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First Order Coherent Boson States

Reinhard Honegger and Alfred Rieckers
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W-7400 Tübingen, F.R.G.

(17. II. 1992)

Abstract

We analyze the first order coherent states (and various sub-classes) over an arbitrary C*-
Weyl algebra. Their normally ordered characteristic functions are expressed in terms of au
infinite, positive-definite matrix, which exhibits an additional positive-definiteness condition
if the states are classical. Iu the latter case the matrix elements are identified as moments
of probability measures on C. By going over to measures on 6C, the Bohr compactification
of C there arises a Bauer simplex of generalized classical coherent states. For macroscopic
coherent states we give the GNS-representation, the central decomposition, and construct
an extended Weyl formalism.

1 Introduction and preliminary results

A large part of quantum optics is based on peculiar many photon states which exhibit optical
features. By means of the factorization of certain normally ordered correlation functions a state
of the quantized radiation field is characterized to be optically coherent of some order [1] [2].

Using a smearing procedure in [3] [4] this coherence condition is tranferred into its operator
algebraic version and takes account of the fact, that the correlation functions are in general
distributions. The smeared field formalism allows a systematic study of both the Fock and non-
Fock coherent states, independently of any special representation of the photonic Weyl algebra,
whereas usually coherence is considered only in the Fock representation. Recently the fully
coherent states (that is, coherent in all orders) have been investigated and completely classified

in the non-Fock case [4]. In experimental situations, however, only the correlation functionals of
order one and two are accessible [2]. Thus full coherence seems to be too strong a requirement.

In the present work we study in terms of the rigorous formalism of operator algebraic quantum

mechanics the first order coherent states together with their sub-classes of n-th order coherent

states. We start with the definition of 7i-th order coherence (where n is arbitrary in Nu{oo})
for smeared Boson fields, demanding the factorization of the normally ordered expectation values

up to degree n in terms of a linear form L on the testfunction space and strengthening
infinite differentiability of [4] to analyticity. Their characteristic functions are expressed by

an infinite, positive-definite matrix of complex coefficients. In general the conditions for this
matrix have not been completely specified to lead to a state on the Weyl algebra. The more
remarkable is the sufficient and necessary condition, which we express by a modified positive-
definiteness condition on the coefficient matrix, to give a classical coherent state (Theorem 2.3).

It is demonstrated that for unbounded L (with respect to the norm of the testfunction space)
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there are only classical coherent states, and that these are just those coherent states which are
not given by a density operator in Fock space. Concerning the so-called P-representation of
classical coherent states we derive a probability measure p on €L (dropping henceforth the L)
by expressing the mentioned matrix elements as mixed moments. If L is bounded it is given
by a mode in the (norm closure of the) testfunction space. For unbounded L we consider it as

a generalized mode. The measure p of the P-representation describes then a global (position
space independent) variation of the phase and amplitude for one (generalized) mode. The state

space of the C*-Weyl algebra contains, however, also non-regular states. By using measures p
on i»C, the Bohr compactification of C, we define classical, first order coherent states also for
this extended class. This leads to the nice structure of a Bauer simplex and makes manifest a
classical sub-theory for every linear form L.

For unbounded L we construct the GNS-representation of coherent states as a tensor product
of the Fock representation and a classical field representation. The corresponding represented
field operator decomposes additively into the Fock and classical part. The measure p of the
P-representation gives here not only the decomposition into extremal coherent states (with
the same L) but also the central decomposition and a unique decomposition into pure states

on the Weyl algebra. Since the unboundedness of L leads to a finite particle density in the
infinite volume [5] we call the coherent states associated with such an L "macroscopic". The
before mentioned results show, that for macroscopic coherent states the exact specification of
the phase and amplitude of the classical field part makes the state pure as a quantum state.

For macroscopic coherent states L is not part of the original test function space but may
added to it by a canonical procedure. This leads to an extended Weyl formalism, which we

outline in the last section. Here we have still the approximability of the macroscopic classical
field by the original represented quantized field, but we have also its independent variability,
which corresponds to the direct preparation methods for the classical field.

Many results here parallel those for fully coherent states in [4], but the technical difficulties
are more subtle here, in view of the unbounded measure spaces for the amplitude variations.

A certain redundancy in the set of correlation functionals for classical higher order coherent

states is disclosed in [6]. In [7] the non-classical coherent states, which occur only in the case of
a bounded linear form L, are supplemented.

Let us start our exposition with preliminary results concerning the Weyl algebra. By W(E)
we denote the Weyl algebra over the pre-Hilbert space E with (right linear) scalar product |

In applications E is called the one-boson testfunction space. W(E) is the unique C*-algebra
generated by the (unitary) Weyl operators W{f), f e E, satisfying the Weyl relations ([8],
Theorem 5.2.8)

W(f)W(g) m exp{-ìlm(f\g)}W(f + g), W(f)' W(-f) Vf,geE.

Let be S(W(E)) the state space of W{E), which is convex and weak*-compact. We denote

by C(E) the convex set of functions C : E —> C, with C(0) 1 and for which the map
(/ifl) 1_* exp{| Im(/ | g)}C(g — f) constitutes a positive-definite kernel E x E —< C ([10], cf.

also [4] Appendix). From [4] it is known, that the map

C : S(W(E)) —> C(E) uj^-tC», (1.1)

which maps each state u € S(W(E)) onto its characteristic function

cw-.E-^c, fi-*CM)-=(u;W(f))
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is affine and bijective. The characteristic function CF of the Fock state Wf e S(W(E)) is given by

CF(f) exp{-| ll/ll2} V/ 6 E. Its GNS-representation (XlF,F+(E),toF) is given by the Bose-
Fock space F+(E) over the completion E of E, the vacuum vector QF and IIf(W(/)) WF(f)
V/ e £, where WF(h), h € E, are the usual Fock-Weyl operators, [8] Section 5.2.

As a generalization of Glauber's P-representation with positive measures (cf. also [11] Section

8.2) we introduce the classical states Sci(W(E)) on W(E). Let be P(E) the convex set of positive-
definite functions P : E -> C with P(0) 1, [10]. Then (cf. [12] Section 3)

Sd(W(E)) := {u € S(W(E)) | Cu CFP„ with Pw € P(E)}

Obviously, Sci(W(E)) is convex. If P e P(E) then CFP e C(E) (cf. [4]) and hence the map

P : ScX(W(E)) —» P(E) u>>—>Pw (1.2)

is affine and bijective. Using the Bochner theorem for the elements in P(E), one obtains the
following result [12].

Proposition 1.1 The set of classical states ScX(W(E)) is a Bauer simplex which is affinely
homeomorphic to M+(E), the set of regular probability Borei measures on the topological
character group E of the discrete additive group E.

