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ON THE DESCRIPTION OF SINGLE MASSLESS QUANTUM OBJECTS

By S. Donev
Institute for Nuclear Research and Nuclear Energy
Bulg.Acad.Sci.,Boul.Trakia 72, 1784 Sofia, Bulgaria

(13. VIII. 1991, revised 23. V. 1992)

Abstract:We advance an understanding of a single free
quantum object as an extended time-stable finite (3+1)~
dimensional object, intrinsically connected with a
particular periodic process with period T, such that its
integral energy E is related to T by the Planck’'s relation
ET=h. It 1is explicitly shown that the nonlinear 1local
conservation laws for the energy—-momentum tensor of the
electromagnetic field admit a large class of such
"pulsating” soliton-like massless solutions. Explicit
mathematical expressions for the Planck's constant A and for
a local intrinsic angular momentum of these solutions are
proposed.

1. Outlining the idea

At the very beginning of modern gquantum physics
Einstein [1]1 and de Broglie [2] made attempts to consider
photons and electrons as localized objects, i.e. finite
extended lumps, or lumps—-like formations, moving as a whole
along some fixed direction, but after Born's probabilistic
interpretation [3] of quantum phenomena became wide-spread
and almost generally accepted by the majority of 1leading
physicists, the interest to describe single quantum objects
or events seemed to disappear. It must be stressed however
that neither Einstein nor de Broglie accepted ever entirely
this probabilistic point of view on the physical world.
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A new interest to this problem appeared during the last
25 years, based mainly on some success in dealing with
nonlinear equations, the so called "soliton science” [4,5],
but a deep enough development of this point of view is still
missing. A constructive and encouraging interest in this
field is shown nowadays in the papers of Barut (6,71, and
there one can find a simple and clear notion of the concept
"quantum particle” or "single quantum object”. For the sake
of clearness I shall begin with an outline of this notion in
such a way as [ accept it.

Under free guantum object I understand any finite
extended time-stable physical object whose existence is
demonstrated only through a particular intrinsic periodic
process ( T denotes the period ) and whose integral energy E
satisfies Planck’'s relation ET = h ,where h is the Planck's
constant. Of course the simplest case is when this
periodicity 1is described well enough by the elementary
periodic functions "sinz” and "cosz". "Extendedness” means
here that at any moment t , even at tsx, our object
occupies finite 3-region Q,c R> with unspecified topology,
except connectedness, and "finiteness” means nonsingular
field functions, being zero at points out of Qt for any t.
Any free quantum object moves as a whole with constant
velocity v £ ¢. If v < ¢ it is expectable that a frame in
which the field functions take the simple form
f(z,y,z)cos(vi+p) exists and ¢(z,y,2z) and f(z,y,2z) are
different from zero only inside Q. This means - that any
comoving observer finds at any point of Q. the same
periodicity. Functions f(x,y,2) and «@(x,y,z) describe the
structure of the object. If » = ¢ , the case we are
interested in this paper, there is no such frame and
choosing axis 2z as a direction of motion, the field
functions are expected to take the form
flx,y,ztct Jecos(vi+p). We note that Maxwell’'s pure field
equations can not describe such objects because their
solutions in the whole space are just superposition of plane
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running waves.Moreover, since any component of the field
satisfies the wave equation, the solution of the Cauchy
problem with strictly localized initial condition shows that
this initial excitation "blows up” radially and goes to
infinity with the velocity of 1light after which the points
of the 3-space "forget” about what happened. Note that any
plane wave f(ztvt) is in fact a "dead structure”, it has no
intrinsic "life”, because the co-moving observer does not
see any changes occurring to the wave. On the contrary,
quantum objects have intrinsic "1ife” and according to the
above made assumption it demonstrates 1itself entirely
through some periodic process. The relation ET = h connects
the integral and intrinsic characteristics of quantum
objects. As an illustration recall the sine—Gordon equation

q =, .= Asing
and its 1-soliton and "breather” solutions: the 1-soliton
solution is a "dead” structure, and the "breather” solution
"breathes” in the co-moving frame. Since the "breather”
solution does not satisfy Planck's relation it cannot be a
model of any quantum object.

Let’s turn our attention now to the 1local energy-
momentum properties of a single quantum object. The
classical field theoretic approach, assumed in this paper,
requires existence of energy-momentum tensor TV with T:>O
being the energy density. Let < be the corresponding
integral energy—-momentum; then if PgP”=O the physical

object is called massless, and if th“>0 the proper mass
"m" of the object is defined by

1
m = 0_2[P42 - CEPE]E.

