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The Green's function for the Morse potential is calculated in the so(2,1) algebraic approach, using the
Baker-Campbell-Hausdortf formulas.

Ever since the first notable success of the algebraic method in the calculation of wave functions and of

hydrogen atom transition amplitudes [1], renewed interest for the algebraic approach has been
emerging. Hence a certain number of potentials have been studied in the algebraic approach [2,3] and

their Green’s functions have been calculated. This algebraic method consists mainly in the

transformation of the Schrédinger equation via a change of variables, in order to introduce generators
satisfying a Lie algebra. When the evolution operator is expressed in terms of these generators in the
configuration space, it is calculable for a certain class of potentials. In this paper, this algebraic approach
is used to study the Morse potential defined as :

V(x) = Ae28X.B g aX (1

where A, B and a are positive constants.

# To whom requests for reprints should be addressed.
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This Morse potential has been very useful in molecular and nuclear physics. In a generalized separable

and nonlocal form, it has once been used as a model for Nucleon-Nucleon [4] and P ion-Nucleon [5]

interactions. The path integral solution to the problem can be found in the literature [6,7]. Two solutions
used to be agreed on via the introduction of an auxiliary time-variable. A disagreement about

expressions of the Green's function related to this potential and requiring a mathematical clarification [8]
can nevertheless be noticed. This problem has been solved very recently [9].
The energy spectrum, propagator and Green’'s function have also been obtained in the phase-space

approach of Weyl-Wigner-Moyal [10] . In the algebraic so (2,1) approach, the Green’s function can be
obtained in a direct and nice manner. Indeed, let G(x,x";E) be the Green’s function which is solution of

the differential equation ;

(H-E)G(x,x";E) = - hid(x-x'), (2)

2 42
where H(x) = - _TJ,.,,_QLE + V(x) , is the hamiltonian of the particle and E its energy.
M dx

The transformation £ = exp(-%) , then gives

(H-E)alee E) = - nisz¢) (3)
where
Gle&E)=2[ee]'" ax.xE). @

The dynamics of the physical system is then governed by the new hamiltonian

—~

_.n2
He.) 2

ae? g2

gi-M)+1M5252 ,
(5)
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(6)

and B = E is the pseudo-energy.

Expression (5) is the hamiltonian of a harmonic oscillator with a constant frequency, constrained to a
centrifugal repulsion.

Besides, it is well known that the radial Coulombian system can be shown equivalent to the radial

oscillator [9], with the help of a simple r = §2 transformation. Consequently the Morse potential and the

radial Coulombian system are equivalent and accept the same group dynamics.
It is easy to see that one can introduce the three following generators

2
2 3 ;
Ti(e)-- 221 T Hed)) Tz(&)=-L(§i 1), 7o) P,
ot 3 2\ 9 4h @)
satisfying the Lie algebra :
[T1,T2]=-iT1,[T2,T3] =-iT3,and[T1,T3] =-iT2 (8)

The operator H(£) can readily be expressed in terms of these generators :

Hle)= T1(e) + 20°h2To(t) ©)
Being a linear combination of the generators Tj, ﬁ(é) shows, as expected, a dynamical symmetry

o] (2,1)[1 1]. Expressed in Schwinger's integral representation [12] the solution of the differential
equation (3), can be written as follows

de&d)- j

0

ds exp[- fiT(ﬁ -E-io) S} &)=

= J:ds ex;{fiT"E“S] exr)";;ls-[ﬂ(ﬁ) + 21"25&5(’:3)]} oe-g).

