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Abstract. In this paper, some general results about the concepts of complete sets of commuting
observables (CSCO) and irreducible sets of observables (ISO) are obtained. It is proved the following: (i)
Any relevant observable is an essential part of some CSCO. (ii) Any relevant observable, which is a

CSCQ, is an essential part of some ISO. (jii) Let {b,)},c| bea CSCO, oran ISO, then, | is countable.

1. Introduction

The physical and mathematical structure of the concept of complete set of commuting observables
(CSCO), introduced by Dirac [1], has been firmly established in different settings of quantum mechanics
[2-10]. Also, the concept of irreducible set of observables (ISO) has been treated in the literature, for
example, through the canonical commutation relations (see, e.g.,[9 ,11] ), or the formulation set in [10].

The main purpose of the present paper is to obtain rigorous results about the existence of
different kinds of CSCO and 1SO. From the practical point of view, both concepts are important when the
observables are directly measurable at the laboratory (let us call them "relevant observables"). It is therefore
of great interest to study in general how to construct a CSCO or an ISO with arbitrary observables. In
particular, given a "relevant observable", it is physically necessary to have a proof which asserts that this
observable is part of a CSCO or of an ISO. This is the stronger motivation for undertaking the present work.

The results of this paper are collected in theorems 1.4, 11.7, 1.4 and |1l.6. Theorems 1.4, 1ll.4 and 1li.6
have as consequences: (i) Any relevant observable is an essential part of some CSCO, (ii) Any relevant
observable, which is a CSCO, is an essential part of some ISO, (ii) Let {by},c) bea CSCO, oran ISO,

then, | is countable. Theorem II.7 concerns with the problem of comparing the Dirac's formulation of
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CSCO in infinite dimensional Hilbert spaces with Jauch's definition [2]. It is shown that Dirac's formulation is
a particular case of Jauch's formulation in infinite dimensional spaces.

All our results are independent of the physical system under study, and their physical interest is
addressed in notes and discussions. See specially, remarks 1.5, 11.8, 1Il.5 and [11.8 . Only physical systems
without superselection rules are considered. The set of observables of the physical systems will be taken
as the set of all bounded self-adjoint operators in a Hilbert space. However, the above results are still valid in
other settings of quantum mechanics. For instance, if unbouhded self-adjoint operators. are considered,
our theorems hold true (see, Note 111.9).

We shall adopt the following conventions. By R and C we stand for the real and complex numbers
(-h is the complex conjugate of A € C); rN and CN -are cartesian products of R and C respectively. By H
we denote a complex separable Hilbert space of dimension greater than one (dim H = 2), with scalar
product (.,.) linear in the second variable. By A = L (H ) we represent the set of all bounded operators in
#, with norm Ii. 1l . The adjoint elementof @ €A will be denoted by a*, and A® stands for the set of
all self - adjoint elements of A . The identity in AA is denoted by e . The commutator of a.b €A is
represented by [a,b]. o

‘Mathematical results found in [12 - 22] will be used throughout the paper. The commutant of a set
B C A will be denoted by B®. The Von Neumann algebra generated by aset D = {d },c] € A will be
indicated by R(D) = R({cl,}). An abelian Von Neumann algebra D C A is maximal abelian [12,13] iff
D = D (see, proposition 13, Part. I, Cap. |, of [12]).

Let us introduce the following standard definitions:

1.1. Definition. An ai'bitrary set of observables is called a set of compatible observables if
they commute each other.

1.2. Definition. Let {A}k=1 be a countable set (finite or infinite) with A €C; N #0, k=1,2,..;
A= Ajif k=i Let {pk} k=1 be a set of mutually orthogonal projection operators. Every operator b of the

type
b= 2 Kkpk, (1.1)
=1
is called a point spectrum operator (PSO).
We know (see, [14], Cap. 8, §1) that b is self-adjoint iff {\} C R; and that b is positive iff Ay >0,
V k. Also, b € L(H) iff Sllip I\ < o0, and in this case: libll= SII:p Il

1.3. A functional calculus. From references [12-19], we can exiract the following functional
calculus related to R(C), where C = {c1,...,c} is a compatible set of observables.