We shall localize this condition, namely, we shall call the
corresponding objects isotropic or monisotropic according to

TMvT“v=O or TMVT”V#O respectively. This generalization seems
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reasonable because our quantum objects move as a whole,i.e.
every point of them moves with the same velocity.

On the other hand TE can be found if the lagrangian

is known and it satisfies, by definition, the equations

VVTK=O, which together with space-time symmetries

(i.e.isometries) guarantee conservation of the integral
energy—-momentum. The integral energy E 1is given by

E = [T}dxdydz ,
Q
where T: is expressed through the field functions, which are
determined as solutions of the field equations. This
procedure, applied to the plane-wave solution of Maxwell’'s
equations, for instance, meets a very serious difficulty -
the above integral goes to infinity since the plane-wave

solution occupies infinite region and T:>O. So, Maxwell's
equations are not good for our purpose. On the other hand

the field functions th, satisfy the nonlinear equations

VVT§=O, and combining them with the local isotropy condition

2
7, = [-;FW#W] ¥ [%pr
operator, we get 6 equations. After solving these equations
we can impose some additional conditions (or equations) on
the solution found, and these additional conditions are
meant to express some important features of the intrinsic
periodic process, considered as characteristic for the
isotropic quantum object.

The outlined idea is applicable in principle for any
appropriate classical field (with lagrangian or with known
energy tensor) and the purpose of this paper is to consider
what happens in case of Maxwell field F 2 assuming that in
general Fﬁv do not satisfy the pure field equations dF=0,
d»F=0,

2
(*F)“v] =0, where x is the Hodge
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2. Formulation of the model and results

We start with mentioning our basic assumptions. First
of all our free quantum object will 1ive in a Minkowski’s
space. From pure mathematical point of view this means that
some field with appropriate features is assumed to exist on
(R“,n),where m is a chosen pseudo—-euclidean metric. In

natural coordinates (x’,xz,x3,x4)=(x,y,z,§=ct) we have

2 2 2 2 2 .
ds“=-dx“—-dy“-dz"+dg”~ , i.e. nuv~

Q00 -
OO0 -0
O-!-OO
- 000

Having m we have the volume form V|m| dxadyadzadg,
|ﬂ|=|det(nuv)l the Hodge *-operator and the divergence
’

(coderivative) operator 5=(-1)Px g« , we recall that
8:.8=0. Our next assumption concerns the character of the
field: we assume the field to be represented by a

differential 2-form FeAi(R“,n) , "b” means that the

components Fﬁv are bounded functions in canonical

coordinates and for any & are different from zero only

inside some Qg, where QE is a finite connected region in R>

for any €. From F we get »F, 8F and 8xF. Since 38(8F)=0 and

Fﬁv are bounded and R’-finite functions the two integrals
q,(F)= [(8F) ,dxdydz , a, (F)=[(8%F) ,dxdydz

are finite and do not depend on time. Therefore the Lorentz
invariant quantity

2 2
Q< + q
QUF)= — =

&
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also does not depend on time. Choosing dimF v=dim [energ

!
densityl'’?we get dimQ=dim [actionl]. Clearly, the set of all
2—forms on our Minkowski’s space consists o)

non-intersecting subsets, giving the same Q. In particular,
it is easy to see that the subset of 2-forms, giving Q=0,
is a vector space, containing all solutions of Maxwell
equations.
Remark 1.Since the components F » ©f the field do no
satisfy Maxwell’'s equations the physical interpretation o
F v becomes perhaps not quite clear. What is kept fro
Maxwell theory is the physical dimension of F'v, namely,
[lenergy density]’fz. Although 8F£0 and &xF#£0 these tw
4-vectors have nothing to do with any electric or magneti
currents. Of course, they carry some information about ou
single free quantum object, and that’'s all, n
characteristics of any other objects are introduced by them.
After these two preliminary assumptions of general
character we 1impose the following two conditions o
FeAZ(R*,m), with Q0. Let v = -}FaBF‘aﬁSK - F, 7 be th
standard energy-tensor of the electromagnetic field,obtaine
through variation with respect to the metric coefficients o
the classical action integral. We assume TK to be th
energy—momentum of our field.

