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Abstract. We propose a Lorentz covariant description of the radiation field. It is based on the
observation that there exists a representation of the Lie algebra of the Lorentz group on the subspace
of helicity states of the statespace of spin 1. This permits the determination of an action of the Lorentz
group on the amplitudes of the field, and thereby the construction of the general Lorentz covariant
solutions.
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1. Introduction

The classical radiation field is described by the plane-wave solutions of the
Maxwell equations. In standard notation, and in the helicity representation, they
are expressed as the sums E = E_ + FE_ and B = B, + B_ of solutions of
positive and negative helicity [1],

= - o= w., t -‘i-'w
E (Z,t;cy) = (2m) 3/2f\/;z(€i(k)ci(k)e (k3=et)
— &1 (k)ch (k)e~(RE=D)

n (= - W i(kE—w
Bul@ bes) = )" [ |26 Bes (R

+ &% (k) (k)e~{RE=1)) g3
and such that k - €,(k) = 0, |§4| = 1, w = |k|, k € R®, (&,t) € R* and
¢y : R® — C with [ |c.|?d®k < co. The general solution of the transversality
conditions & - £, = 0, are

where
kiks

_ , /kz kz
wy/kZ+ k2’ ,/k? k2 *

& (k) = (-

&y (k) = (g, i, 0)
and « is an undetermined constant that can be absorbed by the phase of ¢ .

These solutions are not in covariant form : the transversality condition is not
Lorentz invariant. One can therefore generate new solutions by applying Lorentz
transformations on the solutions already constructed. It is however, not apriori
clear how the amplitudes transform under the Lorentz group.

In the following we propose a solution to this problem. It is based on the
observation that there exists a symplectic action of the group SO (3, 2) on the space
of helicity states (coherent states) of spin 1. To be able to apply this observation we
consider the field as a function(al) on the statespace x spacetime, thus obtaining a
framework in which questions about covariance are more easily discussed.
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2. Spin 1 and helicity

The (quantum) observables of spin s are described by the generators S, S,, S3 of
the unitary (projective) representation of the rotation group SO(3) of R® in C%**1,
the spin state space. For spin 1 the state space is thus C* and a representation of
the spin observables is given by the selfadjoint operators

0 0 O 0 0 — 0 2z 0
(s,.):((o 0 i),(o : o),(ﬂ- 0 0)).
0 — 0 : 0 0 0 0 0

In this particular representation, the real and imaginary part of the state-vector
transforms independently, and as “vectors”, under the rotations. It is thus natural

to use the notation @ = J=( + i#). In terms of the real vectors @ and ¥, the

spin-density then has the following form

| =

WATW=UuAT.

§= (0)S(w) =

-

The most prominent structural property of the theory of spin is complex linearity.
Accordingly it possesses a (canonical) symplectic structure defined by the (real)
two-form [2]

Q=1i) dw}Adw;.
3
This symplectic form is associated with the Poisson bracket

1
{a,b} = = Z(Bwjaaw;b ~ 8,,,b0,,-a)
J

which can be used to define a structure of Lie algebra on the set of differentiable
functions on C°. The Lie algebra of linear operators on C* under commutation is
injected into the Lie algebra of functions on C® under the Poisson bracket by the
map defined by

A (0)A(w) = f(A)(w",w) ;

in fact, {f(4), /(B)} = (@);[4, Bl(w) = f(;[4, B])-

Definition : The vectors @ = ?}_5({’: + i%) € C® such that w? = 0, i.e.

2-9=0 and @ —9>=0
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are said to describe helicity states (i.e. states of circular polarization).

Proposition : Let (P, w) be the symplectic manifold which in generalized spherical
coordinates (p, 7, w, ¢) is defined by (R, x S° U{0},dp A dw + dr A dp) where

52 is the projective space associated with the three-dimensional sphere S°. Then
the map

¢ b H, x S*u{0}—C? ; (pyTyw, ) — (w;)
for

1 . 1 . tw
Wy = E(“g + wj) = E(Slj + z“52_‘;)\/11_5’3
(e1;) = (=7/pcosyp, T/psing , /1 —12/p?),

(62;) = (~sing , —cos ,0)
is a symplectic embedding, i.e.