For a regular tp e S(W(E)) the field, annihilation and creation operators *,,(/), Oy,(/) resp.

aJ>(/)i f £ E, associated with the GNS-representation (n^W^O^,) are defined in the usual

manner ([8] Subsection 5.2.3, cf. also [3] or [4]). If tp e S(W(E)) is of class C2m, then the
associated cyclic vector fi^ is contained in the domain of each polynomial of field operators with
degree < m, in which case one commonly defines

(<p;*v(h) — *v(f*m)) ¦¦= (M/m)---*v(/i)n».|*v(/™+i)"-**.(/a«)n»,>

If m oo all field correlations exists, which is desirable for the statistical interpretation. The
C* assumption was appropriate for the definition of a fully coherent state in [3] and [4], since in
this case it implies analyticity (which means that R 3 t >-» Cu(tf) for each / e E is extensible
to an analytic function in a neighbourhood of t 0). This is different for finite order coherence,
where analyticity has to be postulated.

Definition 1.2 An analytic state u e S(W(E)) is called coherent of n-th order or of degree

hêM, if there exists a linear form L : E —> C so that

(w ; o* (fi) ¦ ¦ ¦ a* (/,„) au(gy) ¦ ¦ ¦ au(gm)) L(fy) ¦ ¦ ¦ L(fm) L(gy) ¦ ¦ ¦ L(gm)

for all fx,... ,fm,gy,-.. ,gm e E and each 1 < m < n. The state u> is called fully-coherent or
coherent of order oo, if it is coherent in each order n e IN. The set of all coherent states of
degree n e IN u {oo} with linear form L : E —> C is denoted by S* (W(E)).

Obviously S^(W(E)) is a convex subset of S(W(E)). The condition for u> 6 S[n,(W(£)) to be

analytic is needed to recover from the normally ordered expectation values (u>; a*(/)*:au)(/)'),
k,l € No, the characteristic function Cw(f) by means of the series expansions from [4] Lemma

1.1, which we recapitulate here.
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Lemma 1.3 Let tp e S(W(E)). tp is analytic, if and only if for each f e E there is a function
Nv(zi,Z2',f), analytic in Uf x Uf ç <D2 (Uf a neighborhood of the origin ofC), such that

Cv(zf) CF(zf)Nv(z,z;f) VztUf. (1.3)

Especially tp is entire analytic, if and only if Nv(zi,z2;f) is entire analytic on C2 for every

ftE.
Moreover, the analyticity condition and (1.3) determine Nv uniquely to have the form

N^(zi,z2;f) tH4-4+**»Wf (e-itt+*i)*M)iiv | e-fc«»-«Wn,) (1.4)

- ±(%)\$)'hi('¦¦<«*•>"*>• "-<*¦ <">

Clearly we have the following inclusions

S[1)(W(E)) 2 S[2)(W(E)) 2 3 $°\W(E)).

An equivalent formulation for u e S(W(E)) being an element of S^ (W(E)) is given by the

following

Lemma 1.4 In terms of Definition 1.2 it holds:

(a) The Fock state u>F e S(W(E)) is fully-coherent with linear form L 0. Conversely, if
(w ; o* (/) au,(/)> 0 V/ € E for an w e S(W(E)) of class C2, then w wF.

(b) For an analytic u/ e S(W(E))\{uiF} and given linear form L : E —> C, L jt 0, and given

n 6 IN u {oo} the following statements are equivalent:

(i) ueS[n)(W(E));

(ii) (ui; a^(f)au(f)) \L(f)\2 V/ e E, and for each 2 < m < n there is an h tfker{L)
with (io; a*„(h)maUh)m} \L(h)\2m.

PROOF: (a): The fact that uiF is fully-coherent with linear form L 0 follows from [4]. Conversely,
from IM/) OJ2 (u ; a'Jf) ajf)) 0 we conclude o„(/) Q„ 0 V/ e E. Now [4] Proposition 2.1 (b)
implies u uiF. (b): From (u : <C(/) au{f)) \L(f)\2 V/ 6 E with the help of the polarization identity
we get (w ; <C(/) a^fg)) — L(f)L(g), which by Lemma 2.2 of [4] implies L(g)aul(f)iïw i(/)Ou(ff)îiu.
V/.g E ß. Consequently, for the above h ^ker(L) we obtain

\L(h)\2m(ar.a'Jf1)---a"Jfm)au,{gi)---aMm)) d-O

L(fi)--LUm)L(gi)---L(gm) (u ; a'Jh)m <UA)m)

and the assertion follows.

2 Matrix representations and positive-definiteness

A matrix c : INo x INo —» C, (k,l) >-* c(k,l) is defined to be analytic, if

>J -7777 k(&,/)l < 00 for some 6 > 0.
k,l=0
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A matrix c constitutes a positive-definite kernel on INo x No, if [10]

JV

J2^ßic(k,l) > 0 yßl,...,ßK€C, VWelN. (2.1)
k,l=0

Clearly, these expressions coincide with (ß\cß) > 0, where ß (ßi,... ,/?at,0, 0,...) and (.|.) is

the usual scalar product on the sequence space I2(1N). Hence positive-definiteness of the kernel

c : INo x INo —> C is just positivity of the matrix c which acts (as usual) on the subspace of I2 (IN)

consisting of finite vectors. Specifying (2.1) to vectors ß (0,...,0,ßk,0,...,0,ßi,0,...) we

(c(k
k) c(k l)\

,.fa ,,'„ must be positive and therefore selfadjoint with positive
c(l,k) c(l,l) J

determinant, which implies

cjkj) c(l,k) \c(k,l)\2 < c(k,k)c(l,l) VJUeNo. (2.2)

For n € INo u {oo} let us define

Mpo)8ker := {c : INo x INo ^ C I c analytic, satisfying (2.1), c(0,0) c(n,n) 1}. (2.3)

The set llfaer is convex, and

M(0). a M(1> d M,2> 2 3 M<~>
posker — posker - posker — — posker

Proposition 2.1 Let be n e INu {oo} and L : E —> C a non-zero linear form. Then there exists

a unique affine, injective map

c : S™(W(E)) —. M'V u —. c„

such that

CM) CF(f) J2 (j%) fi Ji M)" M) cu(k,l) (2.4)

which converges absolutely for all f e E with |Z(/)| < <5 for some S > 0. Moreover,

c(s^(W(E))) ç m{;opoBker

and for each w e S]"\W(E)) one has

(u>;a*Mi) — <(fk)aU9i) — aMÙ) Hfi) •¦¦ Mk) L(gi) -L(gi) cjk,l) (2.5)

for all fy,... ,fk,gy,- ¦ ¦ ,gi € E and each k,l e INo.

PROOF: For u £ S[n,(>V(£)) and h € E with L(h) 1 we put

cu : 1N0 x Mo —. C {k.l) <—> (u; a"jh)kajh)1) (2.6)

Obviously c„ is a positive-definite kernel, and c„(0.0) c„(n.n) 1 by the coherence of ui of
degree n. u being analytic we insert (2.6) into equation (1.5) of Lemma 1.3 and obtain a 6 > 0 such that
the double series

N„(zi,Z2-.h) -MHvffafa»
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converges absolutely for all Z1.Z2 6 C with |zi|.|z2| < &¦ Now let / e E with \L(f)\ < 6. Inserting
(2.6) into [4] eq. (2.2) (resp. into eq. (1.6)) we find that (2.6) is independent of the special choice of
h and occurs in every normally ordered expectation (2.5). By means of Lemma 1.3 and the fact that

t6Rn(iii; W(tf)) is actually analytic in an open strip around the real axis (cf. [8]. p. 39) we arrive at
the stated series expansion of Cu.

