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First Order Coherent Boson States

Reinhard Honegger and Alfred Rieckers

Institut fiir Theoretische Physik, Universitat Tibingen
W-7400 Tibingen, F.R.G.

(17. II. 1992)

Abstract

We analyze the first order coherent states (and various sub-classes) over an arbitrary C*-
Weyl algebra. Their normally ordered characteristic functions are expressed in terms of an
infinite, positive-definite matrix, which exhibits an additional positive-definiteness condition
if the states are classical. In the latter case the matrix elements are identified as moments
of probability measures on C. By going over to measures on bC, the Bohr compactification
of C, there arises a Bauer simplex of generalized classical coherent states. For macroscopic
coherent states we give the GNS-representation, the central decomposition. and construct
an extended Weyl formalism.

1 Introduction and preliminary results

A large part of quantum optics is based on peculiar many photon states which exhibit optical
features. By means of the factorization of certain normally ordered correlation functions a state
of the quantized radiation field is characterized to be optically coherent of some order [1] [2].
Using a smearing procedure in (3] [4] this coherence condition is tranferred into its operator
algebraic version and takes account of the fact, that the correlation functions are in general
distributions. The smeared field formalism allows a systematic study of both the Fock and non-
Fock coherent states, independently of any special representation of the photonic Weyl algebra,
whereas usually coherence is considered only in the Fock representation. Recently the fully
coherent states (that is, coherent in all orders) have been investigated and completely classified
in the non-Fock case [4]. In experimental situations, however, only the correlation functionals of
order one and two are accessible [2]. Thus full coherence seems to be too strong a requirement.

In the present work we study in terms of the rigorous formalism of operator algebraic quan-
tum mechanics the first order coherent states together with their sub-classes of n-th order coher-
ent states. We start with the definition of n-th order coherence (where n is arbitrary in Nu{oo})
for smeared Boson fields, demanding the factorization of the normally ordered expectation val-
ues up to degree n in terms of a linear form L on the testfunction space and strengthening
infinite differentiability of [4] to analyticity. Their characteristic functions are expressed by
an infinite, positive-definite matrix of complex coefficients. In general the conditions for this
matrix have not been completely specified to lead to a state on the Weyl algebra. The more
remarkable is the sufficient and necessary condition, which we express by a modified positive-
definiteness condition on the coefficient matrix, to give a classical coherent state (Theorem 2.3).
It is demonstrated that for unbounded L (with respect to the norm of the testfunction space)
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there are only classical coherent states, and that these are just those coherent states which are
not given by a density operator in Fock space. Concerning the so-called P-representation of
classical coherent states we derive a probability measure u on CL (dropping henceforth the L)
by expressing the mentioned matrix elements as mixed moments. If L is bounded it is given
by a mode in the (norm closure of the) testfunction space. For unbounded L we consider it as
a generalized mode. The measure u of the P-representation describes then a global (position
space independent) variation of the phase and amplitude for one (generalized) mode. The state
space of the C*-Weyl algebra contains, however, also non-regular states. By using measures p
on bC, the Bohr compactification of C, we define classical, first order coherent states also for
this extended class. This leads to the nice structure of a Bauer simplex and makes manifest a
classical sub-theory for every linear form L.

For unbounded L we construct the GNS-representation of coherent states as a tensor product
of the Fock representation and a classical field representation. The corresponding represented
field operator decomposes additively into the Fock and classical part. The measure u of the
P-representation gives here not only the decomposition into extremal coherent states (with
the same L) but also the central decomposition and a unique decomposition into pure states
on the Weyl algebra. Since the unboundedness of L leads to a finite particle density in the
infinite volume [5] we call the coherent states associated with such an L “macroscopic”. The
before mentioned results show, that for macroscopic coherent states the exact specification of
the phase and amplitude of the classical field part makes the state pure as a quantum state.

For macroscopic coherent states L is not part of the original test function space but may
added to it by a canonical procedure. This leads to an extended Weyl formalism, which we
outline in the last section. Here we have still the approximability of the macroscopic classical
field by the original represented quantized field, but we have also its independent variability,
which corresponds to the direct preparation methods for the classical field.

Many results here parallel those for fully coherent states in [4], but the technical difficulties
are more subtle here, in view of the unbounded measure spaces for the amplitude variations.

A certain redundancy in the set of correlation functionals for classical higher order coherent
states is disclosed in [6]. In [7] the non-classical coherent states, which occur only in the case of
a bounded linear form L, are supplemented.

Let us start our exposition with preliminary results concerning the Weyl algebra. By W(F)
we denote the Weyl algebra over the pre-Hilbert space E with (right linear) scalar product (. | .).
In applications £ is called the one-boson testfunction space. W(F) is the unique C*-algebra
generated by the (unitary) Weyl operators W (f), f € E, satisfying the Weyl relations ([8],
Theorem 5.2.8)

W()W(g) = exp{-3Im(f |g)} W(f+9g), W(f)'=W(-f) VfgeE.

Let be S(W(E)) the state space of W(FE), which is convex and weak*-compact. We denote
by C(FE) the convex set of functions C : E — C, with C(0) = 1 and for which the map
(f,g9) — exp{% Im(f | g9)}C(g — f) constitutes a positive-definite kernel E x E — C ([10], cf.
also [4] Appendix). From [4] it is known, that the map

C:SW(E) —CE), w—0C,, (1.1)
which maps each state w € S(W(F)) onto its characteristic function

Co:E—C, froCu(f):=(w;W()),
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is affine and bijective. The characteristic function CF of the Fock state wp € S(W(E)) is given by
Cr(f)= exp{-}; ||f||2} Vf € E. Its GNS-representation (I, Fy(E),QF) is given by the Bose-
Fock space F1(E) over the completion E of E, the vacuum vector Qr and Iz(W (f)) = Wr(f)
Vf € E, where Wg(h), h € E, are the usual Fock-Weyl operators, [8] Section 5.2.

As a generalization of Glauber’s P-representation with positive measures (cf. also [11] Section
8.2) we introduce the classical states Sy(W(E)) on W(E). Let be P(£) the convex set of positive-
definite functions P : F — C with P(0) = 1, [10]. Then (cf. [12] Section 3)

Sa(W(F)) = {we SW(E))|C, = CrP, with P, e P(E)} .
Obviously, Sq(W(FE)) is convex. If P € P(E) then CpP € C(E) (cf. [4]) and hence the map
P:5,W(F)) —P(E), w+——P, (1.2)

is affine and bijective. Using the Bochner theorem for the elements in P(E), one obtains the
following result [12].

Proposition 1.1 The set of classical states Sy(W(FE)) is a Bauer simplex which is affinely
homeomorphic to Mi(E'), the set of reqular probability Borel measures on the topological char-
acter group E of the discrete additive group E.

