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Instability of SU(2) Einstein-Yang-Mills Solitons
and Non-Abelian Black Holes

Zhi-hong ZHOU!

Institute for Theoretical Physics, University of Ziirich
Schonberggass 9, 8001 Zirich, Switzerland

Abstract

The stability of regular and black hole solutions of the SU(2) spherically symmetric
Einstein-Yang-Mills system is analyzed in detail. The behavior of linear radial perturba-
tions of the system can be described by a one-dimensional, p-wave Schrédinger equation with
a bounded potential. For both regular and black hole solutions, the bound states of this
Schrodinger equation correspond to exponentially growing modes. The Bartnik-McKinnon
solutions and the non-abelian black holes thus turn out to be unstable. We also investigate
the non-linear evolutions of the perturbed solutions by solving the partial differential equa-
tions numerically. It is found that the perturbed system either collapses to a Schwarzschild
black hole or explodes, depending on the details of the initial perturbations. The late time
behavior of the perturbed solutions is quite universal for a sample of representative pertur-
bations.
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1 Introduction

Asymptotically flat solutions of the Einstein field equations are of particular astrophysical
interest. These solutions can be divided into two families: particlelike? and black hole
solutions. We shall restrict ourselves in this work for the SU(2) Einstein-Yang-Mills (EYM)
system. For many years it was believed that this system has no particlelike solutions. This
expectation was based on the following rigorously established facts:

1. There exist no static (or strictly stationary) gravitational solitons [1].
2. There are no static Einstein-Maxwell solitons [1].

3. No static Yang-Mills (YM) solitons exist in flat space-time [2, 3].

4. No static EYM solitons exist in 241 dimensions [4].
5

. There are no static, spherically symmetric EYM solitons with non-vanishing electric
Coulomb charges in D=3+1 [5] . The solutions with non-vanishing electric charges
in D=3+1 must be singular.

6. There are no static, spherically symmetric SU(2) EYM solitons with global non-vanishing
magnetic charges in D=3+1 [5].

The other no-go theorems concerned with the EYM system were established by Malec
[6]. However, these theorems are only valid under rather restrictive assumptions about
the asymptotic behavior and the magnitude of Sobolev norms of the solutions. They do
not, therefore, give any definitive conclusion about the existence of EYM solitons. In 1988,
Bartnik and McKinnon (BK) discovered numerically soliton solutions of the SU(2) EYM
system [7]. These solutions gave for the first time strong evidence that the EYM system
admits particlelike solutions.

For black hole solutions, it was generally believed that they have no ‘hair’. In other words,
it was expected that the structure of a stationary black hole is uniquely determined by global
quantities defined at spatial infinity, such as the ADM mass, the angular momentum and
the YM charges. This ‘no hair’ and uniqueness theorem was established rigorously only for
the pure Einstein and Einstein-Maxwell (EM) systems (8, 9, 10, 11]. There have been many
efforts trying to extend this theorem to include other matter models. For linear matter fields,
the ‘no hair’ theorem probably holds, although no rigorous proof is available. However, in
case of non-linear matter, it is now established by numerical examples that there is no unique
answer. For EYM systems, early works showed that the black holes can not have any effective
non-abelian ‘hair’. In 1977, Perry constructed some particular black hole solutions for the
EYM system[12]. These solutions possess Kerr-Newman metric but with Coulomb type YM
connection, so they are effectively abelian. In a more general treatment, Yasskin proved that
in a certain gauge any YM field with a compact symmetry group can be made parallel in the

2By particlelike solutions and solitons we mean in this paper globally regular and asymptotically flat
solutions.
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internal space so that the abelian-like solutions can be constructed from the corresponding
EM solutions [13]. Since these EYM solutions are geometrically indistinguishable from the
EM solutions, Yasskin then conjectured that [13] :

The black hole solutions of the EYM systems that are stationary, asymptot-
ically flat with a nonsingular event horizon and with gauge fields that fall off
like 1/r at infinity and nonsingular on the horizon are essentially Kerr-Newman
solutions.

