Zeitschrift: Helvetica Physica Acta

Band: 65 (1992)

Heft: 7

Artikel: Diffusion in the kicked quantum rotator by random corrections to a

linear and sine field

Autor: Hilke, M. / Flores, J.C.

DOI: https://doi.org/10.5169/seals-116518

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Diffusion in the kicked quantum rotator by random corrections to a linear and sine field

M. Hilke^{1a} and J.C. Flores^{1b}

^aDépartement de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, CH - 1211 Genève 4, Switzerland

> ^b Purdue University, Physics building West Lafayette, IN 47907, USA

We discuss the diffusion in momentum space, of the kicked quantum rotator, by introducing random corrections to a linear and sine external field. For the linear field we obtain a linear diffusion behavior identical to the case with zero average in the external field. But for the sine field, accelerator modes with quadratic diffusion are found for particular values of the kicking period.

¹Supported by the Swiss National Science Foundation

It has been shown that the wave function of the periodically kicked rotator, is localized in momentum space and does not exhibit diffusion [1, 2]. On the other hand, in the classical model a chaotic i.e. a diffusive regime was found in momentum space. Until today the origin of the difference between the quantum model and the classical model is not clearly understood. It therefore seems interesting to study how quantum localisation effects could be destoyed. One possibility seems to be 'randomization'.

In ref.[3] for instance, it is argued that an unbounded regime in energy occurs when the time between two kicks is random. Ref.[4] pointed out that a diffusive behavior is found, if the amplitude of every kick is random with zero average. For a non-zero average of the external force, the behavior is still unknown. We present here some results for a linear and sine average force.

Explicitly we consider the hamiltonian of the kicked rotator:

$$H = -\frac{\partial^2}{\partial \theta^2} + \sum_{j=0}^{J} (V(\theta) + \varepsilon_j(\theta)) \, \delta(t - \tau_j) \tag{1}$$

where $-\pi < \theta < \pi$, $\varepsilon_j(\theta)$ is a stochastic independent process for any j. $V(\theta)$ is the deterministic amplitude and τ the period.

The case $V(\theta) = 0$ was solved in ref.[4] and diffusion in momentum space was found. The case where $V(\theta) \neq 0$ and $\varepsilon_j(\theta)$ is small was solved in ref.[5] by a perturbative method. Here again diffusion was found through 'randomization'.

We will show in this paper more general results.

The general state of the system $\Psi(\theta, t)$, between two kicks, can be written as

$$\Psi(\theta,t) = \sum_{n=-\infty}^{\infty} \Psi_n(t) e^{in\theta} , n \in Z$$
 (2)

where $\Psi(t)$ are time-dependent Fourier coefficients. From the Schrödinger equation related to the hamiltonian (1) and the matching condition at $t_j = \tau \cdot j$: $\Psi(\theta, t_j^+) = e^{-i(V+e_j)}\Psi(\theta, t_j^-)$, the following recursive relation between t_{i+1}^+ and t_i^+ is therefore obtained:

$$\Psi_m(t_{j+1}^+) = \sum_n J_{m-n}^j e^{-i\tau n^2} \Psi_n(t_j^+)$$
 (3)

where

$$J_l^j = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta e^{il\theta} e^{-i(V(\theta) + \epsilon_j(\theta))}$$
 (4)

is a random quantity because of ε_j and $^{-+}$ denote before and after the kick. Lets define the elements of the density matrix (at time t_j^+) in the usual form, namely

$$\rho_{mn}^{j} = \Psi_{m}(t_{i}^{+})\Psi_{n}^{*}(t_{i}^{+}). \tag{5}$$

Then from (3) we get:

$$\rho_{mn}^{j+1} = \sum_{l,s} J_{m-l}^{j} J_{n-s}^{*j} e^{-i\tau(l^2 - s^2)} \rho_{ls}^{j}. \tag{6}$$

Physical quantities like energy or momentum are related to the sample averaging density matrix $\langle \rho_{mn}^j \rangle$, where $\langle \cdot \rangle$ denotes the average on the random quantities ε_j .