The injectivity of the map c: Let there be another matrix e^ 6 Mp0sker for which the expansion of
Cw holds for some 6' > 0. Then for arbitrary / 6 E we get

for the analytic function associated with oj by Lemma 1.3 (where the series converges for |«i|.|«2| <
IK/)!-1 6') from which follows L(f)kL{f)'c!a{k,l) (ui; a'jffajf)1) V/ € E. Hence with the above

h and (2.6) we get c'^k.l) cu(k,l) Vk.l € Mo- The affinity of the map c is immediate from (2.6). I
The range of the map c of Proposition 2.1 is not all of M^, a problem which in the case

of Fock-normal u/ e S^ (W(E)) seems to be related to the P-representation with non-positive

measures. To investigate the range of c : Sj™ W(E)) —» M 08ker we need a stronger form of
positive definiteness. By means of the addition (k,l) + (m,n) (k + m,l + n), the neutral
element (0,0), and the involution I(m,n) := (n,m), the set INo x INo becomes an involutive

semigroup, which we denote by (INo x INo,/)- According to [10], Definition 2.3, the matrix
c : INo x INo —» C is a positive-definite function on (INo x INo, ^)i if f°r each N e IN

JV

Y,ôia3 c(I(Pi)+Pj) Ì 0 Vpi,...,pweINox]No Vai,...,ajveC. (2.7)
1.3 — 1

By use of the natural indices of INo x INo (2-7) is written as

M

y^ öTi ctmn c(l + m,k + n) >0 Va,3 € C with i,j e {0,1,... ,M} (2.8)
k.l,m,n=0

for each M e IN. Similar to (2.3) we define for n e INo u {°°}

Mpôifui. := {c : Mo x Mo -> C I c analytic, satisfying (2.8), c(0,0) c(n,n) 1} (2.9)

Setting au 0 for / ^ 0 and ajt.o ßk one regains from (2.8) the relation (2.1), and thus

KToL, £ M^ker Vn e Mou {00}.

Clearly Mp"sfun is convex, and

M(0> 3 M(\ 3 M|2,f 3 3 M(oo>
posfun - posfun — posfun — — posfun

In the following we often need a simple fact, which we here formulate more stringent than
in [4].

Lemma 2.2 // L : E —> C is unbounded, then there is for every a 6 C a sequence (/™)n6M *n

E with

lim ||/«|| 0, and L(ft) a Vn 6 M
n—»oo
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PROOF: Since L is unbounded, there is a sequence {gn)mìi in E with ||j„|| 1 and lim L{g„) oc.

Without restriction in generality L(gn) ^ o Vre € IN. and we may define /" := ^"¦.. I

Theorem 2.3 Let be all as in Proposition S.l. We have for each n e M u {oo}:

(a) c(s£\w(E))nScì(W(E))) M<"0>sfan.

(b) Let the linear form L : E —> C be unbounded (with respect to the norm on E). Then

S[n)(W(E)) ç Sci(W(E))

from which by (a) follows

c(s£\w(E))) =M<"jfun.

PROOF: (a) will be proved after Theorem 3.1. (b): Let L : E -> C be unbounded and « € S'^\W(E)).

(2.5) implies c^ik,I) u> ; afa -^jr aw( j4jj V/c,J e Wo V/ ^ker(L). With the canonical

commutation relations (CCR) we get for a,j e C, 0 < i, j < M

M

Y. auamn Cuit + m, k + n)
k,l,m,n=0

M

,m,n=0 > '

Yr ^0™ (^""(iU)) fl»(lfe) <(luô) a»{uT)) / +

ll/ll2 r>( JLflL Ì
^ IM/)I J|i(/)r

M k t M m n

ll/ll2 „f ll/ll ^
,|2|i(/)l

where P is a complex polynomial, which one obtains by successive use of the CCR. e.g

,k+

CCR=R (w:(<(r^r)+ a-(zéô) <{ud) a<*{uT)) ~

|i(/)l
and so on Altogether

I/II2
liu-2 c„(Z + m - l.fc + n-1)

53 o5«mi.c»(l + m,it + n) (2.10)

M fc fl 2 !l fll2

£«"<ïfc) ^(ïfc) i2«| + ]77^P(^ïï) V/^ker(£).

fe,/.m,n=0

ii(/)r
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Because L is unbounded by Lemma 2.2 there is a sequence (fn)niK in E with lim ||/„|| 0 and

lim |i(/„)| 1. Since the left hand side of (2.10) is independent on the sequence (/„)„en. the limit

M
lim

k.l-O

M I n 2

has to exist. Consequently (2.8) is valid, showing cw e Mpôifun- Let be /*„ e M|(C) the probabUity

measure on C of Lemma A.l (Appendix) associated with cw. From the expansion of Proposition 2.1 it
follows w 6 Scl(W(E)) with PM) /c exp{iy/2Re{zL{f)))diiu(z). V/ 6 E. I

OctIf the linear form L : E —» C is bounded there are examples of pure states u?Sj (W(E))
which are not classical, cf. [13] [5]. Similar to [4], Proposition 2.5, the boundedness resp. un-
boundedness of L has essential consequences concerning the Fock-normality of w e S^ (W(E)).

Proposition 2.4 u e SL (W(E)) is normal to the Fock representation, if and only if the linear

form L : E —? C is bounded.

PROOF: Immediate consequence of Theorem 2.3 and Proposition 3.4 below. I

3 Measures and simplices

For each a e C define the periodic function (which is in fact a character on the additive group
C)

t\a : C —? C 2i—? exp{i\/2Re(az)} (3.1)

By Theorem 2.3 and Theorem A.l (Appendix) each u 6 S^\W(E)) n ScX(W(E)) corresponds

to a unique ßu e M+(C) (here M\(X) denotes the regular probability Borei measures on the

topological space X) such that

PM) ßMMf)) V/ € E (3.2)

If w(z) 1 and A denotes the normal operator (A(,)(z) z(,(z) Vz e C, <; e L2(C,pw), then it
follows from the definitions

PM) (w|exp{^(I(/)il + I(7Jil*)}w) and dpM) (™ I dG(z)w) (3.3)

with the spectral family z h-> G{z) of A. Obviously 1 cw(k-, *0 /c \z\2kdßM) — \\Akw\\2 for
all 0 < k < n.