Sp(c) standing for the spectrum of ¢. This *-isomorphism is the unique extension of Gelfand *-
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isomorphism, and v is the unique (up to equivalence) positive, finite regular, Borel measure with support
Q. Every x €R(C) is of the form x =f(¢q,....c) With f € L™(Qv). Moreover,

xl = Il fleq,..epll=6ss.  sup  H(Aq,. Al =l
{ AMprhpERQ
Sp(*x) ={f(A,-.An) / {M,.. A} € Q). (1.2)

This paper is organized as follows. In Sec. 2, results about CSCO are obtained. In Sec. 3 the
results about ISO are concentrated. The notes and discussions contain some concluding remarks and
trivial corollaries from the obtained results. Also, for the sake of completeness, they include results which
are mostly behind the existing theory. The notes are supposed to be more technical than the discussions.

2. Complete sets

.1, Definition. Aset C ={c } _ C A% istermed a complete set of commuting

observables (CSCO) if R (C)is maximal abelianin A, and no proper subset of C generates R (C)
[minimality of the set C].
Il.2. Note. Definition 11.1 says that C isa CSCO iff

RO’ = R(E), @1
and C is a minimal set. Moreover, since C is a self-adjoint set, we have that C is a CSCO iff
c’ = RE), 22

and C is a minimal set.

Definition I1.1 is essentially the one given in [2]. The minimality assumed in li.1 for the set C is

physically important. In the different settings found in the literature (see, e.g. [1,2,5-9] ), for the concept of
CSCO, this minimality is not explicitly stated but should be taken as understood.
Also, from (2.2) it follows that for a minimal set C = {c4,....cp} we have that C is a CSCOiff for all x € c*
there exists f € L™(Q,v) suchthat x = (eq,....on) [ L¥(Q,v)] comes from the functional calculus of R(C),
already referred in Sec. 1]. Here, the minimality condition represents a notion of independent variables in
the functional calculus.

A CSCO is a compatible set of observables since it generates an abelian algebra. If ¢ belongs to any
CSCO, then ¢ #ye; yER, since A {0}, A= R(e), and the stated minimality.

We have that a compatible set of observables, C, is a CSCO iff there exists a cyclic vector for R(C)
and C is minimal, c.f,, [ 2,5, 6, 23]; or iff there exists a cyclic vector for the minimal set C, c.f., [5,6,23].

Finally, we have that { ¢ } C A% is a CSCO iff ¢ has a simple spectrum (see, e.g., [ 2,4,5,14,20] );
oriff ¢ can be represented by a Jacobi matrix (see, [20], Theorems 7.13 and 7.14).
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I1.3. Discussion. The existence of a CSCO in A is obvious since for x € A% (x = ye), if R(x)is
not maximal abelian, it is contained in a maximal abelian Von Neumann Algebra [12], which, by a theorem
due to Von Neumann [24], is generated by a single element of A°® (see, also, [22] ). Additionally, through
this theorem, if C={c_} i aCSCO, there exists an element ¢ € A° such that R(c) = R(C).

The last statement should be contrasted with the usual examples of CSCO (see, e.g., [1,5,7,9] ) in
which the number of used observables in order to form a CSCO is generally greater than one (in fact, the
number of observables is usually taken equal to the number of degrees of freedom). For instance, in
nonrelativistic quantum mechanics, for a spinless particle in three dimensions; the set of the three
components of the position operator {qx'qy’qz} is a CSCO in the usual scheme [1,5,7,9] (these
observables are unbounded; but this is irrelevant for the present discussion). However, a single density
matrix, with simple spectrum, is also a CSCO. Moreover, Von Neumann's theorem [22] establishes that
there exists a single observable ¢ such that the spectral families of qx'qy and q, are functions of ¢ . A
similar discussion can be addressed for systems with an arbitrary number of degrees of freedom.

Even though there is not a priory connection between degrees of freedom and the number of
observables in a CSCO, it is more natural to choose the number of observables ina CSCO to be equal to
the number of degrees of freedom, since in that way the physical interpretation can be made clearer.

Although Von Neumann's theorem is a remarkable result, it is not physically very useful. In general,
we have to start from an arbitrary physical observable and construct a CSCO with it.

I.4. Theorem. Let ¢4 EA®, with ¢4 #ye. fcqis nota CSCO, there exists a PSO, co € A%,
such that the set {¢4, c5} is a CSCO.

Proof. If ¢4 isa PSO, the proof is trivial. Then, let us suppose that ci isnota PSO.