We consider that the correlation C, between the random phases $e^{ie_j(\theta)}$ and $e^{-ie_j(\phi)}$ is only depending on the distance, explicitly

$$C(\theta - \phi) = \langle e^{i(\epsilon_j(\theta) - \epsilon_j(\phi))} \rangle \tag{7}$$

this assumes translational invariance. We suppose moreover that the correlation C is an even function i.e. $C(\theta) = C(-\theta)$.

The power spectrum C_n of the correlation (7) is given by

$$C_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta C(\theta) e^{-in\theta}$$
 (8)

Using (8) and (4) we have

$$\langle J_m^j J_n^{*j} \rangle = \sum_l C_l J_{m+l} J_{n+l}^* \tag{9}$$

where

$$J_l = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{il\theta} e^{-iV(\theta)} \tag{10}$$

is related to the deterministic contribution $V(\theta)$. It is interesting to note that $C_l = \delta_{l,0}$ corresponds to the model without "disorder" [1, 2], which could be

interpreted as a system with high correlation length i.e. $C(\theta) = const.$ Using the fact that the sum over l of $e^{il\theta}$ gives a $\delta(\theta)$, we find

$$\sum_{l} l(J_{n+l}J_{l}^{*}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta V'(\theta) e^{in\theta}$$
 (11)

$$\sum_{l} l^{2}(J_{n+l}J_{l}^{*}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \left(V^{\prime 2}(\theta) - iV^{\prime\prime}(\theta) \right) e^{in\theta}$$
 (12)

thus the first and the second moment of the kinetic momentum ($\hbar = 1$).

$$[l]_{j} \equiv \sum_{l} l \langle \rho_{ll}^{j} \rangle \tag{13}$$

$$[l^2]_j \equiv \sum_l l^2 \langle \rho_{ll}^j \rangle \tag{14}$$

are related at t_{j+1} and t_j , by

$$[l]_{j+1} = [l]_j + \frac{1}{2\pi} \sum_{l,s} e^{-i\tau(l^2 - s^2)} \langle \rho_{ls}^j \rangle \int_{-\pi}^{\pi} d\theta V'(\theta) e^{-i(l-s)\theta}$$
 (15)

and

$$[l^{2}]_{j+1} = [l^{2}]_{j} + D + \frac{1}{2\pi} \sum_{l,s} e^{-i\tau(l^{2}-s^{2})} \langle \rho_{ls}^{j} \rangle \int_{-\pi}^{\pi} d\theta (V'^{2}(\theta) + (l+s)V'(\theta)) e^{-i(l-s)\theta}$$

$$+ \frac{2}{2\pi} \sum_{l,s} s e^{-i\tau(l^{2}-s^{2})} \langle \rho_{ls}^{j} \rangle \int_{-\pi}^{\pi} d\theta V'(\theta) e^{-i(l-s)\theta}$$
(16)

where the constant D is given by

$$D = \sum_{l} l^2 C_l \tag{17}$$

as

$$C(\theta) = \sum_{l} C_{l} e^{il\theta} \tag{18}$$

we have $C'(0) = i \sum_{l} lC_{l} = 0$ ($C(\theta)$ is even) and $-C''(0) = \sum_{l} l^{2}C_{l} = D \geq 0$ because $C(\theta)$ has its maximum value at $\theta = 0$. The fact that $\sum_{l} C_{l} = 1$ and $\sum_{l} lC_{l} = 0$ was used for deriving (15) and (16), as well as $\sum_{l} \langle \rho_{ll}^{j} \rangle = 1$. It is interesting to note that (15) and (16) are valid for any potential $V(\theta)$, but resolving them is very complex because they involve also the non-diagonal terms $\langle \rho_{ls}^{j} \rangle$.