R, xS*u{0}~c(R, xS*U{0})CC® and c*Q =w.

Moreover, ¢(R, x $® U{0}) C C® is the submanifold of helicity states.
Proof : Direct computation.
- Corollary : The spin density is

§=UAT=(/p?—712cosp , Vp?—1%sinp , T)

on the helicity states.

Proposition: Let§ = ,/piiand 7 = ,/p#; then, the set of functions (g;, p, 7;, 5;; & =
1,2, 3) constitute a basis for a representation of the Lie algebra so(3, 2) in the Lie
algebra of functions on R, x S° U {0} under the Poisson bracket

{a,b} = 8,00, + 8,a8,b - 8,,a0,b — 0,a0,b.
Proof : The proof consists in verifying the “commutation relations”

{558 3} EiikSk e, ,} EiikTr » {545 Qj} = €i5kk -

{st’p} 0 {rz’q]} zJp’{Tg’ J} 1Jksk ’
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{9:,9;} = —€iese o {ain Y =7 o {risp} = —q;.-
This is done by computation.

Corollary : Let X denote the action of SO(3,1) on R, x S° U {0} generated by

(r;,8; : i =1,2,3), A the Lorentz transformations on R* leaving invariant the
Minkowski metric, and let

0 1;)1 Ty T3
-T S —8
B py __ 1 3 2
— and s*¥ =
q (P:Q‘) — —3 0 g
2 3 1

Then
" (Ap(py Ty w, ) = A* ¢"(p, T, w, )

(o1, 0)) = MY 5% (p, 7, w, )
i.e. ¢* and s*" are manifestly covariant with respect to the Lorentz transformations.

From this corollary it follows that the expressions

s.uvs‘w — 1—32 _ —02(= 0)

&:aﬁ_résaﬁs""s =7-5(=0)

2 =2

¢“q,=p* - q%(=0)
are invariant under the Lorentz transformations. Indices are raised and lowered by
the Minkowski metric. Moreover, for this particular representation

s q" = (-G-7,5§AG— pF) = (0,0).

Thus, the relations

SAG—pr=0 and §-7=0
are also invariant under the Lorentz transformations, and it follows that the or-
thogonality of the “vectors” ¢, 7 and s is invariant. One can also show by direct
computation that the Lorentz transformed &’ of 5 satisfies

§I2 - pl2
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accordingly,

-o =/ =/ = ! !
2=2g"”%=7?=p? and ' -7'=5".4'=7"-

ie. the orthonormal frame (q/p, r/p, §/p) is transformed into an orthonormal
frame (¢'/p',7'/p',§'/p') by the given action of the Lorentz group.

3. The state space of the radiation field

There exists a non-linear action of the Lorentz group SO(3,1) on R®. Formally it
corresponds to the Lorentz action

K s AM K

where k* = (|k|, ), and A is the usual linear representation of SO(3,1) on R*.

The measure d*k/w, w(k) = |k|, is an invariant measure on R® under the Lorentz
action of SO(3,1).

Let B(P) denote a Banach manifold of measurable maps
R* - P=R,_x 5 u{0}

such that f p(k)d’k/w < co. We denote by M and M _ the Banach submanifolds
of positive and negative helicity con51st1ng of points satisfying the transversality

condition
3(p(k), 7(k), w(k), p(k)) Ak = 0.

As is easily verified

M, = {(p,rw,) € BP)Ir(k) = S0
, k.,
and p(k) = —a,rcsm(—-I;-l{““\/___l_—-’-c-g)}

M_ = {(p,7,w, ) € BP)[r(k) = ~2 p(k)

kl

and ¢(k) = 7 — arccos(
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An action of SO(3,1) on B(P) is defined by

(Tales 7w, 9))(k) = Ap(p, 7w, ) (AT'E) .