This conjecture seemed to rule out the existence of the non-abelian hair. Only recently,
Ershov and Gal’tsov gave a proof of the Yasskin’s conjecture for the spherically symmetric
SU(2) EYM system with non-vanishing color magnetic charge [14]. Their so-called ‘non-
abelian baldness theorem’ demonstrates that

Any static spherically symmetric asymptotically flat solution of self-consistent
SU(2) EYM equations possessing a regular event horizon and non-zero color
magnetic charge is effectively Abelian.

Although this ‘baldness’ theorem for the SU(2) EYM system supports Yasskin’s conjecture,
it still left open the possible existence of BK-like solutions with an event horizon. The ‘no
hair’ conjecture proposed by Yasskin in 1975 was shown to be wrong with the surprising
discovery of colored black hole solutions in 1990 [15, 16, 17, 18], shortly after Bartnik and
McKinnon published their particlelike solutions. These solutions provide counter examples
to Yasskin’s ‘no hair’ conjecture. Indeed, these colored black Loles have vanishing global
YM charges, but their metric has much richer structure than Schwarzschild metric does.
The metric of these solutions is close to that of the Reissner-Nordstrgm solution outside the
horizon and then approaches Schwarzschild metric at infinity.

The behavior of the BK solutions and colored black hole solutions are in many ways very
similar. For instance, the basic YM field variable for all of them starts with a value between
+1, then oscillates k times and approaches +1 at infinity. This behavior can be easily
understood as local properties of the system. Moreover, as the horizon shrinks to zero, the
exterior solution of the colored black holes converges to the BK solution, and the shooting
parameters for the two families can be combined into one. Therefore, the BK solutions are
effectively the limiting case of the colored black holes, though the boundary conditions are
different for the two families. The entire solutions thus can be specified by two parameters
(ro, k), where 7q is a continuous parameter in the interval [0, 00); 7o = 0 corresponds to the
regular BK solutions and r¢ = r, > 0 to black hole solutions, and k is an integer denoting
the number of nodes. We will discuss this issue in more detail later.

The discoveries of SU(2) EYM solitons and black holes have raised many problems and
attracted a lot of interest. First of all, since these solutions were established only numeri-
cally, a rigorous existence proof was needed. Such a proof was given by Smoller et al. [19] for
the existence of the ‘ground state’ BK solution. There is, however, still no general existence
proof for all BK solutions and, especially, for the colored black hole solutions. Very recently,
Heusler and Straumann have derived necessary conditions of existence by extending Cole-
man’s scaling argument to self-gravitating systems. In particular, their necessary conditions
do not exclude the existence of EYM solitons and black hole solutions[20].
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The other important problem concerning these solutions is their stability. Indeed, these
solutions could have some astrophysical significance, provided that they would be stable.
Straumann and I discovered that both the soliton solutions and the black hole solutions
are unstable [21, 22]. This was, however, not immediately accepted for the black hole case.
Bizon pointed out that the unstable mode which we found for the ground state black hole
solution leads to a divergent YM strength field at the horizon; this is, at first sight, physically
unacceptable. He thus concluded that the lowest-energy colored black hole is linearly stable
[23]. This conclusion was, however, withdrawn recently in a paper by Bizon and Wald [24],
because one can chose superpositions of the unstable mode and stable modes in such a way
that the initial perturbation is regular at the horizon. In the long run, the unstable mode
wins, of course. The colored black holes are indeed unstable. Very recently, a stability
analysis based on a functional method was made for the black hole solutions [25], which
confirms this conclusion.

Since both the BK and colored black hole solutions are unstable, it is interesting to
investigate the evolution and final fate of these solutions under perturbations. From the
physical point of view, one expects only the two possibilities: collapse or dispersion, i.e.
either the perturbed field configuration collapses due to the domination of the gravity, or
the configuration disperses because the repulsion of the YM field wins. In addition one may
ask: if the perturbed solutions do collapse, to what will they collapse? And if it disperses,
how violent is the dispersion? Obviously these questions can not be answered in the frame
of linear perturbation theory. We have numerically investigated the non-linear evolutions
of the perturbed BK solutions. The results of the simulations show that, depending on the
details of the initial perturbation, the ground state BK solution will either collapse to a
Schwarzschild black hole — rather than to a colored black hole as conjectured in ref [23] — or
explode at a speed of about 3/4 of that of light [26]. Moreover, it turns out that the late time
behavior of the perturbed solutions is quite universal in both cases. For instance, under a
range of representative perturbations, the exploding speed for all exploding perturbations is
almost the same, and the horizon forms at about same time for all collapsing perturbations,
and so forth. On the other hand, since the exterior solution of the colored black holes is very
close to the soliton solution, at least for a small radius of the horizon, the soliton solution
can be regarded approximately as a perturbation of the colored black holes. Our numerical
simulations thus also reflect the evolution of a perturbed colored black hole. Therefore, the
non-linear behavior of the perturbed BK solutions provides further evidence that the colored
black holes are unstable.