Starting from (3.2) we generalize the notion of a classical coherent state with a fixed nonzero

linear form L : E —» C. The functions {(,a | a e C} generate the C*-algebra AP(C) of the

continuous almost periodic functions on C (cf. Section 5). Each n e AP(C) extends uniquely
to a continuous function 7/(6' e C(bC) on the Bohr compactification WD of C, in which sense

AP(C) ö {r,W | v 6 AP(C)} C(b€) (cf. [17] (26.11), (33.18), (33.19), and (33.26)). Each

v e M|(C) gives a unique u(b) e MJ(WD) with f(,rì(z)du(z) fbcrìW(z)duw(z) Vn e AP(C).
(We mention that the canonical embedding of C into b<C is an open map, in which sense C c 6C

and M\.(€) c Ml(bC).) Thus the state space of AP(C) S C(b€) is just Mj(6C). Obviously, if
p e M\{bC), then f £ E >—> p(CL(f)) is an element of P(E) and hence by (1.2) defines a classical

state on W{E), which leads to the convex subset of Sci(W(E))\

St(W(E)) := [u e Sd(W(E)) | PM) Ä-Ki,/))^/ 6 ^ for some pu e MJ(6C)} (3.4)
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Theorem 3.1 Let L : E —> £ be a non-zero linear form. Then the map

p : S?(W(E)) — Ml(b€) wv->p„

is an affine homeomorphtsm with respect to the weak*-topologies, showing 5£(W(£')) to be a

Bauer simplex. Moreover for u € S|](W(i?)) we have

(a) to is regular, if and only if p^ e M]_(C) (i.e. supp(pu) Q £>)¦

(b) w is of class C2m form e M, if and only if pu e MJ(C) and /c \z\2mdpM) < °°- ^n '^s
case one has (cf. equation 2.5)

(w ; <C(/i) ¦ ¦ ¦ al(fk) Msi) ¦ • ¦ o-MÙ)

^¥dft»w)i(/i)-i(A)%)-i(Jö
for all fy,... ,fk,gy,..¦ ,gi e E and each 0 < k,I < m.

(c) iü is (entire-)analytic, if and only if p^ 6 M\(C) and /ce7'*'d/^,(z) < oo for some (all)
7>0.

PROOF: Since {(.c I a e C} is total in AP(C) a C(b€) two measures p,v 6 Af|(6C) agree, if and only

if p(il, v((,a Va € C, from which follows the bijectivity of the map ß by observing L ^ 0 and the

bijectivity of the map C of (1.1). Clearly ß is affine. The continuity of p. resp. p'1. follows from the fact

that pi '-^* p in the weak*-topology of M|(MD). if and only if pj({iw) '^* />(?«') Va e C. and wj '-^ ui. if
and only if (a>; ; W{f)) % (u ; W(f)) V/ e E. Since M}(ftC) is a Bauer simplex, the map /t_1 transfers
this property to SC^(W(E)).

(a): ui is regular, if and only if t e R i-> P„[tf) ß^((}^,,,) is continuous for each / 6 E. Now let £„

be the multiplication operator / h-. ^f on L2(6C,/i„). Observing ^'(z) 1 Vz e 6C and each 7 6 C

we obtain

Ab), t^o\(î T\(W\\2 _ [ \Ab) I2 L(k)|2 _ 0 „ ,,<<>) „ /c(
l^to-çnJ^'H / |?ta _1 £7 d^u. 2 - /iu.(Ç_(„) - ßMt.

LH{i;7 '
I 7 £ €} being dense in \J(bC.ßw) by an ^-argument the strong continuity of the unitary one-

parameter group 4to. t e R. follows. Hence (ii.ta) € R2 i-> &,£«, 6i+ii3 is strongly continuous, from

which the continuity of a € C 1-» (w | £aw) M^(£e> =: Fui(a) follows (here. w(z) 1 e L2(6C./0)-
However. Bochner's theorem for the positive-definite, continuous function Fu : C —» C ensures the
existence of a measure ßw 6 M}(C) with F„(a) £»,(£<») Va 6 C. Consequently, by the above argument
pu Jiu E M|(C).

(b): By (Af)(z) := z/(z) is defined the normal operator A in L2(C./tu). Let w(z) si. w is C2m if
and only if t e R 1-» /j„(4to) (w exp{-4=<(aJ4 + 7iA")}w) is so for all a 6 C. By the spectral calculus

this is equivalent to w e X>((aA + äA")*") Va € C. Especially for a \ and a ^j we have w e P(Sm)
and to € D(Tm) for the selfadjoint operators S \(A + A") and T ±{A - A"). Since A S + iT
and A" S - iT we obtain w 6 D(A™), from which by ||Amu;||2 /c |z| dßjz) the assertion follows.

The stated normally ordered expectation values follow by differentiation and with the CCR (cf. equation
(2.5) and the Appendix).

(c): Similar to (b) one gets, that w is (entire-(analytic, if and only if w is an (entire-)analytic vector

for 5 and T, and hence for A, resp. |A| v/I7Ä |A*| (since ||Amw||2 /|z|2™d^(z) |p|mz||2).
But that is w 6 2>(e6lAl) for some (all) 6 > 0. I
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As a consequence, the non-regular states in S^(W(E)) are just given by the measures p 6

MJ(6C)\Mj(C), that is p(bC\C) ± 0.

As a corollary we give the
PROOF OF THEOREM 2.3(a): First we show M^fun ç c(s(l\w(E)) n<Sci(W(£))i. Let c € Mp"ifun

and denote by p e M+(C) the associated measure of Theorem A.l of the appendix satisfying cik.l)
/c tzkdp(z) Vk.l e Wo- Now define the state w 6 S£'(W(E)) by P„(f) piUin) v/ € £-tllat is P /'-
By Theorem 3.1 (b) and (c) we have u e S^\W(E)) because of 1 c{k.k) f \z\2k dp{z) VO < Jt < n.
On the other hand, / eyMdp{z) < oc for some 7 > 0 (Theorem A.l) implies

MU /exp{^az} exp{^m)dp(z) Y (^)
+

JiJc(kJÌ
k,l=0

for all a € C with |a| < 2~?7. from which with Proposition 2.1 follows c c„.