We require

2 2
o v _ [ 1p g 1 wrl. (2 2 _
1°. TuvT = [ QFLV ] + [ F _(%F) ] 11 + 1 0

o e _
2" s VMTV = 0.
From 1° it follows [8]1 that at any point all eigen value

v v
of TM' Fuv and (*F)uv are equal to zero. Also, TH and Fh

admit just one common isotropic eigen direction and al
other eigen directions are space-like. So, we have th
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isotropic vector fields iV“, ng“=0. Then there exist two

1-forms A and B, such that F=A4AAV and *F=BAV. Clearly, A4 and
B are defined up to additive factors ﬁt and 62, such that
Vhﬂ1= Vhﬂ2=0. Now we obtain

0=1I -—(A“V”) , O=I -—(BpV“)Z, i.e.

A and B are orthogonal to V. Also, TK=*(A)2V V=—(B)2V V¥,

P M
i.e. (4)%=(B)2. Besides, TKAMZ EB“=O, i.e. A and B are eigen
vectors of Tﬁ, consequently, (4)2<0 and (B)2<0 - the two

1-forms 4 and B are space-like. Now from 2° it follows

V. T V(AVV)—ﬁVVV vV v (42vV)=0,1.e.
v u v Vv ’

V”vvvu =—[(A2)“‘VP(A2V”)]V”.

This last relation means [9] that the integral curves of v
are isotropic geodesics. Now by means of an appropriate
Lorentz transformation of coordinates we can achieve the

trajectories of VM, which are straight 1lines, to 1lie in
the (z,E)-planes. In these new coordinates we have

Vg=(0,0,ah,h), where g=t1. By obvious reasons we assume A=1.

V_ — s -
Now from FhvV =0, (*F)M —0 F AMV A V *Fhv BpVﬁ Bva

1t follows F12=F34=0, F13=8F14=8A1, F23=8F24=8A2,

A3=8A4, BB=eB4, B1=—8A2, Ba=aA1, e=t1.

Moreover, since A, and B, cannot be determined by Fhv we
shall assume 4,=B,=0. Denoting F14=u, F24=p we obtain
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F=eudxandz + udxandt + epdyndz + pdyadg
xF=—pdradz - epdradt + udyadz + eudyadt

v —
0 0 0 0
V- 0 0 0 0
H 0] 0 —(u2+p2) e(u2+p2)
0 0 ~a(u2+p2) (u2+p2)

and the conservation equations Vsz=O reduce to
{u2+p2)g —e(u2+p2)z = 0.

The general solution of this equation is u2+p2=¢(x,y,§+az),
which suggests introduction of new functions ¢ and ¢
according to

¢ = vu2+p2 r P = _"u__ » $20, |(P|S1'
u®+p?
So ¢, the square of which represents the energy density, is
a running wave, and since u and p are finite functions with
respect to (z,y,z) ¢ is finite too. The apparent dependence
of ¢ on (z,y,z) is to be determined by some initial
condition, which means that the spatial structure of the
solution can not be determined by the conservation Tlaw.
Entirely unknown however 1is the (bounded) function ¢.
Clearly « describes some intrinsic features of the object
and the energy density ¢2 is indifferent to these features.
The case ¢@=const is out of interest because it leads to
running wave character of F -

v
Remark 2. Recall that since VvTﬁzo the integral energy E and
momentum P=(0,0, %E ) do not depend on time. Obviously

E®-c?22=0 and the quantity @ naturally defines some
time-interval T= % and a natural length cT.

The following is readily obtained:
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8F

{ug—euz)dz + (pg—apz)dy + e(um+py)dz + (u$+py)d§

SxF =—(ep§—pz)dx + (eug—uz)dy = (px—u )dz - e(pm-uy)dg

y

0 _ 2_ _ 2_ .2 _ 2= M
6Fh§F“— (ug-gu,) = (pg-p,) *=—0" (@g-2p,) *=(5xF)  (3*F)