The existence of the BK and black hole solutions for the SU(2) EYM system has encour-
aged people to explore higher-rank compact gauge group. There have been several works
done in this direction. Recently, a general study of the non-trivial SU(n) spherical sym-
metric EYM solutions was started by Kiinzle [27]. Some black hole solutions for the SU(3)
EYM system with specially chosed parameters were constructed numerically by Galt’sov
and Volkov; the behavior of these solutions does not differ essentially from the SU(2) black
hole solutions [28]. Another interesting direction is to investigate non-linear o-models. Very
recently, Droz, Heusler and Straumann found numerically the soliton and black hole solu-
tions for the SU(2) Einstein-Skyrme (ES) system for a certain range of coupling constants
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[29]. Some of the most interesting features of these solutions are that the ES ‘stars’ are at
least linearly stable for certain range of coupling constants [30], and the Skyrme black holes
possess ‘Skyrme hair’, which provides another counter example for the ‘no hair’ conjecture.
Furthermore these new black hole solutions are presumably also at least linearly stable [31].
These researches, as well as the study of the SU(2) EYM system, show that for the non-
linear matter models much richer phenomena occur than one expected from all experience
with the EM system. A detailed discussion on these researches is, however, beyond the scope
of this paper. We shall concentrate ourselves in this paper mainly on the stability analysis
for the BK and colored black hole solutions.

This paper is organized as follows. In Section 2.1, we establish necessary notations and
derive the basic equations for the SU(2) spherically symmetric EYM system. In Section
2.2, a proof for the non-existence of the regular SU(2) EYM dyons is given. In Section 3,
we discuss in detail the equilibrium configurations. Moreover, the elementary properties of
the static solutions are reviewed, and the analytic solutions, the BK and colored black hole
solutions are presented. In this Section proofs for the absence of regular EYM monopols
and the ‘non-abelian baldness’ theorem as well as the derivation of the necessary conditions
of existence can also be found. In Section 4, we discuss the linear stability analysis for the
‘ground state’ BK solutions and for the black hole solutions. In Section 5, a numerical method
which includes a description of the modified MacCormack algorithm, code tests, initial and
boundary conditions is given. Using this method, we simulate the nonlinear evolution of
the perturbed, ground state BK solution. The numerical results are shown and discussed in
this Section as well. In the final Section, we summarize all of our results presented in this
paper. Proofs of some ‘no go’ theorems can be found in the Appendix A. A flowchart of the
program we used for simulating non-linear evolution is also given in the Appendix.

Planckian units are used throughout except in the section 3.3.3 and Yang-Mills coupling
constant is set equal to one.

2 The Coupled SU(2) Einstein-Yang-Mills System

In this section, we derive first the basic equations for spherically symmetric field config-
urations of the SU(2) EYM system. Then a proof of the absence of the SU(2) dyons is
presented.

2.1 Basic Equations

We consider only spherically symmetric field configurations. As long as no horizon is formed
and also outside horizons, we can always introduce Schwarzschildlike coordinates for a spher-
ically symmetric space-time. In terms of these, the metric has the form

g = —e*dt? + e®dr® + r*(dd® + sin® 9d¢?), (1)
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where a and b are only functions of » and ¢£. With this coordinate choice the second fun-
damental form K;; for constant time slices satisfies K33 = K3 = 0, which can easily be
seen from the connection forms, (see, for instance, Ref [32]). In particular, the polar slicing
condition Kj; + K33 = 0 is satisfied. This slicing is most convenient to work with as long as
no horizon forms.

