (x0,£o) et pour t £ [—a,a]. On aura ainsi, à des exponentiellement petits
près:

- dt(w(t,., a, A)|u)L2 X1-m(P*v\u)L2 X1~m(w(t,., Q, A)|Pu)L2, (121)

d'où l'on déduira que:
-dt(w(t,.,a,X)\u)L2=0, (122)

puisque WFa<i(Pu) C\~f([—a, a]) 0. Enfin, on verra qu'il est facile de se convaincre que (122)
donne le Théorème 22.

On cherche donc à résoudre approximativement:

(bt + Q)w o
(123,

w(û,x,a,X) v(x,a,X)

On procède par la méthode d'optique géométrique. Commençons par chercher la phase de

w. Soit <f>(t,x,a) la solution locale de l'équation:

dtip + q(x, Vxip) 0, ip(Q,x,a) <t>(x,a). (124)

Puisque le symbole principal de P est diagonal, le symbole principal de P* est p, le conjugué
de p. Or 7 est une bicaractéristique réelle de p, donc aussi de p. On a donc pour a a0
(x0, £o), (xt,Ìt) l(t) et a assez petit:

<p(t,xt,a) 0, VMt,xua) it, SV2xx<p(t,xt,a)»0. (125)
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Lorsque a est proche de a0, ip(t,.,a) est une petite perturbation de ip(t, ,,a0), donc le

minimum de S<p(t,.,a) est proche de 0 et est atteint en un point xt(a) proche de xt. De

plus,
tt Vx<p(t,xt(a),a)

est proche de it.
De ces constatations et du fait qu'un voisinage de la géodésique f([—a,a]) n'est pas

dans l'ensemble de fréquences analytiques de Pu, on déduit facilement que, modulo un
exponentiellement petit:

f eiXv{t*'alMx) 0. (126)

On cherche maintenant w sous la forme:

oo

w(t, x, a, A) a(t, x, a, \)eiXv^x'a'x\ oùa~^ ak(t, x, a)X'k
k=0

est à trouver parmi les symboles analytiques classiques. Le système (123) donne la suite
d'équations de transport:

La0 0, a0|i=o v0,
Lai + fi(a0) 0, ai|(=0 0,

; (127)
Lük + fk(ao, --.,ak-i) 0, ak\t-o 0,

• L — (dt + X7xq(x, Vxif).dx).Ii + s(x,a) est l'opérateur de transport (s(x,a) est une
matrice carrée d'ordre Z à coefficients analytiques),

• fk(ao, ...,ak-i) est une expression linéaire à coefficients analytiques de dérivées d'ordre
quelconque de a0,..., ak-\,

On peut résoudre ces équations successivement dans un domaine complexe indépendant
de k. En appliquant le Théorème 23, on montrera que les ak vérifient les estimations qui
permettent d'affirmer que a est un symbole analytique. Admettons-le pour l'instant.

Notons donc encore par a(t, x, a, A) une réalisation de ce symbole analytique classique et
soit w ae'Xlp. Alors (Dt + Q)w est à décroissance exponentielle uniforme d'après le système
(123) et w(0, x, a, A) v(x, a, A) d'après le système (127).

Quitte à multiplier u par une troncature, on peut supposer que le support de u est proche
de xo. Alors, les égalités (121) sont vraies modulo des termes à décroissance exponentielle et
l'égalité (126) entraîne bien 122).

En intégrant (122) par rapport à t, on montre que pour tout t0 £ [—a, a]:

(v(.,a,X)]u) (w(to,.,a,X)\u). (128)

On en déduit l'alternative du Théorème 22.
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Il nous reste à montrer que les équations de transport (127) admettent un solution
analytique.

Soit P(x,Dx,X) un opd analytique, formel, classique, d'ordre 0, défini près de (x0,io), de

symbole principal diagonal p.Ii, vérifiant:

p(x0, io) 0, Vip(x0, io) ^ 0.

Soit tp une fonction holomorphe définie près de x0 telle que:

p(x, VMx)) 0, V^(xo) io. (129)

Soit H C (Fn une hypersurface complexe passant par x0 et telle que:

Vçp(xo,^o).Vx est transverse k H en x0.

Après un changement de variable, on se ramène au cas où xo 0 et où H a pour équation
xn 0. On note encore x (x', xn).

On a alors le:

Théorème 23 Soient v(x,X) et ù(x',X) des symboles analytiques formels classiques d'ordre
0 à valeurs dans (F1, définis près de x Cb» et de x' O^n-i •

Alors, il existe un symbole u dans la même classe tel que:

Xe-'^Pe'^u v, u\H û. (130)

La preuve de ce Théorème est tout à fait analogue à celle du [11, Théorème 9.3] à laquelle
on renvoie.

Pour conclure la preuve du Théorème 22, il nous faut encore vérifier que le système (123)
satisfait aux hypothèses du Théorème 23.

Le temps t joue le rôle de la variable xn du théorème. L'hypersuface H a pour équation
xn 0. L'opd P(x,Dx,X) est ici:

DXn + Q(x',î)xl,X),

dont le symbole principal est:

p(x,Ì) (Ìn + q(x',Ì')).Il.