8F (8xF)M=0
M

v_ Y_n
FthF =0, (tF)“v(B*F) =0,

The last two relations mean that 8F is an eigen vector of

Fhm and 5*xF is an eigen vector of xF ., and also these last

relations may be used as natural generalization of Maxwell’'s

equations 8F=0, 3xF=0. Worth it also to note the relation
v_ v v " .
vaM-vaaF +(*F)MV(G*F) . On the other hand it is easily

seen that the obtained F satisfies: Fﬁv=F0TLzL$' where

v — h —
0 0 &b ¢ P —v4:53 0O O
g -l 0o 0o 0o o w_ Vi-? ¢ o 0
MY e O O O V) 0 0 1 0
% 0 0 O 0 0 0 1
This shows that Fh” is obtained from its canonical form 3@”
through some transformation LK which, clearly, is connected

with the group S0(2)(rotation around z-axis). So we have got
a suggestion to determine this transformation L assuming it
is just the differential of the flow of the vector field

= z[-4 8 o) 3 = : :
& = e[ Y5 +xay ]+CT6§ , &=t1 determines the rotation

direction and has nothing to do with the above &. The flow
of Z is determined by the equations

dx _ = dy = dz o dE _
gt ="8Yr gt “&%» Gg =0» g =T
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and initial conditions x(0)=xo, y(0)=yo, z(0)=zo, §(O)=§o.
The flow looks as follows
x=x _cos(et)-y sin(gt) z=z
o (=4 o
y=x°s1n(em)+yocos(am) §=§°+CTT.

Now according to the above made suggestion we have to write
down the following equation

o
O
axp' ""‘
o
7] . . g_EQ * EEO
Taking in view that == —7— and denoting b=- -7 we get

= = &
p = cos(ecT +b).

The intrinsic "1ife” of our object is a very simple one and
the intrinsic frequency "v" of the solution F is expressed
through the integral characteristics E and @ of the
solution, i.e. E=Qv, which coincides with Planck’'s relation
E=hy if Q is identified with h. After simple computation for
Q is obtained the following

o 3 ([l i)

which shows that in this case @ does not depend on ¢, but
depends on the transversal derivatives of ¢.

3. Conclusion

So, the picture we get is the following: a connected
finite and "pulsating” 3-lump with unknown 3-topology moves
as a whole through space along a fixed 3-space direction 7
with the velocity of 1light and its particular nature
consists (besides motion with the velocity of 1light) in the
availability of a couple of two space-1ike 1-forms A4 and
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B . These two 1-forms are micro-descendants of the 4-
dimensional versions of the electric and magnetic vectors in
Maxwell theory and meet the relations A2=Bz, B“=O, also
they are orthogonal to R. The couple (A4,B) rotates at every
point of the "lump” with the same frequency v= % . A
natural invariant integral characteristic of this rotation
is @, since, obviously, @ 1is the real action of the "lump”
for 1 period T= % . Thus, the "lump” does not rotate as a
whole, but it can exist only through a, so to
say, "progressive local rotation”. The 2-form S= 1 B

c
characterizes locally this rotation since
1 1 1 =
ISI= ¢ 14B|= 5 14,4%= ¢ |B B*|= ¢
and integrating |S| over the 4-region QxcT we obtain

[15]dxdydzdt = E.T = Q.
faxeT
Geometrically, @ 1is the integral area (in action units)
covered by the rotating orthogonal 2-frame (4,B) during one
period T. This motivates the 2-form S to be considered as
local intrinsic angular (spin) momentum tensor of the
object. Another approach is to consider the tensor field

V“Saﬁ=—V“SBa} having zero divergence: VMV“Saﬁmo, and the

conserved quantity IV4812dxdydz=tE, which  could Dbe

interpreted as integral spin momentum for one second, and
giving *Q for one period T. The two signs * come from the
two opposite directions of motion. As for the integral wave

. . o . 1
vector k. it can be introduced by the relation Kk = =
p. y H- Q ppr
_ tF F . .
where puv(0,0, S ' b ) is the integral 4-momentum of the
solution. So, instead of ¢(x,y,8+82) we can write

¢(m,y,kum“), but the same cannot be done with the phase

function @(&), which is not a running wave.
Having such single solutions at hand various further
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attempts can be made, such as description of flow of
non-interacting solutions with possible interference, making
corresponding statistical considerations, introduction of

new equations,e.g. FhmGFv=0, appropriate definition of the

classical electromagnetic wave, reflection phenomena and soO
on. Some of these problems are now under consideration.
However, the 1important problem of interaction with
mass—particles has not been considered so far because a good
enough 3-dimensional soliton-1ike model of mass—particles is
still missing and, I think, more efforts have to
be concentrated on this problem.

I would 1ike to acknowledge the Bulgarian National fund
"Science Research” for the financial support.
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