As we are interested in spherically symmetric field configurations, we have to parametrize
rotationally invariant gauge fields. In geometrical terms, one has to describe SO(3) invariant
connections on principle bundles (over space-time with the gauge group as the structure
group). The principle bundles admit an SO(3) action by bundle automophisms such that
the induced action on the base manifold are the SO(3) isometries of space-time®. Forgics
and Manton have studied the same problem in less geometrical terms [35]. Without loss of
generality, the general spherically symmetric ansatz for the SU(2) gauge potential can be
parametrized as follows [36, 35]:

A = ursdt + v7adr + (wry + WT2)dY + (cot Y73 + wry — W) sin ddg, (2)

where 7;(1 = 1,2, 3) are the Pauli matrices and u,v,w and 1 depend only on r and t. The
gauge freedom allows us to put v = 0. Furthermore, since the functions w and @ enter
symmetrically in the coupled EYM system, we can choose 1 = 0 without loss of generality.
The gauge potential can therefore be specialized to the form

A = ursdt + wrid¥ + (cot 973 + wry) sin ¥d. (3)
The components of the corresponding YM field become
Fo1 = —u't3, Foy = wm + uwry, Fo3 = wr, — uwn,
Fi3 =w'n, Fiz=w'ny, Fa3 = —(1 - wz)'r;,, (4)
with respect to the basis of 1-forms
6° = dt, 0* = dr, 6° = dY, 6 = sinddep, (5)

where the notation ' = 8, and - = &; is used.
In general relativity a self-gravitating SU(2) YM field system can be described by an

action
F= j [~ R+ tr(F*F,,)|v/—gd*z. (6)
Variation with respect to the metric leads to the Einstein field equations

Gh= R — %ng — 8aT, W

3The theory of the invariant connections has been described systematically in Refs. [33]. A generalization
of the representation (2) to any compact semi-simple gauge group has been developed by Brodbed and
Straumann [34].
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where,
v

1 1
TH — Etr[F’VFa P Za:;F,,,ﬁF“ﬂ], (8)

and tr denotes the normalized trace, chosen such that tr(7?) = 1.
With respect to the basis (5), the relevant components of the Einstein tensor are

1 1 2
Co = —@+e (G2
1 1 24
1 -2b
G, = —zte (T—2+7),
2% _
Gé = ~—;~e 26. (9)

It is useful to introduce the following “magnetic” and “electric” quantities

-2b 2)2
2 _ € 2 p2 _ (1 —w?)
Br = —w" Bp="—17b—",
2 e 2 —2(atb), 2 2 e 5,
Ez = Tzw,ETze u*, Bf = S (10)
In terms of (10), T# takes the form
0 [TCRN 2, 1o 2
T, = _E[BT + EBL + Ex + §ET + Ei),
1 1o 1o 2 1o, 2
Iy = E[BT - '2'BL + Ex — EET + Ei,
1 2uw' _
T = =" (11)
and the Lagrangian density for the YM fields becomes
[FP = tr(F*F)
1 1
=~ 4(B3 + §B§ - E% - EE,_% — E2). (12)

If we define e = 1 — 2m/r and substitute egs. (8)-(11) into Einstein field equations
(7), it follows that

1 i
m' =r*|B + 5 B} + Ef + 7 Ef + Ef, (13)
m 1 1
ﬂ,’ = 8%;2— + Tezb[B% —_— EBE + EIZ( - EE% + Ef,], (14)

m = 2e 2P, | (15)
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Next, we write down the YM equations D*F = 0 explicitly in terms of u, w, a and b:

at('u.'e_“_b) == ifj, (16)

Be(uwe™*?) + uwe™*t =, (17)

O, (r*u'e @) — 2e70tbyly = 0, (18)
a+b

(e i) — 8, (e*Pw') — e Houtw — E,,z (1 — w?)w = 0. (19)

The eqs.(13)-(19) form a complete set of equations for spherically symmetric SU(2) EYM
system. However, as will be proved in next section, dyon is absent for such a system. In
other words, the ‘electric’ component u must vanish. The egs.(13)—-(19) can therefore be
simplified.