For a regular ¢ € S(W(E)) the field, annihilation and creation operators ®,(f), a,(f) resp.
ay(f), f € E, associated with the GNS-representation (II,,H,,Q,) are defined in the usual
manner ([8] Subsection 5.2.3, cf. also [3] or [4]). If ¢ € S(W(E)) is of class C*>™, then the
associated cyclic vector €2, is contained in the domain of each polynomial of field operators with
degree < m, in which case one commonly defines

(#; ‘I'vp(fl) Tt Qw(me)) = (q’go(fm) T @tP(fl)le | q)ga(fm+l) T q’tp(f%m)ﬂlp) »

If m = oo all field correlations exists, which is desirable for the statistical interpretation. The
C™ assumption was appropriate for the definition of a fully coherent state in [3] and [4], since in
this case it implies analyticity (which means that R 3 ¢t — C,(¢f) for each f € E is extensible
to an analytic function in a neighbourhood of ¢ = 0). This is different for finite order coherence,
where analyticity has to be postulated.

Definition 1.2 An enalytic state w € S(W(E)) is called coherent of n-th order or of degree
n € IN, of there exists a linear form L : E — C so that

(W;ac:(fl)"'a::(fm) aw(gl)"'a'u(gm)) = L(fl)L(fm) L(gl)"'L(gm)

for all fi,...,fm,91,-..,9m € E and each 1 < m < n. The state w is called fully-coherent or
coherent of order oo, if it is coherent in each order n € IN. The set of all coherent states of
degree n € IN U {00} with linear form L : E — C is denoted by SF”(W(E)). '

Obviously SY”(W(E)) is a convex subset of S(W(E)). The condition for w € S" (W(E)) to be
analytic is needed to recover from the normally ordered expectation values (w; a%(f)* au(f)'),
k,1 € Ny, the characteristic function C,(f) by means of the series expansions from [4] Lemma
1.1, which we recapitulate here.



968 Honegger and Rieckers H.P.A.

Lemma 1.3 Let ¢ € S(W(E)). ¢ is analytic, if and only if for each f € E there is a function
Ny(z1,22; f), analytic in Ug x Uy C C? (Us a neighborhood of the origin of C), such that

Col(zf) = Cr(zf) No(2,Z: f) VzeUy. (1.3)

Especially ¢ is entire analytic, if and only if No(21,22; f) is entire analytic on C? for every
feFE.

Moreover, the analyticity condition and (1.3) determine N, uniquely to have the form

Ny(z1,22; f) = et - +2nn)fI? <e—%(ﬁ+ﬁ)‘l’p(ﬂgp | e~ 3lz2-n )‘i’,:("f)n(p) (1.4)

k=0

Il

Clearly we have the following inclusions

SHW(E)) 2 SPW(E) 2 ... 2 S W(E)).

An equivalent formulation for w € S(W(E)) being an element of S (")(W(E)) is given by the
following

Lemma 1.4 In terms of Definition 1.2 it holds:

(a) The Fock state wp € S(W(FE)) is fully-coherent with linear form L = 0. Conversely, if
(w; a* (f)au(f)) =0Vf € E for an w € SOW(E)) of class C?, then w = wp.

(b) For an analytic w € SW(E))\{wr} and given linear form L : E — C, L # 0, and given
n € INu {oo} the following statements are equivalent:

(i) weSMW(E));
(i) (w;al(f)au(f)) = |L(f)|* Vf € E, and for each 2 < m < n there is an h e’ker(L)
with {w; a%(h)™a.(h)™) = |L(R)|*™.

PROOF: (a): The fact that wp is fully-coherent with linear form L = 0 follows from [4]. Conversely.
from ||ez‘,,(f)ﬂt,,|l2 =(w;:aL(f)a,(f)) =0 we conclude a,(f)Q, =0Vf € E. Now [4] Proposition 2.1 (b)
implies w = wp. (b): From (w: al(f)a (f)) = |I.,(f)|2 Vf € E with the help of the polarization identity
we get (w; al(f)ay(g)) = L(f) L(g). which by Lemma 2.2 of [4] implies Tg)aw(f)ﬂw = fmaw(g) Q.
VY f.g € E. Consequently. for the above h ¢ ker(L) we obtain

ILR)*™ (w: al(f1) -+~ 6L fm) Gul91) - - Gulgm)) = (1.6)
= L(f1)---L(fm) L(g1) - - - L(gm) (w3 al(R)™ aw(h)™) .

and the assertion follows. ]

2 Matrix representations and positive-definiteness

A matrix ¢ : Ng x Ny — C, (k,1) — c(k,l) is defined to be analytic, if

o7 6k+l

k'l'b(k ) < o for some 6 > 0.

k=0
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A matrix ¢ constitutes a positive-definite kernel on Ny x Ny, if [10]

N
> BeBie(k,l) >0  Vpi,...,fneC, YNeN. (2.1)
k=0

Clearly, these expressions coincide with (8|c8) 2 0, where 8 = (51,...,8~5,0,0,...) and (.].) is
the usual scalar product on the sequence space I*(IN). Hence positive-definiteness of the kernel
¢ : Ny x Ng — C is just positivity of the matrix ¢ which acts (as usual) on the subspace of I*(IN)
consisting of finite vectors. Specifying (2.1) to vectors g = (0,...,0,6,0,...,0,04,0,...) we
c(k,k) c(k,l)
e(l,k) e(l,1)

determinant, which implies

see that the matrix ) must be positive and therefore selfadjoint with positive

ek, ) = c(l,k), le(k,D* < e(k,k)e(l,l), Vk,leNg. (2.2)

For n € INg u {00} let us define

M) = {c:No x No — C| ¢ analytic, satisfying (2.1), ¢(0,0) = ... = c(n,n) = 1}. (2.3)
The set ]M::,Lker is convex, and
(0) (1) (2) (o<}
Mposker 2 Mposker 2 Mposker 2 ... 2 Mposker .

Proposition 2.1 Let be n €e Nu{oc} and L : E — C a non-zero linear form. Then there exists
a unigue affine, injective map
c: SMW(E)) — MY W — Cy

posker ?

such that

oo o\ R
) L LRI eulhsl) (2.4)

ot =03 () an

which converges absolutely for all f € E with |L(f)| < 6 for some 6 > 0. Moreover,

c(SMW(E))) ¢ M
(siow(ey)

posker
and for each w € Sy (W(E)) one has
(w; el (f1) - al(fi) aul91) - aulgn)) = L(fr)--- L(fu) L(g1) -~ L(g1) cu (k1) (2.5)
forall fi,..., fry91,...,91 € E and each k,l € Ny.
PROOF: For w € S;” (W(E)) and h € E with L(h) = 1 we put
cw:NgxNog — €, (kD) — {w:al(h)a,)) . (2.6)

Obviously ¢, is a positive-definite kernel, and ¢,(0.0) = ... = cu(n.n) = 1 by the coherence of w of
degree n. w being analytic we insert (2.6) into equation (1.5) of Lemma 1.3 and obtain a 6 > 0 such that

the double series
= {4z k im\i11
Ny(z1,20:h) = Z (7;_) (73_) o 'ﬁc“'(k'”

k=0
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converges absolutely for all z.22 € C with |z1],|22| < . Now let f € E with |L(f)| < 6. Inserting
(2.6) into [4] eq. (2.2) (resp. into eq. (1.6)) we find that (2.6) is independent of the special choice of
h and occurs in every normally ordered expectation (2.5). By means of Lemma 1.3 and the fact that
t € R (w; W(tf)) is actually analytic in an open strip around the real axis (cf. [8]. p. 39) we arrive at
the stated series expansion of C,,.