Now we prove c(s^l\W(E)) r\Sci(W(E))) ç M^,u„. Assume u e S^\W(E))nSc\CW(E)).
According Proposition 2.1 for u € C with |«| < S we define the function

fc+lOC y - \ k+ l k —I

r"<") := E (71) i!^c^-"- M<*

Obviously P„(/) TaifH/)) for each / e Ê with |X(/)| < 6. Since w is analytic, for each f é E the

map * e R 1—> C^(tf) extends to a holomorphic function z t— Cw(z: f) in a strip around the real axis
(cf. [8] p.39). Hence IeEh PMf) extends to a holomorphic function z >-> exp{ A \\ff }Cu{z:f)
in the same strip. Now let a e T := {z € C | |z| 1}. For each g £ E with L(j) a the map
ti.]— 6,6\t— Pu(tg) Tu(ta) has a holomorphic extension z 1-» .F9(z) to such a strip (which depends
on g). By the identity theorem for holomorphic functions these functions all agree on the real axis:

Pu(tg) Fg(t) Fh(t) PJth) V« e R and each g,h e E with L(g) a L(h). Doing so for
each a e T we get an extension f„ : C -* Cof r„ to all of C. such that P„(f) ?„(£(/)) V/ e E.
Since Pu : E —> C is positive-definite, so is l\, : C —» C. By Bochner's theorem there is a measure

ßw € M)_(<C) on the characters C of the discrete additive group (C.+) such that l\,(«) /j, x(u)dßw{\)
Vu e C. Because (,„ >-* (x >-* xM) defines an isomorphism between C(6C) and C(C) [18] we regard ji^
as a probability measure on 6C. that is F„(u) /iu(£Ìk)) V« e C. Thus P„(/) f„(I(/)) ^(^A,)
V/ 6 E. ui being analytic. Theorem 3.1(c) implies pu e M_J.(C) and the existence of a 7 > 0 with
Jce7'*'d/t„(z) < 30. Consequently

k+' TI f\k
C„(fc./)p*« - 1* fW * y+£(/)* l(/)p-(/) - mcl«/,) - E^J -ir far

with e„(fc,/) := /c z'zkdß0,(z). Now from Theorem A.l and Proposition 2.1 follows c„ cw 6 M'^full. I
Via the map p the extreme boundary deSf(W(E)) of the simplex S^(W(E)) corresponds

to the point measures on MD. For z e bC and non-zero linear form L : E —> C we denote by orf
the *-automorphism on W(E) which is given in terms of the character / € E >—> ÌhiAz) € {it €

C I |«| 1} by

ci(W(f)) i[blf)(z) W(f) V/ e E (3.5)

(gauge transformation of the second kind). One easily checks the following results.

Proposition 3.2 (a) deSf(W(E)) {wF o aLz \ z € 6C} i.e. de_Sf(W(E)) is an orbit of
the representation (3.5) for the group b€.
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(b) By the map p of Theorem 3.1 (a) the convex set

Sf.tes(W(E)) := W ê S?(W(E)) | w is regular)

is associated with the measures M\{€), showing S^ (W(E)) to be a simplex too, which
however is not weak*-compact. Its extreme boundary is given by deS^ (W(E))
{luf o of | z e C}. Hence, by [4] Proposition 2.1 deSf (W(E)) consists just of the the

pure, quasifree, coherent states of degree oo associated with the linear forms zL, z e C.
The boundary deS^ (W(E)) is an orbit of the representation (3.5) for the additive group
C.

We now decompose the states Sf(W(E)) into the extreme ones. Such an integral decomposition

is provided by the following Lemma.

Lemma 3.3 The map pt : b€ —» S(W(E)), z i-» wFoaf is continuous and its range pl(6C)
deS^(W(E)) is a compact subset of S(W(E)) with respect to the weak*-toplogy.

PROOF: z e b€ i-» ÌlA(z) (uf ; W(f)) is continuous for each / e E. from which the continuity of px.

follows. ¦
We denote the image measure of pu € M.|(6C) with respect to the map pl by p%>

p^(B) := pMlX{B)) for each Borei subset B ç S(W(E)).

Analoguously to the proof of [23] Lemma 3.3 one shows that p„ ia a regular Borei measure, /i„ €

M*(S(W(E)). By definition of a; e Si(W(E)) and by (1.1) we have the integral decomposition

u> Ufoa^dpM) / Vàp^(tp). (3.6)

Now we investigate in which cases the states of S£1(W(£')) are normal to the Fock representation.

Proposition 3.4 Concerning the Fock normality we have the following results:

(a) Let u> e S(W(E)) be of class C2 with (u ; a* (/) a„(/)) |£(/)|2 V/ e E for some bounded

linear form L : E —? C. Then w is normal to the Fock representation.

(b) Let L : E —» C be a non-zero linear form. Then w 6 Si(W(E))\{wF} is normal to the

Fock representation, if and only if L is bounded and pu e M}.(C). (For arbitrary L the

Fock state ljf always belongs to the point measure 6o at z 0.)

PROOF: Since here the states are not supposed to be analytic, we cannot do the proof analoguously to
[4] Proposition 2.5.

(a) It exists an ft e E with £(/) (ft | /> V/ € E. With the notation of [8] Theorem 5.2.14 and the

orthogonal projections PF from E onto the finite dimensonal subspaces F ç E vie obtain

n».F(iì«) E«u,./,(îU EllMAJfU2 T, (»t »Mi) aJM)
i i i

E|i(/.)l2 E KM/.M2 WPphf < \\hf



976 Honegger and Rieckers H.P.A.

for each finite dimensional subspace F ç E. Thus 0„ e T>(n„) and from [8] Theorem 5.2.14 follows u
being Fock-normal.

(b): Since each Fock-normal state is regular ([8] Proposition 5.2.4(4)). Theorem 3.1(a) gives pu €

M|(C).
Let be w e Si(W(E))\{u>r} Fock-normal. but assume L unbounded. Then with the sequences

(/°)„sK, a 6 C, of Lemma 2.2, we get lim C^(f°) ßuüa)- On the other hand, if q„ is a den-
n—»oc

sity operator in the Fock space F+(E). then by [8], Proposition 5.2.4(4). one has lim C„(/°)
n—»oc

lim t'F±((>u>Wp(f?)) 1, Va e C. Consequently ßu,{(,a) 1. Va e C. However, the map a e C i—
n—»oo

ßwüa) is the Fourier transform of the measure pu e Af^(C). By Bochner's theorem. [19]. Theorem IX.9.
the Fourier transformation gives a one-to-one correspondence between positive measures and positive-
definite functions on the additive group C — R2, from which it follows /iu 6q. that is w uF. a
contradiction.

Conversely, assume L bounded and /t„ 6 M+(C). Then there is an ft € lì with L(f) — (ft | /) V/ 6 E.
With the Weyl relations and {iiF | WF(f)ÇlF) CF(f), V/ e E, one easily checks, that the density
operator in F+(E) associated with w is given by

/ \WF(-izh)üF){WF(-izh)üF\ dßw(z)
Je

showing u to be Fock-normal (cf. [11] Section 8.2). ¦
4 GNS-representation and central decomposition

In this section we assume a fixed, but arbitrary, unbounded linear form £ : P —> C. We treat
the GNS-representation (Tlu,Hu,iìu) and central decomposition of a» 6 Sf(W{E)).

As in [4] let K. P © C with scalar product (/ ffi a \ g © ß) (f \ g) + äß, and embed E
therein by A : E —> K., f i-> / © L(f)- From the unboundedness of L it follows that \(E) is
dense in /C, [4] Section 3. The continuous extension 0£ of the symplectic form Im(. | from E
to IC is given by (TkU © a>9 © ß) — Im(/ I s) V/ ffi a,g © /3 € /C, which obviously possesses a

non-trivial null space. By CÇH) we denote the bounded operators on the Hilbert space W.