Since the transversality condition is invariant under the rotations, the orbit of a
particular point (p, T, w, ¢) € M is parametrized by

S0(3,1)/SO(3) ~ (n € R*|n®2 —* =1, n, > 0) = H.

Definition : Let L,, = L(n) denote the boost defined by L(n) = A(Z), where
A(;ﬁ:) denote a pure Lorentz transformation “for the velocity 7i/n”; the subspace

M UM_ C B(P) such that
My ={ly (m)lmeM, and ne€ H}

provide a representation of the state space of the radiation field.

From the construction of M we see that they are diffeomorphic to

My =M, xH
the diffeomorphism being given by
L@ M— M; (m,n)(k) = (Tp, (m)(k) = A, (m)(L;'k) .

Accordingly, the induced action A = I'™ o A o I" of the Lorentz group on M, is

(A ((m,n))(k) = (Ag(m)(R™"k) , An)
where R = R(n,A) = L™ (An)AL(n) is a rotation (Wigner rotation) [3].

Remark : From the Poisson bracket relations between the functions (g;, p,7;, $;)
we see that we could have chosen (g;, s;) to generate the Lorentz transformations
on P. Then,

(ps7;)
transforms as a fourvector, and

0 q1 q, qs

—q 0 S§3 —$,
—q; —S3 0 $
—q3 S; 93 0

transforms as a tensor. This freedom of choice is related to the existence of the
two classes of solutions of the transversality condition. In fact, with this choice
the M, defined above will describe states of negative helicity and M _ those of
positive helicity.
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4. The field variables of the classical radiation field

The geometry of the framework suggest that ¢ and + can be used to define ampli-
tudes for the electric and magnetic components of the radiation field. In fact, as
one varies the phase w, ¢ and 7 rotates in the plane orthogonal to §. By testing this

idea one finds that the amplitudes a,, = (v, —d), ¢; = f,; and b* = —1e7* f;; of
the vectorpotential and the field can be written

v=75-k//op
i=(—kA7+ws)/Jop
&= —wF/\Jop = —w\wi = iw\/w/2(@ — T*)
= iwy/w/2(\/pe™ — &*\/pe ),
b= —wk A7/\/op
for the states in M. Note that '

£(ma (k) = 75 (6 () 2 i8(k)) for my € My

On these states the above expression can be put on the following manifestly

covariant form
- a. fB
G, = E,ap ks T[4/ k,.q"

f,uu = (syakaku - suakak,u)/v k”q“
which thus are valid on M.

_ It is more convenient to consider the amplitudes as functions a and f on
M .. Now, defining @ and f by

3, ((m(L; k), n, L k) = a,((F(m, n))(k), k)

fu((m(L k), n, L k) = f,, (T (m,n))(k), k)
we get

a,,(m(K),n, k) = L7, €0, 5™ (m(k))/ k,q#(m(k))
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fun(m(k),n,k) = LE L5 (s, (m(k))k" kg—

—sg, (m(k))E7k,)/ 1/ k,g# (m(k)) .

Definition : The field observables of the radiation field are represented by the
functions R* x M  — R,

A (=" p, T w,0,m) =
(2m)~%/2 f ., (p(k), 7(K), w(k) — (L, k) z,, o(K),n, k)d*k/w

F, (=" p,7yw,p,n) =

R0 [ Fou(pl0), (1), (k) = (L) 2,0 8),m, )R o

This definition is justified by the preceding discussion and the following proposi-
tion.

Proposition : The field observables satisfies the “Maxwell equations”

Py = 6zyA“ —-0,,A,and 9, F*" =0.