(0)

ke for which the expansion of

The injectivity of the map ¢: Let there be another matrix ¢/, € M
C., holds for some " > 0. Then for arbitrary f € E we get

o i k i l

iz izg) 11 ETTEY

N(z1,22; = — — )} ==L L o

o) = 3 (%) () ma i T e

for the analytic function associated with w by Lemma 1.3 (where the series converges for |z1|.|22| <
|L(f)|™' &') from which follows L{f)"L(f)tcL(k,l) = (w; a,(f)*a,(f)!) Vf € E. Hence with the above
h and (2.6) we get ¢, (k.l) = co(k,l) Yk,l € No. The affinity of the map ¢ is immediate from (2.6). ]
(n)

poeker? B problem which in the case

The range of the map ¢ of Proposition 2.1 is not all of M

of Fock-normal w € Sin) (W(F)) seems to be related to the P-representation with non-positive

measures. To investigate the range of ¢ : S}J“’ W(E)) — ]1\/[21,)81‘8r we need a stronger form of
positive definiteness. By means of the addition (k,!) + (m,n) = (k + m,! + n), the neutral
element (0,0), and the involution I(m,n) := (n,m), the set Ny x INg becomes an involutive
semigroup, which we denote by (INy x INp,J). According to [10], Definition 2.3, the matrix

¢ :INg x INg — C is a positive-definite function on (INg x Ny, I), if for each N € IN

N

Za_,-aj C(I(p,‘)-l-pj) >0 Vpy,...,pnv € Ng x Ny Voi,...,an eC. (27)
ig=1

By use of the natural indices of INg x INy (2.7) is written as

M
> @omacl+mk+n) > 0 Voy; € Cwithi,je{0,1,...,M} (2.8)
klmmn=0

for each M € IN. Similar to (2.3) we define for n € Ny U {00}
M'™ .= {c: Ny x Ng — C | ¢ analytic, satisfying (2.8), ¢(0,0) = ... = ¢(n,n) = 1}. (2.9)

posfun

Setting ax = 0 for I # 0 and ag g = B one regains from (2.8) the relation (2.1), and thus

(n) (n)
Mposfun 2 Mposker Vn € ]NO U {OO} -
Clearly M:}’;lﬁm is convex, and
(0) (1) (2) (oc)
Mposfun = Mposfun = Mposfun 2 ... 2 Mposfun -

In the following we often need a simple fact, which we here formulate more stringent than
in [4].

Lemma 2.2 If L : E — C is unbounded, then there is for every a € C a sequence (f*)nen in
E with

im |fX| = 0, and L(ff) = o« VnelN.
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PROOF: Since L is unbounded, there is a sequence (gn)nen in E with ||ga]l = 1 and lim L(g.) = x.

Without restriction in generality L(g.) # 0 Vn € N, and we may define f7 := 22, [ |

Theorem 2.3 Let be all as in Proposition 2.1. We have for each n € N u {oo}:

posfun-

(a) (ST OW(E) 0 SaW(E))) = M)
(b) Let the linear form L : E — C be unbounded (with respect to the norm on E). Then
5.7 W(E)) ¢ SaOM(E)) ,

from which by (a) follows

posfun *

c(sg“’(W(E))) =M™

PROOF: (a) will be proved after Theorem 3.1. (b): Let L : E ~ C be unbounded and w € SL"'(W(E)).

k
(2.5) implies ¢, (k,l) = <w; a;(f{f—)) %(I‘(Lﬁ)'> Vk,1 € Ng Vf ¢ ker(L). With the canonical com-

mutation relations (CCR) we get for a;; € C,0<4,j < M

“i ﬂa_HamnCu(1+m,k+n) -
DT B Y L PR ()
it *(h)
i <ki:oak‘“3(f%)k“w(ﬁ%)llemiﬂama;(ﬁﬂ)maw(ﬁ%)"gw)+
Ig(f}l)zf P( )

where P is a complex polynomial, which one obtains by successive use of the CCR. e.g.

(o1 (o2t ) " (ot ))) -

2 (o (o) b)) ()" -

2
- Mg—cw(l+m— lL.k+n-1)
|L(f)]
and so on... . Altogether
M
Y @memncol+mk+n) = (2.10)
klmm=0

S amarn( ) a2 Y o+ M p(an
_ " k;ﬂakzaw( L(f)) aw(uf)) 0, || b P( W”) Vf ¢ker(L).
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Because L is unbounded by Lemma 2.2 there is a sequence (fa)new in E with lim ||f.]] = 0 and
lim |[L{f,)| = 1. Since the left hand side of (2.10) is independent on the sequence (f.)nen. the limit
n—25

M
k 1 2
i = _Jfn o
po “ D aw %( Lifn) ) %( Tt ) Qo ”
k=0

Let be p., € M1(C) the probability
measure on C of Lemma A.1 (Appendix) associated with c,. From the expansion of Proposition 2.1 it
follows w € So(W(E)) with Pu(f) = [g exp{iv2 Re(zL(f))} dpu(2). Vf € E. ]

If the linear form L : E — C is bounded there are examples of pure states w € S(x)(W,(E))
which are not classical, cf. [13] [5]. Similar to [4], Proposition 2.5, the boundedness resp. un-
boundedness of L has essential consequences concerning the Fock-normality of w € SL"'(W(E))‘.

v
o

has to exist. Consequently (2.8) is valid. showing ¢, € M

posfuu

Proposition 2.4 w € Sm(W(E)) is normal to the Fock representation, if and only if the linear
form L : E — C is bounded.

PROOF: Immediate consequence of Theorem 2.3 and Proposition 3.4 below. n

3 Measures and simplices

For each a € C define the periodic function (which is in fact a character on the additive group
C)

£ :C—C, z+— exp{ivV2Re(az)}. (3.1)

By Theorem 2.3 and Theorem A.l1 (Appendix) each w € SL“)(W(E)) n S (W(E)) corresponds
to a unique g, € M} (C) (here M} (X) denotes the regular probability Borel measures on the
topological space X) such that

(f) = polérip)) VfeE. (3:2)

If w(z) =1 and A denotes the normal operator (A€)(z) = 2£(z) Vz € C, £ € L2(C, ), then it
follows from the definitions

P.(f) = (wlexp{H(LNHA+T(NAVw)  and  duu(z) = (w]dG(2)u)  (33)

with the spectral family z — G(z) of A. Obviously 1 = cu(k, k) = [ |2|*dpe (2) = || A*w||? for
all0 < k < n.