Theorem 4.1 For u e Sf(W(E)) the GNS-representation is given by

Hul F+(E)®L2(bC,p„), H, (iF<S)w, IL(W(f)) WMU)) V/eP,
where pu is introduced in Theorem 3.1 and where w(z) si, z € fcC, and W^(g®ß) := WF(g)®
iß y9 ® ß 6 £• For the associated von Neumann algebra we have

M„ TL,(W(E))" £(F+(P))®L°°(6C,Mu,),

where the elements of L°°(bC, p^) act on L2(6C,/Hu) os multiplication operators. The symbol ®
denotes the W*-tensor product [21]. Further, ihe commutant M^ and the center Zw M^ctM'^,
are both equal to

Zu M'„ lF+®lx(b€,p„).
Moreover

(a) (iL \WM&<*)(!„) CF(f)pM^) V/©ae£.
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(b) Wu(ii)eM„ Vy>eAC.

(c) Let u € <S£' (W(P)). Then the map Wu(.) : AC —» Mu, i> |-> Ww{ip) is continuous with
respect to the norm of K and the strong operator topology on Mu. As a consequence, if
the selfadjoint operators ^(Y»), yj e K, generate the unitary groups {Ww(tip) \ t e TR.}, the

map

tp f®a€K E®C i—> *f(/) ® 1l2 + 1f ® *ci(a)

is continuous in the strong resolvent sense. Here $F(f), f e P, denote the Fock field
operators, and $c\(a) := exp{-WaA +5A*)}, a € C, wi<A ifte normal operator (A£)(z)
z£(z) Vz e C, £ € L2(C,jLt„), are the field operators associated with the classical Weyl

operators WcX{a) £a (cf. (3.3)).

Moreover, since *a,(A(/)) $w(/) with the above embedding A : E —* /C, the extended

field operators 9u(ip), ip e AC", ore approximable by the original ones in the strong resolvent

sense.

PROOF: Clearly the so defined (n^.TC) gives a representation of W(E). Now we use the sequences

(/°)nen, a e C, in E of Lemma 2.2. Hence by [8] Proposition 5.2.4(4) s-lim W„(A(/£)) lF. ®$]
n—*3C

is an element of M„ for all a <= C. Consequently W„(A(/)) \lF+ »^i,,/,] W>(/) ® If € M«
V/ € E. Thus by [8] Proposition 5.2.4(4) WF{f) ® 1L, E M„ V/ E 1. Consequently WU</ e ß)

[wF(9)® lLj] [lp+ »$'] eMuVg®ßeK. Now observe LH{WF(/) | / E £}" £(F+(1)) by [8]

Proposition 5.2.4(3) and that LH{£„ '
| a € C} is dense in AP(C) ^ C(b€) from which together with [21],

Theorem III 1.2 (regard pu 6 MJ(6C) as a state on C(6C)), follows LH{£ÌM | a e C}" {.x(bC.ßu).
where the elements of LH{{„ | a e C} are considered as multiplication operators on L2(6C. pa) and the
bicommutant is taken with respect to £(L2(6C,/0). The cyclicity of ilu now is immediate.

To prove (c) observe that tv e Sf(W(E)) to be regular is equivalent to /i„ € M|(C). and use [8]

Proposition 5.2.4(4) and Lebesgue's dominated convergence theorem. The rest of the proof is easily

checked. ¦
Theorem 4.2 For each ui e Sf(W(E)) the measure p% € Af|(S(W(P))) is its central measure
and (3.6) its central decomposition.

PROOF: For a given map ft : 6C -» C define the function ft : S(W(E)} — C by setting h(uFoa%) :=
ft(z) and h(tp) := 0 for <p ff deSc^{W(.E)). Analoguously to the proof of [4] Proposition 3.5 we obtain
K„(êL6)) W„(0 œ a) Va e C for the Tornita map Ku : lx{S{W(E)).pt) — M'„ Z„ (cf. [8] Lemma

4.1.21). Clearly LH{^M | a 6 C} is dense in L^lbC.p^) with respect to the «rtL^.LMtopology (use [21]

Theorem III-1.2 for the state pu e Mj(6C) on C(ftC)), which implies LH |£,M | a e c} to be «rfL^.L1)-
dense in Lx(S(W{E)).pL). Now the assertion follows from [8] Lemma 4.1.21. I

Proposition 4.3 Tfte following assertions are valid:

(a) For each to e 5£'(W(P)) there is a unique maximal measure /i™** e M+(S(W(E)) with
ui /5(yV(£))¥'d^™ax(v'), namely the central measure p™** — p% ofw.

(b) The states in S^(W(E)) constitute a weak*-compact face ofS(W(E)).
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(c) The regular states 5^ (W(P)) constitute a face, which is not weak*-compact.

(d) The set of first order coherent states s£\W(E)) is not a face ofS(W(E)).

PROOF: (a) follows from M'u - Zw and [21] Lemma IV-6.26.

(b): Let a; \ipx + (l-\)tp2 bean arbitrary convex decomposition of au e S^(W(E)) with 0 < A < 1

and <pi,tp2 6 S(W{E)). By [9] Proposition 4.1.3 there exist maximal measures ßi.ßi € M+(<S(W(.E)))
with tpk Jsiw(E))w' dpk{u>') for k e {1,2}. Then by [9] Proposition 4.1.14 /t := A/ti + (1 - \)ßi is a

maximal measure decomposing u. By (a) p p% is the central measure of w. Since /*£ is concentrated

on deSf(W(E)) and 0 < A < 1 so has to be each ßk. from which follows tpk e Sf(W(E)). k € {1.2}.

(c): Since the regular states on W(E) constitute a folium (i.e. a norm-closed split face [20]) in

S(W(E)), they especially define a face. Hence the assertion follows from (b).

(d): If zx,z2 € C with A|zi|2 + (1 - A)|z2|2 1 and |zi| ï 1 ^ |z2| for some 0 < A < 1 and

tfii,tp2 are the states in Sf(W(E)) associated with the point measures S^, resp. Sz, (Theorem 3.1).

then <p :- Xtpi + (1 - X)tp2 e s£\W{E)), but tpi and tp2 are not elements of S{^\yV{E)). We have

tpk i sl^iWiE)) toi k 1.2. ¦

5 Extended Weyl formalism

Let throughout this Section the linear form L : E —» C be unbounded and IC be the completion
of E with respect to the scalar product (f \g)L (f \ g) + L(f)L(g) on P. Hence the embedding
A : P —? K gives rise to an extension of the one-particle space PtoAC PffiCas has been

described at the beginning of Section 4. This suggests an extension of the original Weyl algebra

W(E) to A(AC,<7jc), where <tjç is the previously defined continuous extension of the symplectic
form Im(. | on E. However c/c is a degenerate symplectic form with kernel ker(<rjç) OffiC
A(ÂC\(7jc) is defined in [22] (cf. also [4] Section 3 and the Appendix of [23]). As in [22] the Weyl

operators in A(AC, o/c) are denoted by 8^,, ip e AC. Because of the null space of ok. the extended