2.2 Absence of the Regular SU(2) EYM Dyons

We are only concerned with solutions that are asymptotically flat, therefore we require
a(r) — 0; b(r) — 0; m(r) > M < co0,as r — o0. (20)

From these boundary conditions, one can conclude with the help of eq.(13) that » and w
have the following asymptotic behavior for large :

u =um+0(;1‘-), (21)

w=we +0(2) (22)

where uq, in general is a function of ¢, which can, howeirer, always be gauged away. Indeed,
if U # 0, then a gauge transformation

A=h'Ah+ h7'dR (23)
can lead to 1 = 0 so long as h satisfies h = e¥™ and % is chosen such that
oy
= —— 24
Uoco at’ ( )
Ly
— = 4 25
or 0 (25}

The asymptotic value we, is independent of ¢, otherwise, m would blow up at infinity due
to the term E% in eq. (13). Moreover, u must vanish for any physically interesting solution
of the system (13)-(19). This can be seen as follows. Consider first an everywhere regular
solution without horizons. Multiply (18) by u and then integrate from origin to infinity.
This gives

rle*buy! = f (r"u” + 2e™w’u’)e ™ Pdr. )
0
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To keep the energy density finite, it follows from the expressions for B, EZ and E2 in (10)
that

w(0)=1; u(0)=0 and «'(0)< oo. (27)

Likewise, we have uu’ — O(Z) at infinity, hence the left-hand side of (26) vanishes. As both
terms in the integrand at the right-hand side of (26) are non-negative, we can conclude that
either w = 0 and u = const. or u = 0. The first case brings us a singular Reissner-Nordstrgm
metric, see Section 3.3.1. The only nontrivial regular solution is thus v = 0 and w # 0. In
other words, the regular solution is purely magnetic.

On the other hand, if there is a event horizon, we integrate from the horizon r; > 0 to
infinity, and obtain instead of (26) that

oo
rze_""buu'l:: = / (r*u” + 2ew?u?)e™**dr. (28)
Th

A look at the expressions for EZ and EZ in (10) shows that the energy density at the horizon
is finite only if
e %ul, <oo and |, < oo. (29)

Therefore, the left-hand side of (28) vanishes since e~®(») = 0. As before, we obtain either
the Reissner-Nordstrgm solution or again u = 0.

In summary, u vanishes identically both for the regular solutions and the colored black
hole solutions. For static situations this implies in particular the theorem 5 presented in the
Introduction *. The generalization to the time-dependent case is straightforward, because
eq.(18), which is crucial in the argument of refs. {5, 14], does not involve any time derivatives.

The complete system of equations is thus simplified to

. 2
b ey g . ' 2
—iu, (32)
ea-]-b
at(e—a+bw) _ ar(e“—bw’) —— (1 — wz)w =, (33)

r

For latter use, here we derive two useful relations. By taking difference of egs. (30) and
(31), we obtain
(1 —w?)?
r

); (34)

ad—-b = e—%(Zm -
==
and addition of (30) and (31) yields

zezb

al + bl s _(E—ZBwlz + e—2a,u-} ). (35)
I

%A rigorous proof for the time-independent system can be found in ref. [37].
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It is also convenient to introduce the quantity
T = e by, (36)

and rewrite the basic equations (30)—(33) in the form

an2)2
ml - e—zb(w12+1r2)+ (1 w ) , (37)
2r2
2b 212

o €T b 2 2 (1-—w?) m

o = —(eW" +7) - ="+ ), (38)
m = 2e* %y, (39)
) ea+b 1-— w2 2 ea+b

T = e* w4 -;2—-(2m — ( . ) ' + - (1 —w?)w, (40)
w o= e*br. (41)

Equation (37) is the Hamiltonian constraint. The last four equations (38)-(41) form a com-
plete set of equations for the unknown functions m, a, w and 7, and they imply that the
Hamiltonian constraint propagates.

3 Static Field Configurations

In this section, after giving static equations and boundary conditions, we first demonstrate
some elementary properties of the static solutions and then illustrate numerical equilibrium
solutions which describe particlelike structures ( gauge boson ‘stars’) and black holes as well
as two well-known analytic solutions.