Starting from (3.2) we generalize the notion of a classical coherent state with a fixed non-
zero linear form L : E — C. The functions {{, | « € C} generate the C*-algebra AP(C) of the
continuous almost periodic functions on C (cf. Section 5). Each n € AP(C) extends uniquely
to a continuous function »'®) € C(bC) on the Bohr compactification bC of C, in which sense
AP(C) = {n® | 5 € AP(C)} = C(bC) (cf. [17) (26.11), (33.18), (33.19), and (33.26)). Each
v € M1 (C) gives a unique v\ € M} (bC) with [ n(z)dv(z) = f¢ n“”(z) dv®(z) ¥n € AP(C).
(We mention that the canonical embedding of C into bC is an open map, in which sense C c bC
and M1(C) c M}(dC).) Thus the state space of AP(C) 22 C(bC) is just M3 (bC). Obviously, if
p € M1(hC), then f € E s p(gL(f)) is an element of P(E) and hence by (1.2) defines a classical
state on W(E'), which leads to the convex subset of Sq(W(E)):

SSOWV(E)) {w e SaW(E)) | Pu(f) = pu(€}};)) VS € E for some p, € M}r(bC)}. (3.4)
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Theorem 3.1 Let L : E — C be a non-zero linear form. Then the map
S§W(E)) — MLI(bC), wr— p,

is an affine homeomorphism with respect to the weak*-topologies, showing SE'(W(E)) to be a
Bauer simplex. Moreover for w € S§(W(E)) we have

(a) w is reqular, if and only if p., € M}(C) (i.e. supp(pn) € C).

(b) w is of class C*™ for m € N, if and only if p, € M1(C) and [ |12]*™ A, (2) < 00. In this
case one has (cf. equation 2.5)

(w3 63(f1)- -+ an(fe) Buler) -~ aular)) =
- ( fc o duw(Z)) L(f)- L(f) D) - (@)

forall f1,...,fk,91,...,91 € E and each 0 < k,l < m.

(¢) w is (entire-)analytic, if and only if p, € M}(C) and [ " dp,(2) < 0o for some (all)
¥ > 0.

PROOF: Since {{, | @ € C} is total in AP(C) 2 C(bC) two measures p,» € M} (bC) agree. if and only
if p(& (b)) (b’) Va € C, from which follows the bijectivity of the map u by observing L # 0 and the
buectmty of the map C of (1.1). Clearly g is affine. The continuity of . resp. 1. follows from the fact
that p; & p in the weak*-topology of M} (bC). if and only if p.(ff,b’) 4 p(f},b’) Va € C. and w; ] o if
and only if (w; ; W(f)) e} (w; W(f)) Vf € E. Since M} (bC) is a Bauer simplex. the map p~' transfers
this property to S§{(W(E)).

(a): wis regular, ifand only if t € R+— P, (tf) = ﬁ‘w(d?(f)) is continuous for each f € E. Now let fa

be the multiplication operator f — .5,‘,") f on L2(bC, ). Observing I.Sf,")(z)| =1VzebC and each y € C
we obtain

|6 -e)e -

LH{¢, (# | v € C} bemg dense in L2(bC. p,,) by an —-argument the strong continuity of the unitary one-
parameter group gt,, t € R, follows. Hence (¢1.¢2) € R? {tl{m = ﬁtl+-t1 is strongly continuous. from
which the continuity of @ € C — <w |£a > = pol “’)) =: F,(a) follows (here. w(z) = 1 € L2(bC. pu))-
However. Bochner’s theorem for the positive-definite, continuous function F,, : € — C ensures the
existence of a measure i, € M} (C) with F,(a) = fiu(£a) Vo € C. Consequently. by the above argument
Ho = o € M+(C)

(b): By (Af)(z) := zf(2) is defined the normal operator A in L2(C.p.). Let w(z) =1. wis C*™ if
and only if t € R — p,(£1a) = <'w | exp{%t(a}l +ﬁA")}w> is so for all @ € C. By the spectral calculus

b b b t—0
O 1 e[ dpo = 2 ~ o) - ml) =2 0.

oC

this is equivalent to w € D((c«A +aA*)™) Va € C. Especia.lly fora=fanda= — - we have w € D(S™)
and w € D(T™) for the selfadjoint operators S = (A +A)and T = 2 ={A— A ) Since A = § +:1T
and A* = § — iT we obtain w € D(A™), from whlch by |[A™w|® = [, || m dp.(z) the assertion follows.
The stated normally ordered expectation values follow by differentiation and with the CCR (cf. equation
(2.5) and the Appendix).

(c): Similar to (b) one gets, that w is (entire-)analytic, if and only if w is an (entire-)analytic vector
for S and T, and hence for A, resp. |A| = VA*A = |4*| (since |A™w|]* = [ "™ dpo(2) = |||A™ z|*).
But that is w € D(ebl4l) for some (all) § > 0. ' L
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As a consequence, the non-regular states in S{(W(E)) are just given by the measures p €
M} (bC)\M1(C), that is p(bC\CT) # 0.

As a corollary we give the
PROOF OF THEOREM 2.3(a): First we show M™ ¢ c(s‘“’(W(E)) nScl(W(E))). Let ¢ € M

posfun = posfun
and denote by p € Ml(C) the associated measure of Theorem A.1 of the appendix satisfying ¢(k.l) =
Jo 7 2%dp(2) Vk.l € Ny. Now define the state w € S§(W(E)) by Pu(f) = pléL(s)) VS € E. that is p = p,.
By Theorem 3.1 (b) and (c) we have w € S (W(E)) because of 1 = c(k,k) = [|2]** dp(z) YO < k < n.
On the other hand, fe“""'dp(z) < o¢ for some 4 > 0 (Theorem A.1) implies

= E+l oF

plla) = /Pxp{ \/-az exp{ fﬂz}dp z ( ' ) o c(k.l)

C k=0

for all a € C with |a| < 2~ 7. from which with Proposition 2.1 follows ¢ = c,,.