(i) First let us show that there exists a set of mutually orthogonal projectors {Pntn=1. such that

n2-:1 Pn = €, and foreach p, thereexists E, € H suchthat p, is the projection corresponding to the

closed subspace [R(cq) E,].
Infact, if D = Ric4); let us form the closed subspace [D E;] = My where &; EH, and lIg4ll =1.

Since [D E4] # 3, we have that there exists E E H, IE,ll = 1, such that D €] = M, is orthogonal

to My. Let us continue this procedure up to obtain 3 as a direct sum of subspaces M, of this kind.
These subspaces will be at most numerable since H is separable. Then,H = nc_+>1 M, Let p, the projector

corresponding to the closed subspace M. The set {p,},_1 is the searched set of projectors.
(ii) Let us denote the set of all p,,,n=1,2,...; by P.
Since M, reduces D, we have that P ¢ D°.
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Let us see that R(c4,P) is maximal abelian. In fact, let =3 2™ &, €H. We have that {DE)
n

= {Dp, &} C R(cy,P) &}, Vn, which implies that (for the closure): [D &,] C [Ric4,P)E], Vn.Since H
= n§1 M, wesee that E is a cyclic vector and hence R(c4,P) is maximal abelian (see, e.g., [17], Corollary
2.9.4).

(i) Finally, let c, € A° be defined by

o2 =3 2" po 23
Then, we have that  R(c5) = R(P).

Since ¢4 isnot a PSO, and R(cq.c,) is maximal abelian, such ¢, (being a PSO) cannot be a
CSCO. Therefore, {c4,co}is a CSCO.

I1.5. Discussion. Theorem 11.4 is a well known result [1,7] for the case in which ¢4 is a PSO.

If ¢4 is not a PSO, Theorem I1.4 is a non trivial result, and does not depend on the minimality
assumed in definition I1.1. In fact, independently of the minimality, we have that (the PSO) ¢» cannot be a
CSCO, since in this case ¢4 would be an element of R(c2), and hence a PSO.

Even though our proof is not constructive, it does not mean that this result is practically useless.
Indeed, theorem Il.4 is important in practice since it asserts that to any observable ¢4 which is not a CSCO,
and that is physically relevant, we can adjoint an observable co, such that they form a CSCO. Furthermore,
it is intuitively clear that a constructive proof of theorem 11.4 will depend on the physical system, and perhaps

on the concrete observable, and therefore such a proof is outside the scope of a general framework.
Although we cannot expect in a general setting to extract the physical meaning of ¢, the fact that

co> can be supposed a PSO is of physical interest since the physical interpretation of a PSO could be
easier than the one of an arbitrary observable. For instancs, it could be related to a discrete symmetry or a
set of discrete measurements.

Among all the possible sets which are a CSCO, the ones in which the Hamiltonian (or some
bijective bounded function of it) is an element of the set are particularly notable. In fact, in this case all the
‘elements of the set are constants of motion. For this reason, it could be desirable to start from the
Hamiltonian (or some bijective bounded function of it) and to build with it a CSCO (such construction is
guaranteed by this theorem).

Of course, given an observable cq, we cannot expect the construction of a CSCO with it to be
unique. For instance, the observable q, can be completed with a PSO or with {|:|lJ , qz}. The non

uniqueness is not a physical disadvantage and is widely used in the applications of elementary quantum
mechanics.



892 Lozada, De Sarrazin and Torres H.P.A.

11.6. Definition. Let C ={c¢j} | be a compatible set of observables, for which exists an
orthonormal basis of simultaneous eigenfunctions. Let us associate to each eigenfunction of the basis the
set formed by the eigenvalues of all the elements of C corresponding to the eigenfunction. If this
association is one to one and if such bijection does not hold for any proper subset of C, we shall say that C
is a CSCO in Dirac sense (CSCOD).

Except for the explicit minimality required for C and the fact that the elements of € are bounded,
this is the definition of CSCO introduced by Dirac (see, e.g., [1,7,9] ).

Let us observe that each element of any CSCOD is a PSO and that the existence of a CSCOD in A |
is trivial.

I.7. Theorem. C = {cy,..cp} isa CSCOD iff Cisa CSCO whose elements are PSO.