3.1 Static Equations and Boundary Conditions

For static field configurations, since all variables are time-independent, the basic equa-
tions (37)—(41) reduce to

1 — 2)\2
ml — e—2bw12+( 2:;" ) , (42)
2b 2)\2
r _ € - ,2_(1—11)) m 43
o = Sttt LT, (43)
ezb 1 _wz 2 ezb
'w" = 1'_2 L—?"—'-)— — 2m)'w' = ;5-(1 — wz)'w. (44)

The boundary conditions are established as follows. For regular solutions we require at the
origin that

a(0) = const; b(0) = 0;
w(0) = 1; w'(0) =0, (45)
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and hence m(0) = 0. On the other hand, for solutions with a regular event horizon, the
boundary conditions become

620{1';;) — 0’ m(.rh) - T?h, w('rh) = wy, = const. (46)

Hence it follows from Eq.(44) that

(l — wh)zwhrh
(L—wy =

w'(ry) = (47)

The conditions (45), or (46) and (47), and the requirement of asymptotic flatness (20) provide
complete boundary conditions for the static field configurations.

3.2 Elementary Properties of the Static Solutions

Let us assume that w and m are smooth functions and that e=2®* > 0 on the interval I C
(70, 00), where ro = 0 for regular solutions and ro = 7, > 0 for black hole solutions.

3.2.1 Nonexistence of Regular EYM Monopols

As mentioned in Section 2.2, w approaches a constant w,, at large r. Substitute (22) into
eq. (44), we find
(1 — w? )we = 0. (48)

Therefore, wy, is either £1 or 0. However, w,, can not be zero, otherwise w would vanish
identically. This can be seen as follows [5, 14]: multiply eq. (33) (without the terms involving
time derivatives) by (w? — 1) and integrate; it follows that

e P(w® — 1w'|? = foo(Zw'z + e®r~2(w? — 1)%)we*tdr. (49)
To

For a regular solution we have ro = 0 and w(0) = 1; for a black hole solution ro = 74 and
e*~® = 0. At infinity, w'(c0) = 0 for both cases. Hence, the left-hand side of (49) vanishes. If
w does not change its sign in the integration interval, it is easy to see from (49) that w must
be identically equal to zero or £1. On the other hand, if w changes sign and w(oo) = 0,
there must exist at least one critical point r, where w'(r.) = 0. Integrating eq. (33) from the
largest critical point — in case there is more than one critical point — to infinity we find

ea—bwl

5 oo gttt 2
== —/r.c — (1 — w)wdr. (50)
The left-hand side vanishes again. Since w? < 1 in the interval (ro, 0o) (we shall prove this
in next section), we have w(r) = 0 for r € [r, 00). Repeating this procedure inwards to the
origin for regular solution, where w’(0) = 0, or to the horizon at which e*~® = 0, we deduce
w = 0, which corresponds to the Reissner-Nordstrgm metric (see Section 3.3.1). In other
words, the solution is singular and essentially abelian. Therefore, there do not exist either
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regular SU(2) EYM monopoles or essentially non-abelian black holes with non-vanishing
magnetic charge. This proves the theorem 6 and the ‘non-abelian baldness theorem’ pre-
sented in the Introduction °.

3.2.2 Necessary Conditions of Existence

Rigorous existence proofs for the BK solitons are difficult. So far only the existence of the
ground state EYM soliton is proven [19]. However, very recently Heusler and Straumann
generalized Coleman’s scaling argument (3] to self-gravitating matter systems. With this
argument they derived necessary conditions of existence for various matter systems — in-
cluding the SU(2) EYM system [20]. In some cases the necessary conditions exclude the
existence of particle-like and black hole solutions. For the purpose of this paper, we restrict
ourselves to the EYM system, although the original treatment by Heusler and Straumann is
very general.
We rewrite eq. (42) in the form

m' =e®U 4V, (51)
where 2
U=w"? and V= w— (52)
#
For equilibrium configurations, the eq. (35) yields
y 2
§=—-"uw?=-=U (53)
T T
with é := —(a + b). Hence eq.(51) becomes
w =m0 V. (54)
From (53) and the boundary condition §(c0) = 0, we also have
§(r) =2 f =Y . (55)
r T