Now we prove c(s‘L"’(W(E)) nSd(W(E))) ¢ M™) . Assume w € SYY(W(E)) n Sa(W(E)). Ac-

posfun -

cording Proposition 2.1 for u € C with |u| < § we define the function

\z: i \Fauk @
T fu) = (—) kD). Jul <6,
k=0 \/5 L‘ l‘

Obviously P.(f) = Tw(L(f)) for each f € E with |L(f)] < é. Since w is analytic. for each f € E the
map t € R — C,(tf) extends to a holomorphic function z — C,(z: f) in a strip a.rmmd the real axis
(cf. [8] p.39). Hence t € R — P,(tf) extends to a holomorphic function z — exp{%- NI }Cul2: £)
in the same strip. Now let @« € T := {z € C | |z] = 1}. For each ¢ € E with L(g) = « the map
t €] — 6,6~ P,(tg) = T'u(ta) has a holomorphic extension z — Fy(z) to such a strip (which depends
on g). By the identity theorem for holomorphic functions these functions all agree on the real axis:
P,(tg) = Fy(t) = Fu(t) = P,(th) Vt € R and each g,h € E with L(¢g) = a@ = L(h). Doing so for
each a € T we get an extension ', : C — C of T, to all of C, such that P,(f) = Tu(L(f)) Vf € E.
Since P, : E — C is positive-definite, so is f‘w : C — C. By Bochner's theorem there is a measure
B € M_IF(@) on the characters T of the discrete additive group (C,+) such that Tol(u) = Je x(w)dpa(x)
Vu € C. Because £ — (x — x(a)) defines an ISOIHOl'phISIn between C(bC) and C (C [18] we regard fi.,
as a probability measure on bC. that is Tw(u) = jiu(£L”) Vu € €. Thus Po(f) = Tw(L(f)) = ,uu,(gf,f;’ﬂ
Vf € E. w being analytic, Theorem 3.1(¢c) implies i, € M1(C) and the existence of a v > 0 with
Je €"?djiu(z) < 0. Consequently

o k+l k
- L(f) L(f
Py(f) = pulérLip) = (—) , w(k )
‘ k;ﬂ V2 T

with ¢, (k,1) := [, Z'2"df.(z). Now from Theorem A.1 and Proposition 2.1 follows ¢, = c,, € e M [ |

posfun”

Via the map p the extreme boundary 8,588 (W(E)) of the simplex S§(W(E)) correSponds
to the point measures on »C. For z € bC and non-zero linear form L : £ — C we denote by al

the *-automorphism on W(FE) which is given in terms of the character f € E — {Lm(z) €e{ue
C|lul =1} by

b
at(W(f)) = &(:)W(f)  VfeE (35)
(gauge transformation of the second kind). One easily checks the following results.

Proposition 3.2 (o) 9.S§(W(E)) = {wroal|zebC}, ie 0.SH{W(E)) is an orbit of
the representation (3.5) for the group bC.
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(b) By the map p of Theorem 3.1 (a) the convez set
558 OW(E)) = {w e SHOME)) | w is regular}

is associated with the measures M1(C), showing S§ ,eg(W(E)) to be a simplex too, which
however is not weak*-compact. Its extreme boundary is given by 0.S§ l,es(’.V\f’(E)) =
{wroal|zeC}. Hence, by [{] Proposition 2.1 8.8§ reg(W(E)) consists just of the the
pure, quasifree, coherent states of degree 0o associated with the linear forms zL, z € C.
The boundary 3e5f,l_,eg(W(E)) is an orbit of the representation (3.5) for the additive group
C.

We now decompose the states S§/(W(E)) into the extreme ones. Such an integral decompo-
sition is provided by the following Lemma.

Lemma 3.3 The map py : bC — S(W(E)), 2z — wroal is continuous and its range pL(bC) =
BeSEl(W(E)) is a compact subset of S(W(E)) with respect to the weak*-toplogy.

PROOF: 2 € bC — ;fg’()f)(z) (wr; W(f)) is continuous for each f € E. from which the continuity of p,

follows. , n
We denote the image measure of u, € M1(bC) with respect to the map py, by pk,

pk(B) = (P (B)) for each Borel subset B ¢ S(W(E)).

Analoguously to the proof of [23] Lemma 3.3 one shows that uL is a regular Borel measure, puf €
MZ1(S(W(E)). By definition of w € S§}(W(E)) and by (1.1) we have the integral decomposition

= [ wpoal du(z) = [ o dut(9). (3.6)

bC S(W(E))

Now we investigate in which cases the states of S§(W(E)) are normal to the Fock represen-
tation.

Proposition 3.4 Concerning the Fock normality we have the following results:

(a) Let w € SOW(E)) be of class C* with {w; aX(f) aw(f)) = |L(f)|? Vf € E for some bounded
linear form L : E — C. Then w ts normal to the Fock representation.

(b) Let L : E — C be a non-zero linear form. Then w € S§(W(E))\{wr} is normal to the
Fock representation, if and only if L is bounded and p., € M}(C). (For arbitrary L the
Fock state wr always belongs to the point measure 6y at z =0.)

PROOF: Since here the states are not supposed to be analytic. we cannot do the proof analoguously to
(4] Proposition 2.5.

(a) It exists an h € E with L(f) = (h | f) Vf € E. With the notation of [8] Theorem 5.2.14 and the
orthogonal projections Pr from E onto the finite dimensonal subspaces F C E we obtain

nu.F(Qy) = Enw,f;(ﬂw) = leaw(f1) lelz = Z:(w;a;(fi)aw(fi))
= XL fIP 2|<h|fl>| = |Peh)* < |Al?
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for each finite dimensional subspace F ¢ E. Thus Q. € D(n,) and from [8] Theorem 5.2.14 follows w
being Fock-normal.

(b): Since each Fock-normal state is regular ([8] Proposition 5.2.4(4)). Theorem 3.1(a) gives p. €
M} (C).

Let be w € Sf}(W(E))\{wF} Fock-normal, but assume L unbounded. Then with the sequences
(fX)nen, o € C, of Lemma 2.2, we get lim C,(f2) = puw(éa). On the other hand. if g, is a den-
n—uc

sity operator in the Fock space Fy(E), then by [8], Proposition 5.2.4(4). one has lim C,(fZ) =
lim trp, (0uWr(f2)) = 1, Va € C. Consequently p.({a) = 1. Vo € C. However. the map a € C —
n—o0

Jtw(€) is the Fourier transform of the measure p,, € M1(C). By Bochner's theorem. [19]. Theorem IX.9.
the Fourier transformation gives a one-to-one correspondence between positive measures and positive-
definite functions on the additive group C = R?, from which it follows g, = &. that is w = wp. a
contradiction.

Conversely, assume L bounded and p,, € M1(C). Then thereis an h € E with L(f) = (h | f) Vf € E.
With the Weyl relations and (Qp | Wr(f)Qr) = Cr(f), Vf € E, one easily checks, that the density
operator in F, (E) associated with w is given by

fc (W (—iZh) Q) (We(—iZh)p]| duu(z) .

showing w to be Fock-normal (cf. [11] Section 8.2). [

4 GNS-representation and central decomposition

In this section we assume a fixed, but arbitrary, unbounded linear form L : F — C. We treat
the GNS-representation (Il.,H., . ) and central decomposition of w € S§(W(E)).

As in [4] let K = E @ C with scalar product (f &« |g® 8) = (f | g) + @B, and embed E
therein by A : E — K, f — f @ L(f). From the unboundedness of L it follows that A(E) is
dense in K, [4] Section 3. The continuous extension ox of the symplectic form Im(. | .) from E
to K is given by ox(f ® a,g ® ) = Im(f | g) Yf @ a,g® B € K, which obviously possesses a
non-trivial null space. By £(H) we denote the bounded operators on the Hilbert space H.