(10)
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The derivation of the Green’s function in the algebraic approach, has been replaced by the calculation

of the Kernel
P(e.£'s) = exp{‘)ri]—s[ﬂ(é) + 2n261r;(§)]} §e-¢). (11)

We can achieve this calculation thanks to the following two Baker-Campbell-Hausdorff (BCH) formulas :

exp‘%s-[ﬂ + 2h25&r3]} — expl-iaTa)exp(-bT2)exp(-icT1) . (12)
where
a = 2hotan(ws) | (13a)
b = 2Ln {cos(as)) | (13b)
c=-1_tan{ws) , (13c)
o
and
exp(-ioTa)expl-iBT2)exp(-iyT1) = exp{-icT1)exp(ATs) , (14)
with
a=1_'7;ﬁ , B=2Ln(1-%) , ﬁ_i_m (15)
2 2

Both formulas can be easily checked within the frame of another realization of the algebra, which may

well be chosen as finite, for instance expressing T;generators versus the Pauli matrices o;:

R A P T - (16)
2v2 2 2y2
In order to calculate (11}, we set
g tefls [HiE
fee)=M 55 dA exp{ﬂ(az-az)} . 8<0. (17
oh? 2im | o an?

By using (12, 14, 17), the kernel (11) now reads
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+ioo+d

Pz.ts)= -2% &' exp(-iaTs) eXD(-isz)E}; [ . dA exp(-‘e""f'%2 §'2l) exp(-icT1) exp{:f':—z &21) =

+iootd
=-M_&™ exp(-ials) exp(-ibT2) _LJ dh exp(- M g-zx) expl-icT1) exp(ATa) "= (18a)
2f 2in) . s 4h2

-1

+Hootd

=M g™ exp(-iaTa) exp(-ibTz) -1—J d exp(ﬂ &'27&) exp(-iaiT3) expl-iT2) exp(-nT1) &= (18b)
2h‘°- 2im| .5 an?

+ica4d e)(p{ M (m2+ ;\E"z )}
=_2|\t/1l_2§""‘ exp(-iaTa) exp(-ibT2)t" 2‘—[ o2l 2 2iell . (189

it _ (1 ) %g—)pﬂfz
=2IM exp(-iaTa) exp(-ibT2 [(&, &)1’2 ’Z(Mf;é) exp{ M (ﬁ +&' )}} (18d)
h2c 2h c

(18e)

e o o)

S A )

The choice of the form of the Dirac delta distribution is dictated by the desire to obtain the simple
following result :

exp(-yT: " = (1 - iyTy +.élT(-in1)2 + )g" =g
Moreover we have used the formula

exp{-BT2)(e) = exp{ : [ LI

o Yo 32149
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- ol ‘{gﬂ fe) =
- exp(-g) (e?) = exp{-%) {eP2t) (19

when going over from eq. (18b) to (18c) and (18d) to {18e).

We calculate the integral contained within the eq. (18c¢) thanks to the Residue Theorem, by

decomposing the —A_ factor and by expanding in a series the term in }‘;2 from the exponential function.
2-iic

We used the following definitions for the first and second kind Bessel functions Ju(x) and Iu(x) (13, 14],

2/4 , .
Ju(x) = ( )“Mmr{’;mﬂ exp(nf u) (X - (20)

By inserting (18f) into (10) and then into (4), and by setting v = pu-1/2, the Green’s function is then given
by

o0

dx,X':E)ﬂ'?"";@J

0

ds exp[ i Es] sunEN )I\,(mr::’:ff )) p{'MG (&2+§'2)cot("c6s)]. (21)

By using Gradshteyn’s formula[15] , withv > u,

o0

d e-2\q ((UV)1 /2) 1 th( * +§-+ ;_ M W 20
- V),
q =il by b exp[ (u+v) co q)] o) rios1) ik, ﬁ(u) A %( ) (22)

where M-A, v(u) and W, v(v) are the standard Whittaker functions, the Green's function becomes
2 2

L berel
x.x":E L2 2/exd1g v(De@a)w., v(De@), (23)
A= 2|(o N(v+1) xp[ x+x} P ° p,;
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—~

withx >x andp=--E_.

2he

This result (21) agrees with the one given in ref. [6].

We succeeded in showing that the Green’s function of the Morse potential can be calculated by the
so(2,1) algebraic approach. Energies and wave functions may be inferred from the poles of this Green’s

function in the complex plane.
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