Weyl algebra A(AC,<tjç) decomposes into a tensor product

A(K,oK) ^ W(£)®A(C) =: MKfajc), (5.1)

where by [23] Theorem A.l (Appendix) the abelian C*-algebra A(C) := A(C,0) is *-isomorphic
to the algebra of continuous functions C(C) on the character group C of the discrete additive

group (C,+). But C is homeomorphic to ftC [18], and hence

A(C) SS C(C) ^ C(bC) S AP(C) (5.2)

The extended Weyl algebra (5.1) may be considered as the field algebra for macroscopic
coherent states. It exhibits a classical part which belongs to two macroscopic degrees of freedom

constituting C. Choosing polar coordinates in C one has a phase and an amplitude as classical

observables, where the Bohr compactification ftC allows for the divergent amplitudes. In this
Boson field algebra the new classical coordinates are independent from the original Weyl algebra

W(E), whereas in the GNS-representation of VW(P) over a macroscopic ui € 5£'(W(P)) the Fock

and the classical parts are coupled (cf. e.g. n(W(/)) Wu(X(f)), Theorem 4.1). Due to these

classical coordinates the C*-algebra of (5.1) is not simple and has non-faithful representations.
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The state space 5(W(AC, ok)) contains especially the extension us of each u> € S£'(>V(P)) to
the product state

w â o;F (8 ^, on A(K,<tjc) W(Ë) ® AP(C) (5.3)

where here wj? means the Fock vacuum state on W(P) introduced after (1.1), and pu is defined

in Theorem 3.1. It is seen directly that the GNS-representation of Zi is the tensor product of
the GNS-representations of W(P) over wF and of AP(C) over p» in the Hilbert space H^
rHu with cyclic vector ü^ nw, and representation 11^(6^) WuW) W1 e AC. Obviously
ns(W(ÂC,o-K))" =: Ma Mw (cf. Theorem 4.1). The GNS-representation is faithful, if and

only if sutpp(pu) 6C. If supp(/iUI) is not the whole of 6C the preparation of w (resp. w) reduces

the range of the classical coordinates correspondingly.

We have here a nice illustration of the formalism in [22]. For given u> 6 S£'(VV(P)) the GNS-

representation IIa defines a C*-seminorm on A(AC, ok) (that is the *-algebra linearly generated by
the Weyl operators 8^,, ip e K), the completion of which is W(P)®C(sw), where su := supp(^).
By [22] this algebra can also be obtained as the quotient of W{K,ok) with the closed *-ideal
W(E) <g> Coo(6C\su)), the kernel of n£ (here Coo(X) denotes the continuous functions on X
vanishing at infinity).

The appropriateness of W(IC,ok) should be discussed with reference to the generalized first
order coherent states in 5£'(>V(P)), among which those are distinguished, in which the classical
variables range over all of 6C. These give via the GNS-representation described above faithful
representations of W(AC, <tjc) and make explicit the structure of a Boson algebra with microscopic
modes P and one classical field mode L.

6 Discussion

In our analysis of the n-th order coherent states on a C*-Weyl algebra, which are sub-classes

of the first order coherent states, the first general result is Proposition 2.1. It gives a general
form for the characteristic function / e P i—> CM) °f a coherent state us by means of a series

expansion (2.4) in powers of L(f)k and L(f) where L : E —> C is the linear form of the
coherence condition Definition 1.2. That is, the test functions / e E enter the normally ordered
characteristic function PM) CM)/CF(f) only via M)- K £ is bounded with respect to
the norm on P, there is a h e P with L(f) (h | /) V/ € P, and only the component of / in
the one-mode space €h contributes to PM)- The mode h corresponds to the mode b in formula
(2.15) of [13], where the dnsity operator of a first order coherent state in Fock space is discussed.

If L is unbounded then the complement of its null space in E is always of infinite dimensions
and the associated coherent state is non-Fock (Proposition 2.4). If we call L & macroscopic
mode, then Proposition 2.1 gives the one-mode structure of PM) and °f ^e normally ordered
correlations (2.5). The latter are dealt with also in [24], but only with equally many creation
and annihilation operators. The formula (2.4) is a complete characterization of all first order
coherent states (where analyticity is required), if one knows that the matrix cu(k,l) has the

property to make the series times CF(f) a characteristic function of a state on W(E). For this

c„ € Mposker (cf. (2.3)) is necessary but not sufficient.

The decisive progress is Theorem 2.3(a) which says that cw 6 Mp"^fun (cf. (2.9)) is for every L
necessary and sufficient to make (2.4) a characteristic function of a classical n-th order coherent
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state. For L unbounded Theorem 2.3(b) tells us,'that by this condition all coherent states are
exhausted since all of them are classical.

The condition cu e M'"^fun, which according to (2.8) is essentially positive definiteness over

a semigroup of entire valued tuples, seems not to have been known in the literature. That it
expresses a canonical mathematical structure is demonstrated by Theorem A.l of the Appendix,
which connects it with the Hamburger type moment problem for probability measures on C.

This, in turn, supplements the spectral theory for normal (not necessarily bounded) operators
in a Hilbert space.

In our context the measure pu e M\(C), which is determined by cu e M "
{un, provides —

after having been transferred to a regular probability measure p% on the state space S(W(E))
on W(P) — a decomposition of a classical first order coherent state ui into pure coherent

states (of infinite coherence order). The classical states in SL (VW(P)) are in this way shown

to be affine isomorphic to the analytic measures in Afj.(C) with fixed first moment. By the

Bohr compactification, which extends C to the compact topological group 6C, one gets the
Bauer simplex M\(b€), which is transferred to the state space as S£'(W(P)) (Theorem 3.1).

iS£l(W(P)) is an extrapolation of the classical first order coherent states and contains also non-

regular states. In spite of being not connected with a field operator, the non-regular states arise

in physics, e.g. by a gauge constraint [25], [26]. Here one sees from Proposition 3.2, that the

non-regular states in the extremal boundary deSf(W(E)) of 5£'(W(P)) are obtained from a

regular one in deSf(V\}(E)) by a gauge transformation of the second kind in terms of a non-
continuous character on C. The use of the compact set «S£'(W(P)) has technical advantages,

also for dealing with the (regular, even analytic) classical states in SL (W(P)).

If L is unbounded the GNS-representation for all w e S£(W(E)) can be constructed by an

extension of the methods of [27], here even in the case of non-regular states (Theorem 4.1). The

center of the GNS-von Neumann algebra is thereby identified as L°°(6C,i/„) and signifies in the

case of a regular u> the arise of the classical smeared field \pì Ke(zL(f)), where z is distributed

over C according to the statistics p^,. By determining the image of the Tomita map, which is

associated with the transferred measure p%, the latter is in Theorem 4.2 identified as the central

measure of u> e 5£'(W(P)) (also if ui is not regular). That means, that the specification of the

central (optical) variables "phase" and "amplitude" of the classical field leads to the purification
of the generalized first order coherent states as a quantum state.