Theorem 4.1 For w € S§{(W(E)) the GNS-representation is given by
Ho=Fi(B)®L*0C, ), Qu=0r0w, ILW({)=W.(\/) VfeFE,

where p,, is introduced in Theorem 3.1 and where w(z) =1, z € bC, and W,(g® ) := Wr(g) ®
45[(;’) Vg & B € K. For the associated von Neumann algebra we have

M, = TL(W(E))" = LFL(E)BLZ(C, )

where the elements of L(bC, p,) act on L2(bC, u,) as multiplication operators. The symbol ®
denotes the W*-tensor product [21]. Further, ihe commutant M, and the center 2, = M ,nM.,
are both equal to

Z, = M, = 15, @L®(bC, ) -

Moreover

(@) (| Wo(fO® )W) = Cr(f) ml(t?) Yidaek.
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(b) Wo(¥) e My Vi eK.

(c) Let w € Sﬂmg(W(E)). Then the map W, (.) : K — My, ¥ — W, (¥) is continuous with

respect to the norm of K and the strong operator topology on M,. As a consequence, if
the selfadjoint operators ¥, (1), ¥ € K, generate the unitary groups {W,(t) | t € R}, the
map

¢=f€Baef=FEB€D 3 'I)F(f)®]l|_2+]1p®‘pcl(a)

is continuous in the strong resolvent sense. Here ®p(f), f € E, denote the Fock field
operators, and ®,(a) := exp{7‘2=(aA +@A*)}, a € C, with the normal operator (A)(z) =
2£(z) Vz € C, ¢ € L%(C, i), are the field operators associated with the classical Weyl
operators We(a) = €4 (cf. (3.3)).

Moreover, since W, (\(f)) = ®.,(f) with the above embedding A : E — K, the extended

field operators W,,(v), ¥ € K, are approzimable by the original ones in the strong resolvent
sense.

PROOF: Clearly the so defined (II,.H,,) gives a representation of W(E). Now we use the sequences
(fH)nen. a € C, in E of Lemma 2.2. Hence by [8] Proposition 5.2.4(4) s-lim Wo(AMf2) = 1p, ®<‘,.(,b)
is an element of M, for all @ € C. Consequently Wo(A(f)) [nh ot®, n] = Wr(f)® 1|, € M,
Vf € E. Thus by [8] Proposition 5.2.4(4) Wr(f) ® 1, € M, Vf € E. Consequently W.(g9 & ) =
[WF(g) ® llL,] [1F+ ®§}}”] € M, Vg@ 3 € K. Now observe LH{Wx(f) | f € E}" = L(F.(E)) by [8]
Praposition 5.2.4(3) and that LH{¢{” | a € C} is dense in AP(C) & C(bC) from which together with [21],
Theorem 1II-1.2 (regard p. € M} (bC) as a state on C(bC)), follows LH{{.‘,") | @ € T} = L=(bC. po),
where the elements of LH{df) | @ € C} are considered as multiplication operators on L2(bC. ys,) and the
bicommutant is taken with respect to £(L?(bC, p.,)). The cyclicity of ., now is immediate.

To prove (c) observe that w € S{/(W(E)) to be regular is equivalent to p., € M} (C). and use [8]
Proposition 5.2.4(4) and Lebesgue’s dominated convergence theorem. The rest of the proof is easily
checked. a

Theorem 4.2 For each w € S{(W(E)) the measure pl € ML(S(W(E))) is its central measure
and (3.6) its central decomposition.

PROOF: For a given map h : bC — C define the function b S(W(FE)) — C by setting ﬁ(w;- oal):=
h(z) and h(yp) := 0 for ¢ ¢ 9.S$(W(E)). Analoguously to the proof of [4] Proposition 3.5 we obtain
k(€)= W,(0 @ @) Va € C for the Tomita map &, : LX(S(W(E)). pk) » M., = Z,, (cf. [8] Lemma
4.1.21). Clearly LH{.f((,b) | o € C} is dense in L™ (bC, p,,) with respect to the o(L>.L!)-topology (use [21)
Theorem II1-1.2 for the state 4, € M2 (bC) on C(bC)), which implies LH {’}."’ lae u:} to be o(L>.L!)-
dense in L*(S(W(E)).uE). Now the assertion follows from (8] Lemma 4.1.21. [ ]

Proposition 4.3 The following assertions are valid:

(a) For each w € SJ(W(E)) there is a unique mazimal measure > € M1(S(W(E)) with
w= fS(W(E” © du™**(p), namely the central measure p™>= = pl of w.

(b) The states in S{(W(E)) constitute a weak*-compact face of S(W(E)).
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(c) The regular states Sf},reg(W(E)) constitute a face, which is not weak*-compact.

(d) The set of first order coherent states S}l”(W(E)) is not a face of SOV(E)).

PROOF: (a) follows from M/, = Z, and [21] Lemma IV-6.26.

(b): Let w = Ap1+(1—\)y2 be an arbitrary convex decomposition of a w € S§'(W(E)) with0 < A < 1
and 1,92 € S(W(E)). By [9] Proposition 4.1.3 there exist maximal measures p;.pu2 € M1 (S(W(E)))
with ¢, = fs(W(E))w’ dp(w’) for k € {1,2}. Then by [9] Proposition 4.1.14 p := Ay + (1 — A)p2 is a
maximal measure decomposing w. By (a) g = pZ is the central measure of w. Since uE is concentrated
on 9.8 (W(E)) and 0 < A < 1 so has to be each uy,. from which follows ¢j € S§(W(E)). k € {1.2}.

(c): Since the regular states on W(E) constitute a folium (i.e. a norm-closed split face [20]) in
S(W(E)), they especially define a face. Hence the assertion follows from (b).

(d): If 21,22 € C with Az1|> + (1 = A)|22]* = 1 and |z1| # 1 # |22| for some 0 < A < 1 and
@1.p2 are the states in S$(W(E)) associated with the point measures &, resp. §,, (Theorem 3.1).
then ¢ = Ap1 + (1 — A)p2 € Sil)(W(E')), but ¢; and @2 are not elements of SL“(W(E)). We have
ok € Sio7 (W(E)) for k= 1,2, »

5 Extended Weyl formalism

Let throughout this Section the linear form L : E — € be unbounded and X be the completion
of E with respect to the scalar product {f | g), = (f | ¢)+L(f)L(g) on E. Hence the embedding
A : E — K gives rise to an extension of the one-particle space E to K = E @ C as has been
described at the beginning of Section 4. This suggests an extension of the original Weyl algebra
W(E) to A(K,ox), where ox is the previously defined continuous extension of the symplectic
form Im(. | .) on E. However ox is a degenerate symplectic form with kernel ker(ox) = 0@ C.
A(K,ox) is defined in [22] (cf. also [4] Section 3 and the Appendix of [23]). As in [22] the Weyl
operators in A(K,ox) are denoted by 8y, ¥ € K. Because of the null space of ox the extended
Weyl algebra A(K,ox) decomposes into a tensor product