Proof. (i) If € isa CSCOD, each element of € isa PSO, therefore cp= 3 M7 p, r=1,..n.
i1

Then, to each set ()1“),...,xj('),...,xg"), iy sk = 0,1,2,......; (taking xg) = 0 if this is an eigenvalue of
¢,) corresponds a unique (up to a phase) eigenfunction ¢(i....,j,....k) with corresponding projector

pli,....},--.K). We have that 2 pli.-...j,....k) = e, and that the projectors p(i,...,j,....k) belong to R(C),
{i,...Js- K}

v=3 27 ¢, (24)
n

where {¢n }is a reordering of {4(i,...,j.....k)}, is a cyclic vector for R(C). Then, R(C) is maximal abelian (see,

e.g., [17], Corollary 2.9.4.).

(i) Let C be a CSCO, each element of C being a PSO. Then, the set C has obviously an
orthonormal and complete set of simultaneous eigenfunctions.

Let us suppose that for some set of simultaneous eigenvalues (ki“),...,)»f(n) )=A
corresponds several eigenfunctions ¢(s), s =1,2,...; of the orthonormal set. Let us call ™M the closed
vector subspace generated by { ¢(S) }(dim M. >1). M reduces C and hence it reduces R(C). If
b € R(C), thenb =1 (cq,...,cp), s86, the functional calculus referred in Sec. 1, and

bo=1(}) ¢; Vo M;VbeREL). 25)

Let y be a cyclic vector of R(C) and v, its orthogonal projectionon ™M, and let ¢4 €M, ¢4 #0,
such that (¢4 ,4) =0 (such ¢4 exists since dmM >1).



Vol. 65, 1992 Lozada, De Sarrazin and Torres 893

Then by (2.5), (v, boq) =1(3) (v.04) =fA) (w4, ¢4) =0, thatis 6" v, $4) =0V b€ R(C) and hence
¢4 =0 (since ¢ is cyclic). We see, that we arrive at a contradiction if we suppose that for some A
corresponds several orthonormal eigenfunctions.

(iii) It remains to consider the minimality condition.

it C isa CSCOD, any proper subset of C will have for some set of simultaneous eigenvalues A =
(A.g”,...,kf(n) ) several eigenfunctions, which is incompatible with the existence of a cyclic vector [see, (ii)].
Hence no proper subset of C will generate R(C).

if C is a CSCO whose elements are PSQO, any proper subset of C is not a CSCQO, and hence, it
will not have a cyclic vector. This implies that to some set of simultaneous eigenvalues A, of any proper
subset of C, it corresponds several eigenfunctions of the orthonormal set [since if this is not the case we
can construct a cyclic vector such as (2.4)].

I1.8. Note. This theorem has been proved by Jauch [2], for the finite dimensional case. It shows
that definition 11.1 is a natural generalization of the concept of CSCO introduced by Dirac [1]. As a matter of
fact, if € is a compatible set of observables, each one being a PSO, a characteristic of R(C) is that all its
elements are PSO. However, in general (if dim H = «), for an arbitrary compatible set of observables, é,
'R.é) has elements which are not PSO. Then, if dimH =, the set of all CSCOD is a proper subset of the
set of all CSCO .

3. Irreducible sets

ll.1. Definition. A set N '{“u} ocl € A% is called an irreducible set of observables

(1ISO), if R(N)=-4, and no proper subset of N generates -AA (minimality of the set N ).

lil.2. Note. If a belongsto any ISO,then a 2ye; y ER,since A {0}, A=z R(e), and the
stated minimality.

Every ISO has at least two elements. Moreover, in every [SO there exist at least two
noncommuting elements. The above comes from the fact that A is not abelian.

Let N C A° Then N isan ISOiff N’ = Rfe), and N minimal (this is, essentially, Schur's
lemma). Also, if ¢4 and ¢ are two CSCO, then {cq,co} isan ISOiff Rcq) M R{co) =R(e).

There exist a4,a0 €A suchthat N = {aq,a5} is an 1SO. This is the content of theorem 2.2. of
[22].

lll.3. Note. Let N = {cq,co} C A, with dim H=2. Then, it is trivial to show that N is an 1SO iff
[e4,62] # o, and that automatically {c4} and {co} are CSCO.