• The model which is easily solved, is the linear potential i.e. $V(\theta) = K\theta$ with $-\pi < \theta < \pi$ and K beeing a constant. Using (15) and (16) we get

$$[l]_{j+1} = [l]_j + K$$

$$[l^2]_{j+1} = [l^2]_j + D + K^2 + 2K[l]_j$$
(19)

As the dispersion in kinetic momentum space is

$$\sigma_j^2 \equiv [l^2]_j - [l]_j^2 \tag{20}$$

it follows from (19) and (20) that

$$\sigma_j^2 = D \cdot j \tag{21}$$

Thus a diffusive behaviour in momentum space is found. It is interesting to note that from (18) the diffusion coefficient can be related to the correlation C by

$$D = -\frac{d^2}{d\theta^2} C(\theta)|_{\theta=0}$$
 (22)

which is independent of the deterministic amplitude K and then valid in the zero average model (K=0).

• Lets consider now the case $V(\theta) = K \sin(\theta)$. We obtain after numerous calculations

$$[l^{2}]_{j+1} = [l^{2}]_{j} + D + K^{2}/2 + f(\tau)$$

$$[l]_{j+1} = [l]_{j}$$
(23)

where

$$f(\tau) = \frac{K}{2} \sum_{s} (2s+1) \left(e^{-i\tau(2s+1)} \langle \rho_{s+1,s}^{j} \rangle + e^{i\tau(2s+1)} \langle \rho_{s,s+1}^{j} \rangle \right)$$

$$+ \frac{K^{2}}{4} \sum_{s} \left(e^{-i4\tau s} \langle \rho_{s+1,s-1}^{j} \rangle + e^{i4\tau s} \langle \rho_{s-1,s+1}^{j} \rangle \right)$$
 (24)

this function is bounded by the following value:

$$|f(\tau)| \le K^2 \cdot j \tag{25}$$

The extreme value $f = K^2 \cdot j$ corresponds to the case $\tau = 2\pi n$. For this case we have the same situation as in the classical rotator where "accelerator modes" exist [2], with an energy dispersion proportional to j^2 , i.e. $\sigma_j^2 = K^2 \cdot j^2 + (D + K^2/2) \cdot j$.

For irrational values of τ the dispersion would probably just increase proportionally to j.

If $\tau = \pi(2n+1)$ we actually find f = 0. It is interesting to note that for D = 0 the same diffusion coefficient is found as in the classical model of the kicked rotator without disorder.

Taking $V(\theta) = K\cos(\theta)$ doesn't change the conclusions. This result can be generalised for any potential $V(\theta) = \sum C_n e^{in\theta}$, where a quadratic diffusion is found for the resonant case.

Conclusions: We have found a diffusive behaviour in both, the linear and sine kicked rotator, by introducing randomness. The diffusion coefficient for the sine field depends on the correlation function between the random phases $e^{ie_j(\theta)}$, the field amplitude and the period. Whereas the diffusion coefficient of the linear field, only depends on the correlation function between the random phases and not on the amplitude of the field. This behaviour is in agreement with the result of E. Ott et al. [5] who considered a small perturbative noise. The results of the randomized sine quantum kicked rotator are very similar to the classical sine kicked rotator. We can therefore question ourselves on the physical origin of 'randomization' for quantum systems. As was partially pointed out in ref. [6, 7], it seems conceavable to consider that the Hamiltonian of a microscopic system, for instance the quantum rotator, connot be known exactly, but that a statistical description ('randomization' maybe) seems more adequate.

References

990

- [1] D.R. Grempel, R.E. Prange, S. Fishman, Phys. Rev. A 29 1639 (1984)
- [2] G. Casati, L. Molinari, Prog. Theo. Phys. Sup. 98, 287 (1989)
- [3] I. Guarneni, Lett. Nuovo Cimento 40, 171 (1984)

- [4] J.C. Flores, Phys. Rev. A <u>44</u>, 3492 (1991)
- [5] E. Ott, T.M. Antonsen, Phys. Rev. Lett. <u>53</u>, 2187 (1984)
- [6] A. Peres, Phys. Rev. A <u>30</u>, 1610 (1984)
- [7] J.C. Flores "systems in a random time-dependent electric field: Diffusion in the 1-D hydrogen atom", preprint UGVA-DPT 10-753 U. de Genève