A(K,0x) = W(E)®A(C) =: W(K,ox), (5.1)

where by [23] Theorem A.1 (Appendix) the abelian C*-algebra A(C) := A(C,0) is *-isomorphic
to the algebra of continuous functions C(@) on the character group C of the discrete additive
group (C,+). But C is homeomorphic to #C [18], and hence

(C) = ¢(T) = C(bC) = AP(C). (5.2)

The extended Weyl algebra (5.1) may be considered as the field algebra for macroscopic
coherent states. It exhibits a classical part which belongs to two macroscopic degrees of freedom
constituting €. Choosing polar coordinates in C one has a phase and an amplitude as classical
observables, where the Bohr compactification bC allows for the divergent amplitudes. In this
Boson field algebra the new classical coordinates are independent from the original Weyl algebra
W(E), whereas in the GNS-representation of W(E) over a macroscopic w € S{(W(E)) the Fock
and the classical parts are coupled (cf. e.g. (W (f)) = W, (A(f)), Theorem 4.1). Due to these
classical coordinates the C*-algebra of (5.1) is not simple and has non-faithful representations.
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The state space S(W(K,0x)) contains especially the extension & of each w € SF(W(E)) to
the product state

O wp®p on AK,ox) & W(E)®AP(C), (5.3)

where here wp means the Fock vacuum state on W(E) introduced after (1.1), and u, is defined
in Theorem 3.1. It is seen directly that the GNS-representation of @ is the tensor product of
the GNS-representations of W(FE) over wp and of AP(C) over u, in the Hilbert space H; =
H, with cyclic vector Q7 = (,, and representation II;(6y) = W,(¢) V¢ € K. Obviously
Iz (W(K,0x)) =: Mg = M,, (cf. Theorem 4.1). The GNS-representation is faithful, if and
only if supp(u.) = bC. If supp(i,) is not the whole of bC the preparation of w (resp. &) reduces
the range of the classical coordinates correspondingly.

We have here a nice illustration of the formalism in [22]. For given w € S§/(W(E)) the GNS-
representation II; defines a C*-seminorm on A(K, ox) (that is the *-algebra linearly generated by
the Weyl operators 6y, ¢ € K), the completion of which is W(E) ®C(s,,), where s,, := supp()-
By [22] this algebra can also be obtained as the quotient of W(K,ox) with the closed *-ideal
W(FE) ® Coo(bC\ s,), the kernel of II; (here Coo(X) denotes the continuous functions on X
vanishing at infinity).

The appropriateness of W(K, ox ) should be discussed with reference to the generalized first
order coherent states in S¢(W(FE)), among which those are distinguished, in which the classical
variables range over all of bC. These give via the GNS-representation described above faithful
representations of W(K, o) and make explicit the structure of a Boson algebra with microscopic
modes E and one classical field mode L.

6 Discussion

In our analysis of the n—-th order coherent states on a C*-Weyl algebra, which are sub-classes
of the first order coherent states, the first general result is Proposition 2.1. It gives a general
form for the characteristic function f € E — C,(f) of a coherent state w by means of a series
expansion (2.4) in powers of L(f)* and f(?jl, where L : E — C is the linear form of the
coherence condition Definition 1.2. That is, the test functions f € E enter the normally ordered
characteristic function P,(f) = C,(f)/Cr(f) only via L(f). If L is bounded with respect to
the norm on FE, thereis a h € EM with L(f) = (h | f) Vf € E, and only the component of f in
the one-mode space Ch contributes to P, (f). The mode k corresponds to the mode b in formula
(2.15) of [13], where the dnsity operator of a first order coherent state in Fock space is discussed.
If L is unbounded then the complement of its null space in E is always of infinite dimensions
and the associated coherent state is non-Fock (Proposition 2.4). If we call L a macroscopic
mode, then Proposition 2.1 gives the one-mode structure of P, (f) and of the normally ordered
correlations (2.5). The latter are dealt with also in [24], but only with equally many creation
and annihilation operators. The formula (2.4) is a complete characterization of all first order
coherent states (where analyticity is required), if one knows that the matrix ¢,(k,l) has the
property to make the series times Cr(f) a characteristic function of a state on W(E). For this
¢, € MUV (cf. (2.3)) is necessary but not sufficient.

posker

The decisive progress is Theorem 2.3(a) which says that c,, € ML’LLM (cf. (2.9)) is for every L

necessary and sufficient to make (2.4) a characteristic function of a classical n—th order coherent
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state. For L unbounded Theorem 2.3(b) tells us, that by this condition all coherent states are
exhausted since all of them are classical.

The condition ¢, € M:;:;).funv which according to (2.8) is essentially positive definiteness over
a semigroup of entire valued tuples, seems not to have been known in the literature. That it
expresses a canonical mathematical structure is demonstrated by Theorem A.1 of the Appendix,
which connects it with the Hamburger type moment problem for probability measures on C.
This, in turn, supplements the spectral theory for normal (not necessarily bounded) operators
in a Hilbert space.

In our context the measure p,, € Mi(C), which is determined by ¢, € Mi::):sfun' provides —

after having been transferred to a regular probability measure uZ on the state space S(W(E))
on W(E) — a decomposition of a classical first order coherent state w into pure coherent
states (of infinite coherence order). The classical states in SJ(L”(W(E)) are in this way shown
to be affine isomorphic to the analytic measures in M}(C) with fixed first moment. By the
Bohr compactification, which extends C to the compact topological group dC, one gets the
Bauer simplex M1(bC), which is transferred to the state space as S§(W(E)) (Theorem 3.1).
S};‘(W(E)) is an extrapolation of the classical first order coherent states and contains also non-
regular states. In spite of being not connected with a field operator, the non-regular states arise
in physics, e.g. by a gauge constraint [25], [26]. Here one sees from Proposition 3.2, that the
non-regular states in the extremal boundary 8.S§(W(E)) of S§/(W(FE)) are obtained from a
regular one in 9.S§(W(E)) by a gauge transformation of the second kind in terms of a non-
continuous character on C. The use of the compact set Sf(W(E)) has technical advantages,
also for dealing with the (regular, even analytic) classical states in S?)(W(E)).

If L is unbounded the GNS-representation for all w € S{(W(E)) can be constructed by an
extension of the methods of [27], here even in the case of non-regular states (Theorem 4.1). The
center of the GNS-von Neumann algebra is thereby identified as L°(bC, »,,) and signifies in the
case of a regular w the arise of the classical smeared field v/2 Re(zL(f)), where z is distributed
over C according to the statistics p,. By determining the image of the Tomita map, which is
associated with the transferred measure uZ, the latter is in Theorem 4.2 identified as the central
measure of w € S¢(W(E)) (also if w is not regular). That means, that the specification of the
central (optical) variables “phase” and “amplitude” of the classical field leads to the purification

of the generalized first order coherent states as a quantum state.