In the extended Weyl formalism of Section 5 the classical field becomes independent from

the Fock space Bosons. In this sense one has the final stage in deriving a classical field from the

collective ordering condition for a state. The ordering condition for first order coherent states

seems rather similar to "off diagonal long range order" (cf. [28], [29]). It expresses a collective

ordering, however, only if the involved linear form L is unbounded. Only in this case one obtains
in a photon theory the genuine optical features like the classical phase and amplitude.
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Appendix

We construct here the Kolmogorov decomposition (cf. [10] and the appendix of [4]) of the

positive-definit
formula (2.9).

positive-definite function c € Mfa on the involutive semigroup (No x No,/) explicitely (cf.

Theorem A.l For a matrix c : Wo x Wo —> C with c(0,0) 1 the following assertions are

equivalent:

(i) «MJ2L,;

(ii) there is a p e M+(C) with L exp{7 |z|} dp(z) < oo for some y > 0 (such a measure is
called analytic,) and c(k,l) fczlzk dp(z) for all k,l € No,'

(iii) there exists a Hilbert space Ti, a normal operator A acting in Ti, and a vector w e Ti,
\\w\\ 1, which is analytic for A (and hence for A* and \A\ y/AA*), such that c(k,l)
(A'w\ Akw) Vfe,/e M0.

// one of these conditions is fulfilled, then in addition we have:

(a) The measure p e M\(<C) of (ii) is unique.

(b) ti, A, w in (iii) may be choosen so that Ti LH{A*mAnw \m,n e Mo}, where LH denotes

the closure of the linear hull. In this case the (cyclic) representation (Ti,A,w) associated

with c is unique up to unitary equivalence.

PROOF: The proof is an extension of the Hamburger moment problem from R. to C (cf. [14] Theorem
X.4, [15] Chapter X, §7).

(ii) => (i): Because of /cexp{7|z|} dp(z) < oo all the integrals c(k,l) fcz'zkdp(z) exist.
Consequently for a,j 6 C with 0 < i,j < M

M .MMY cciTiamnc{l + m,k + n) Y «M***'J Y °w z"zm J d/*(z)
k,l,m,n-0 f, k,l=0 m,n=0

r M

/|E-
C

giving equation (2.8). Moreover we obtain for 8 := 7/2

n=0

fv+'ii|c(fc,/)| < Y 6k+'~ J \z\w dß(z) Jexp{28\z\}dp(z) < oc.
k,l=D

(i)^-(iii): Let be V the set of all polynomials p, p(z,z) £ oti,izkz (z € C). with complex
k,l=t>

coefficients au- For given e e Mp^8full we define on V the sesquilinearform |

M N M N

]£ afc, zfc z'I ^]/3m„zmz"^ := Y Y ""^m» c(/ + m.fc + n). (A.l)
k,l=0 m,n=0 fe,I=0 m.n=0
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which is positive by (2.8). i.e. (p | p) > 0 Vp 6 V. If Q := {p € V \ (p \ p) 0}. then let be H the

completion of the quotient space V/Q with respect to |

On V we now define the two operators B and C as the multiplications with z resp. z

(Bp)(z.z):=zp{z.z). {Cp)(z.z)—zp(z.z) Vz 6 C VpeP.

By direct calculations from (A.l) follows {p | Bq) (Cp | q) Vp.g e P. which with the Cauchy-Schwarz
inequality implies (Bp | Bp)2 \(CBp\p)\2 < (CBp\CBp)(p\p). showing B(Q) ç Q. and similar
C(Q) ç Q. Hence the operators B and C can be transfered to P/Q and now become operators B resp.
C acting in the Hilbert space Ti with domains V(B) V{C) P/Q.

Because of £ 6k+l F ïï k(JU)l < oc for some 8 > 0 there is an a > 0 with \c{k.l)\ < a2 (ì)k+'it!/!
k.!=0

VA;./ e Hq. which with (A.l) implies

g^fjHJ yfctfc + t + n.fc-H + n)
<

m*+'+n
n! n\ - a\S)

(k + l + n.

rn\ k+l+n
< a [|l (A + /)' VA. I»eM0

Consequently £ i 5"zfcz' «" < oo for each« e [0,6/2[. showing the element z e€h zkzloîP/QçH

to be an analytic vector for B for each k.l € Ho. Hence by the triangle inequality each y> e P/Ô is an

analytic vector for B (C analoguous). Now one easily ensures, that P/Q consists of analytic vectors

for the symmetric operators | [B + Cj and jj IB - Cl, from which with Nelson's theorem follows the

selfadjointness of their closures. S resp. T. With series expansions on the analytic vectors P/Q one
checks e"se'tT e*'Te!sS Vs.teE showing S. T to commute in the sense that the associated spectral
projections commute. Thus A := S + iT is a normal operator in H extending B. resp. A' S — iT
extending C.

Let w E H bt given by the representative polynomial w(z) — 1 Vz e C. then (A.l) implies
IMI2 c(0.0) 1. from which also follows {A'w \ Akw) (zl \ zk) c(k.l) Vk.l e H0. Further
LH {A'mA"w | m.n 6 Ho} P/Q, which by construction is dense in Ti and also proves the first part of

(b). (The uniqueness statement in (b) is immediate.)

(iii) =>• (ii): With the spectral family G(z). z 6 C, of A define p e MJ(C) by dß(z) (w | dG(z)u;).
Then c(k.l) (A'w | Akw) Jcz'zkdß(z) VA:./ e M0. especially 1 c(0.0).

Since w is an analytic vector for A so it is also for |A| (since ||.4n£|| \f(An(, \ An{,) \/(i | (A"A)"{)
|| |Af £||). Thus with Beppo-Levi's theorem ([16] Corollary 2.4.2)

/exp{7|z|}d/x(z) Y^ f\z\ndß(z) Y^(w\\A\nw)
ii-O

7

n=0

c

< y^ fa || UI" w|| < oo for some 7 > 0.
*—* n.'

(a): Let be ß. g 6 M+(C) with /c eTl*l dß(z) < oc and /c e7l*l dg(z) < oc for some 7 > 0 and

fztzkdp{z) fj'zkdg(z) V*;./eM0. (A.2)

c c

Define ß,ge M+(C) by dp(z) e^'l dß(z) and d£(z) e"^ dp(z). (A.2) now implies

fp(z,z)e-'lMdß(z)=fp(z.z)e-~lMdQ(z) VpeP. (A.3)
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Let V be the vector space consisting of functions jsCh p(z,z)e 7'*l with p S.P. Since lim /(z) 0
M—2*

for each / € P the set P is a subspace of Co(C). the continuous functions on C vanishing at infinity. By
the Stone-Weierstraß theorem P is dense in Co(C) (use the one-point compactification of C). from which

with (A.3) follows p(f) g{f) V/ e Co(C). that is p. g resp. p g. ¦
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