Let ¢4 and co betwo CSCO’s, with [c4,c0] = 0. Then, if dim H =3, {c4,c2 } is not necessarily an
ISO. Let us give a counterexample for A = L (03):
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1 0 O 0O 0 1
cy=| 0 2 O , G o= 0O 2 0 (3.1)
0O 0 3 i 0 O

Let N = {aq,a0} bean ISO. Then, if dm H =3, each element of N is not necessarily a CSCO.
Let us give a counterexample for A = L(Ca):

1
01- 0
0

0 o 0o 1 1
2 0|, ap=| 1 1 0 |. (32)
0 1 1 0 0

4. Theorem. Let {c{} bea CSCO. Then, there exists a CSCO, {co},such that {cq,co} is

an ISO.
Proof. Let us represet ¢4 by aJacobi matrix [20]
"R M0 . o]
Mooup A
€4 = - i (3.3)
1 0 A2 wu3
where, p, is real and Ay 20, n=1,23......
Let us define the matrix a by
I [ M
5 M 0 5 0 0
0 I-l2_2 Ao 7-\.1 |-|-2_2 0
a= a's (34)
¥3 - K3
0 0 ) 0 >

It is direct to verify, from (3.4), thatthe commutant of @ and a*

is R(e) . Then, R(a,a*)=A .
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Wehave that ¢4 =a +a*, and we can define co=i(a* -a ). Then, Ricq.co)=4A, ie., {cq,c2} is
an I1S0.

Finally, since co is represented by a Jacobi matrix, we have that {co} is a CSCO (see, [20],
Theorem 7.14).

lIL.5. Discussion. A well known example that "evokes" theorem ll1.4, in the standard formulation
of quantum mechanics [10], isthe set N = {p,q }where p and q are the momentum and position
operators for a spinless particle in one dimension (see, the solution of the canonical commutation relations
given in matrix form in [25]). Also, because of the way composite quantum physical systems are
formulated, it follows, from theorem 111.4, that we can construct other 1ISO’s by considering tensor products
of Hilbert spaces.

From theorem lI1.4 it follows that there exists an ISO, N = {c4,c5}, where each element of N isa

CSCO. Furthermore each element of N can be chosen positive and of trace class (for example, a density
operator). In fact, taking p, =0,n=1,2,....and Y IApl <», we get the result. Let us observe that there exist
n

many sets N of this type.
The generation of A , wich contains many operators that are not PSO (if dim H = »), by two PSO

(even density operators), should be contrasted with the fact that the abelian algebra generated by a CSCO
which is not a CSCOD, cannot be generated only in terms of PSO.

lll.6. Theorem. Let D = {d,},=| be a set of observables. Then, there exists a countable
subset of D which generates R(D).

Proof. If

dy = [ AP D), €l -o< A<, (35)

is the spectral representation of d,, we have that R(D)= R({p(“) M)

Let B = {a €R(D) | liall < 1}be the unit ball of R(D). We have that p{®) M) EB; V a €|,
- <A< Since H is separable, the strong operator topology on B is separably metrizable (see, e.g.,
[22]); and hence,theset E = {p(a) (Ml a€l, <A<} is also separably metrizable. Then, there
exists a countable subset of £ which is dense in £ (endowed with the strong operator topology). Let us
denote this countable subset by  {(p'™ ()}. Since £ cpP™ @MHT and R(E)=R(D), we have that
@™ @)™ = R)

Since each projector of the countable set {p(n) (i)} is a spectral projection of some observable d
€D, we can extract a countable subset of D which generates R(D).

H.7. Corollary.
(i) Let {coJoc) bea CSCO. Then, the set | is at most countable.
(ii) Let {ag)oec) bean ISO. Then the set | is at most countable.
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Proof. The numerability of the set | follows from theorem Il1.6 and the minimality stated in the
definitions of CSCO and 1SO.

111.8. Discussion. From corollary 111.7, we see that the extension of Jauch and Misra [4] results to
the case of an uncountable set |, performed by Dormale and Gautrin [6], although interesting from the
mathematical point of view, is unnecessary for the concept of CSCO (since a minimality assumption is
physically important).

111.9. Note. In the present paper, the concepts of CSCO and 1SO, and the obtained results,
have been formulated in terms of bounded operators acting on a Hilbert space. However, it is
straightforward that all definitions and results can be formulated in an abstract c algebraic setting (c.f. [11]
).

Also, theorems 11.4, 11.7, 11l.4 and IIl.6 can be reobtained if the set of all self-adjoint operators
(bounded and unbounded) is used as the set of all observables; as it is direct from our proofs and all the
available literature [4-6,9,14,23 . The main technical point being that R.(a) is well - defined even for a self -
adjoint unbounded operator a.
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