In the extended Weyl formalism of Section 5 the classical field becomes independent from
the Fock space Bosons. In this sense one has the final stage in deriving a classical field from the
collective ordering condition for a state. The ordering condition for first order coherent states
seems rather similar to “off diagonal long range order” (cf. [28], [29]). It expresses a collective
ordering, however, only if the involved linear form L is unbounded. Only in this case one obtains
in a photon theory the genuine optical features like the classical phase and amplitude.
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Appendix

We construct here the Kolmogordv decomposition (cf. [10] and the appendix of [4]) of the
positive-definite function ¢ € M:g)sfun on the involutive semigroup (INg x INg, I) explicitely (cf.
formula (2.9).

Theorem A.1 For a matriz ¢ : Ng x Ny — C with ¢(0,0) = 1 the following assertions are
equivalent:

: 0
(i) ce ]M;O)sfun;

(i) there is a p € Mi(C) with [gexp{y|z|} du(z) < oo for some ¥ > O (such a measure is
called analytic) and c(k,l) = [ Z'2* du(z) for all k,1 € N;

(iii) there exists a Hilbert space H, a normal operator A acting in H, and a vector w € H,
lwl|l = 1, which is analytic for A (and hence for A* and |A| = VAA*), such that c(k,l) =
(A’w | Akw) Vk,l € Ny.

If one of these conditions is fulfilled, then in addition we have:

(a) The measure p € M} (C) of (ii) is unique.

(b) H, A, w in (iii) may be choosen so that H = LH{A*™A™w | m,n € INo}, where LH denotes
the closure of the linear hull. In this case the (cyclic) representation (H, A, w) associated
with ¢ is unique up to unitary equivalence.

PROOF: The proof is an extension of the Hamburger moment problem from R to C (cf. [14] Theorem
X.4, [15] Chapter X, § 7).

(ii) = (i): Because of [y exp {y|z|} du(z) < co all the integrals c(k.!) = [ Z'z* du(z) exist. Conse-
quently for a;; e Cwith0<i,j < M

M M M

Z Tl O ¢l + Mk +n) = f( Z aﬁfz"‘z’)( Z amn‘z'“z’") dp(z)
k,,m,n=0 C k,0I=0 m,n=0

M 2
= j‘ Z amnf"z"'l du(z) > 0,
C m,n=0
giving equation (2.8). Moreover we obtain for § := /2

o~ ckat 11 S kel
Y6 7 71 ek Dl < 6 g 1A du(z) = [exp{26]2l} du(z) < oxc.
k,1=0 o k,1=0 ’ ‘C C

M
(i) = (iii): Let be P the set of all polynomials p, p(z,Z) = . amz® Z'. (z € C). with complex
k=0

() we define on P the sesquilinearform (. | .)

posfun

coefficients ay;. For given ¢ € M

M N M N
( PICTEEA DY ﬁm,.z"*z") = 3 Y @hmncl+mk+n). (A.1)
k=0 0

k=0 mn=0

m,n=
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which is positive by (2.8). ie. (p|p) 2 0Vp e P. If Q := {peP|(p]|p) =0}. then let be H the
completion of the quotient space P/Q with respect to (. | .).

On P we now define the two operators B and C' as the multiplications with z resp. Z
(Bp)(2.7) := 2p(2.2Z), (Cp)(2.Z):=Zp(z.Z) VzeC VpeP.

By direct calculations from (A.1) follows (p | Bg) = (Cp | ¢) Vp.q € P. which with the Cauchy-Schwarz
inequality implies (Bp | Bp)®> = |(CBp|p)|* < (CBp| CBp) (p | p). showing B(Q) € Q. and similar
C(Q) € Q. Hence the operators B and C can be transfered to P/Q and now become operators B resp.
C acting in the Hilbert space H with domains ’D(B) =P/Q.

Because of Z ¥+t L L |e(k,1)| < oc for some & > O there is an & > 0 with |e(k.l)| < « (%)H‘ 1383
k=0

Vk,l € INg, which with (A.1) implies

|B"Zk71” _ VAEFTHnE+T+n) 1\ (k414!
nl al o 16 (5) n!
2 k+il+n
< a(g) (k+1)!  VklneN.

Brz2*7!|| t» < oo for each t € [0,6/2[ . showing the element z € € — z¥Z' of P/Q CH

e
Consequently 3 ;1—,|
n=0

to be an analytic vector for B for each k.l € INy. Hence by the triangle inequality each ¢ € P/Q is an
analytic vector for B (5’ analoguous). Now one easily ensures, that P/Q consists of analytic vectors
for the symmetric operators 1 (ﬁ + 6’) and = (B C') from which with Nelson's theorem follows the
selfadjointness of their closures, S resp. T. Wlth series expansions on the analytic vectors P/Q one
checks e**SeitT = ¢TeisS Y t e R showing S. T to commute in the sense that the associated spectral
projections commute. Thus A := § + ¢T is a normal operator in H extending B. resp. A~ = § —iT
extending .

Let w € H be given by the representative polynomial w(z) = 1 Vz € C. then (A.1) implies
lwll® = ¢(0,0) = 1, from which also follows {Alw | A*w) = (2! | z*) = c(k.l) VK.l € Ng. Further
LH{A"™A™w | m.n € Ny} = P/Q, which by construction is dense in H and also proves the first part of
(b). {The uniqueness statement in (b) is immediate.)

(1) = (ii): With the spectral fa.mily G(z), z € C, of A define p € M1(C) by du(z) = {w | dG(2)w).
Then c(k,1) = (A'w | A¥w) = [ Z'2* dp(z) VE.1 € Ny. especially 1 = ¢(0.0).

Since w is an analytic vector for A so it is also for |A| (since ||A™E|| = /(A€ | A*E) = /(£ | (A~ A)"E)
=|||A|" £]|). Thus with Beppo-Levi’s theorem ([16] Corollary 2.4.2)

Z_: /Izl du(z =Z"—,(w|m|"w)
2w

fﬁxp{'r |z|} dp(z)

C

IA

| |A|" w o0 for some vy > 0.

3]4

(a): Let be u. 0 € M, (C) with [ e7zldpu(z) < 20 and Je e7#l dp(z) < > for some 7 > 0 and

fz‘z’fdu(z) = fz‘zkdg(z) Vk.leNg. (A.2)
C C

Define i, 5 € M4 (C) by dji(z) = e"*l du(z) and dg(z) = e"*l dp(2). (A.2) now implies

fp(z,z) e "= df(z) = jp(z.z) e dp(z) VpeP. (A.3)
C C
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Let P be the vector space consisting of functions z € € ~ p(z.Z) e~7#| with p € P. Since i llim f(z)=0
Zj—2

for each f € P the set Pis a subspace of Cy(C), the continuous functions on C vanishing at infinity. By
the Stone-Weierstra$ theorem P is dense in Co(C) (use the one-point compactification of C). from which
with (A.3) follows i(f) = 2(f) Vf € Co(C). that is i = p resp. u = p. L]
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