Proof : The proposition is verified by direct computation. We note that the
amplitudes are

n,g-k—1i-(kAF)+wi-35)//op

b=

- — ]_ — —

a=(-kAT+ws-— +1(ﬁ-(k/\f')—w§'-ﬁ i+ k-§i)/Jwp
no

= 1

e=w(w(—nor+n +1" Aan) — i A (kAT))//wp

B—w(—noEAF+n l_l_l(l_c‘/\ﬂ-ﬁﬁ—i—wﬁ/\'f")/\/wp

when we take into account the transversality condition. We note that 8,7 = q.
This follows from the Poisson bracket {7, p} = —¢.

Let W = —i=(—k A7 — iwf), then

— 1 T : Tr* —ia
wi(,w+a,.) = '{VP/Z(W("wr)em_W (- w,.)e™™),
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EATwta,) = —VolEW (4w, )e + W' (4w, )e™™),
and

g = i\/w/2(W § .)(k)e—i(Lnk)'z - W '*(. ) ‘)(k)ei(Lnk)-z)
— i\/w(L;Ik’)/Z(W r(' . .)(Lr_llk')e—ik"“’
- ﬁ/ '*(‘ . .)(L;lk')eik"z)

-
-~

b= Vf2(W (... )(k)e Enbrm 4 377 (. ) (k)eiEnRe)
= \Jw(L k) /2(W (.. )L K )e ™™
+ W (L)L e =)

W . nn-{-m/\W

where w(k) — |’-<.;|, k' = Lnk and W ' = TLOW - o+1

Using this complex representation we can determine the energy zlnd mo-
mentum of the field by standard computations, applying the relation |W '|> =
p(n,w+k-i)? = pw' ie.

Poys) = [%[ﬁ(z“, )R ﬁ(m“; ) dPz
_ f (LK )p(LIK) a3 = / L2,k p(k)dk

Similarly, since (W ' AW ™*)7 = LY k"L k" p,

/ (B(a*;..) A B(a*;.. )Yd
= [F3E ) LR (L )
f Lk’ p(k)d®k

We have thus proved the following proposition.

Proposition : The energy and momentum of the radiation field are given by

Pl(p,T,w,p,n) = fLﬁuk"p(k)dsk
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The action of the Lorentz group on the observables is induced by the action on the
states. Thus, the vector-potential A transforms according to

A, (2" pymyw, 0,n) = A (2952, (0 Ty w, 0, n))

— [ Cr) ok Qa0 (RHE) = (LK) -2, ) Vo (BB o

— [ CanRE) i (RTR TP wlBTR) = (L37K) - 2,.0) op (B Rk
— [ ALk (o0), 7(8), w(k) = (L) - (A*2), (k) v op(R) R

= (A4), (A 2)" ;p, 7w, 0,m)

where R = R(n; A) = L™'(An)AL(n). For F,, and P* we similarly get
PY(..)— A* P¥(..))

F,(z*..) = A, “A, PF g(A7™ a¥;..)

ny

5. Discussion

So far we have considered separately the positive and negative helicity solu-
tions. In general, we must consider superpositions of these. This has no further
consequences, since the positive and negative helicity amplitudes transform inde-
pendently of each other under the given action of the Lorentz group. Moreover,

using that W ' = W "2 = 0 one can show that
P"(p+,7+,w+,go+,p_,r_,w_,cp_,n) =

= [ (o (B) + p_ (0

By performing a Lorentz transformation A(—2) on the general solution F,,,
- (or by choosing the state-variable 7 = 0), we obtain the solution(s) given in
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the introduction, and which is to be interpreted as the description of the field
produced and detected in the laboratory frame of reference. The general solution
thus describe a field produced in a frame of reference moving with velocity 72/n,
relative to the frame of reference where it is detected (and described). We see that
the formulaes take into account the Doppler effect due to the motion of the source.

The theory we have exposed is thus essentially an Einstein relativistic formu-
lation of the “standard” classical radiation theory. Its translation into a quantum
theory is straightforward. This theory is obtained, in its most simple and direct

formulation, by the substitutions ¢* = ,/pe™** — a'and ¢ = /pe’” — a, where

a! and a denote the creation and annihilation operators. An evident application of
the theory is to study the radiation from moving atoms.
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