Dans notre cas, il faut considérer ax comme un paramètre dans la définition (120) et o^
comme i'. On a 7(0) (x0, i'0) et (x0)„ 0, (io)n 0. En ce point, on vérifie que:

• l(x'oi to) P(l(0)) 0;5 û faudra encore s'assurer que le champ hamiltonien ne s'annule

pas,

• D'après (124, 120),

VMx', xn 0) i', a,nv>(x', xn 0) -9(7(0)) 0,

d'où la deuxième partie de l'hypothèse (129).

Ici p désigne le symbole principal de l'opérateur P du Théorème 22.
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La première partie de l'hypothèse (129) est satisfaite en vertu de l'équation (124). De plus
le champ:

V««„ + q(x', 0)(7(o)).v, vvP. vx, + dx„

est transverse à H en xo et non nul. Ainsi, le champ hamiltonien ne s'annule pas.
Toutes les hypothèses du Théorème 23 sont donc satisfaites. Ceci conclut la preuve du

Théorème 22.

B Fin de la preuve de la Proposition 9.

Dans la proposition (9), on étudiait une fonction résonnante Vj dans un voisinage Ai de la
projection irx(f([—«1,0])) sur /R3 d'une bicaractéristique 7([—«1,0]) du symbolep+(x,i). On
notait Xo une troncature à support dans Ai et valant 1 sur A0 un voisinage de Kx(l([~si> 0]))
tel que A0 CC Ai.

La bicaractéristique issue de 7(0) ne rencontrait pas les points de type 1 (i.e. les points
du bord de l'île situés à une distance d'Agmon So du puits P), on avait donc:

Xov3 G, (e-^ (131)

On savait de plus que pour une transformée de FBI T adaptée à Ao, il existait ß > 0 tel
que:

TXov3 O (c-^) (132)

uniformément dans un voisinage de f(—sx). Enfin,

(D(h) - pj)X0Vj [D, xoh + O (e-2^) (133)

L'Equation (133) entraîne:

(D-v(A) + Pj)(D(h) - N)(xov3) w + 0 (e-2^) (134)

où w est une fonction de support disjoint de Ao- Si l'on calcule l'opérateur composé, on
obtient:

P := {D-v + Pj)(Dv - N) -A+l-(V- N)2 + hYa3D3V,
3=1

et on s'aperçoit que P est un opérateur du type de ceux étudiés dans cet appendice. Son

symbole principal est en effet diagonal, puisque pj 0(h), il vaut:

(i2 + 1 - V2(x)).I4 p+p-.I4 p.I4. (135)

On rappelle de la Remarque 10 que la bicaractéristique issue du point Q — ^(7(0)) (de type
2) pour p est la bicaractéristique de p+ issue de Q donc 7.

On se retrouve ainsi dans une situation analogue à celle du Théorème 22 à condition de

remplacer la fonction u par e * XoVj et de changer la phase <f> en la phase de la transformée
FBI adaptée à A0. L'Equation (134) est équivalente à l'hypothèse (119) du Théorème 22,
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alors que l'Equation (132) est l'équivalent de l'absence de "front d'onde analytique" en un
point de la bicaractéristique (en f(—Si) ici).

On reprend donc la preuve du Théorème 22, mais on remplace "être à décroissance
exponentielle" par "être un 0(eAso+s)/>>) pour un réej $ > q»

On rappelle que A 1. Ainsi, en notant Q(x,bx,X) X1~mP*(x,Dx) où m 2 est

l'ordre de P, on cherche w tel que:

(Dt + Q)w 0

w(0, x,a, X) v(x,a,X)

où v(x, a, X) e'-^*'0) est l'exponentielle de la phase <j> de la transformée de FBI T adaptée
à Ao R?:

<f>(x, a) (x - ax)a^ + iX(a)(ax - x)2.

L'Hypothèse (134) entraîne alors l'équivalent de (126):

(w(t,.,a,X)\Pv3(.,X))L2 0 (e-2XS°)

alors que:

(w(0,.,a,X)]vj(.,X))L2
J°1dt(w(t,.,a,X)]v3(.,X))L, + (w(-sx,.,a,X)\v3(.,X))L, + 0(e-A<s°+s))

J°X(Qw(t,.,a,X)]Vj(.,X))L, + (w(-sx,.,a,X)\v3(.,X))L2 + 0(e~^s°^)
fiX(w(t,.,a,X)\Pvj(.,X))L, + (w(-Sl,.,a,X)\v3(.,X))v + 0(e-^s°+^)
0(e-2AS») + 0(e-A<So+">) + 0(e-A<St,+5>),

en appliquant aussi (132).
Finalement, (u>(0,., a, X)\vj(., X))Li est bien à décroissance exponentielle devant e~A5°. En

utilisant l'estimation (131) et l'inverse à gauche S1 de T construit dans [8, Section l.f], on
conclut que:

Vj 0(e-A<5°+5»)

pour un réel <5 > 0 dans un voisinage de ttx7(0).
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