Therefore, m and § are functionals of the YM variable w alone.
We discuss first particlelike solutions. The solution of the differential equation (54),
satisfying m(0) = 0, is

m(r) = e fo (U + Vetdr. (56)

In particular, the Schwarzschild mass is given by the following non-local functional of the
matter field

M =m(c0) = fom(U + Ve b dr. (57)

51t is assumed that w has the asymptotic behavior (22). This assumption is somehow restrictive. For a
more general proof, see [37].
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The variation of M leads to correct equations of motion and therefore can be used as an
action on which one can apply scaling arguments.
We choose the following radial scaling transformation for the variable w:

wy(r) = w(Ar). (58)
The corresponding transformation for U and V are
Us = X2U(Xr), Wi =XV(r). (59)
Therefore we have

My = ‘/omdr(UA+VA)e_6"

) — !
= / dr X2(U()r) +V(Ar))ewp(—2)\2j @dr')
0 r
_ f = dr AU(r) + V(r)e™ (60)
0
For A = 1, w is assumed to be a stationary point of the action. This means
dM
K |A=1= 0. (61)
Thus we have -
| dr i) + vir)le (1 - 28(r)) = 0. (62)

From (62) we can easily see that if the space-time is ‘flat’, i.e. @ = b = 0, the only solution
is w = %1 since § = 0 and

U>0 V>o0. (63)

This implies that no nontrivial particle-like solution can exist and, therefore, proves Cole-
man’s theorem (theorem 3 in the Introduction, see also appendix A.2.2). On the other hand,
for the self-gravitating EYM system, the scaling argument does not exclude the existence
of particle-like solutions, provided that 1 — 26(r) changes sign in the interval [0,00). The
particle-like solutions constructed numerically show that this necessary condition is indeed
fulfilled.
A similar argument also applies to black hole solutions. Because of the presence of a
horizon, we study the quantity
p(r) = m(r) — mn, (64)

where mp, = m(rs). Eq. (51) can be written as
' 1 Th
W=t (1= 2+, (65)

with the solution r r
plr) = &0 [[(1 = 20 + VIe O ar. (66)
0
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0 is again given by eq. (53). In particular, we obtain for M := p(o0) = M —m;, the non-local
expression

M = j "l - %)U 4+ V]e ) gr. (s'})

It can be checked that this functional leads again to the correct equations of motion.

It is convenient to introduce the variable p = 7 /7y, in order to fix the horizon at p = 1.
Then it follows that

M=r [710- %)r?(m + V(p)e50) dy, (68)

where f(p) := f(rap) for any function f(r).
This time we make a radial scaling transformation

wy = 'W(P'\) (69)
for a given solution w(p). The condition
=0 (70)
leads to
j; " T B(p) - (1 - p7)6%(p)] dp = fl " Ve Oly(p) + 6 (o)) dp, (71)
with
8(p) = l+Ilnp—(1+2lnp)/p,
1) = 1-Inp, (72)
and )
& =2j;°° g(?fi)*(l+21np')dp'. (73)

Although this necessary condition is not as simple as (62) for regular solutions, it does not
exclude the existence of colored black hole solutions.

3.2.3 Local Analysis of Static Solutions

It is obvious from the egs. (42)—(44) that the static SU(2) EYM system is invariant under
the transformation w — —w, and as the right-hand side of (42) is non-negative, m is a
monotonic function of 7.

On the interval I, the function w(r) takes values only in the strip (—1,1), i.e. |w| < 1 for
r > ro. To see this, we consider two cases, namely, |w(r.)| # 1 and |w(r)| > 1 for a critical
point 7. > 7. At critical points of w, Eq. (44) shows that

rle Pyw" = —(1 — ww?. (74)
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Hence, if |w(r.)| = 1, the second order of derivative vanishes, and so do all other higher-
order derivatives, according to Eq.(44). The only solution is |w| = 1 and m = const, which
corresponds to the Schwarzschild solution (see Section 3.3.1). Thus we have to consider only
the cases |w(r.)| # 1. For | w(r.) |> 1, it follows from Eq.(74) that

ww” > 0, (75)

which means that there is no maximum (minimum) for w(r.) > 1 (w(r.) < —1). However,
if w(r) had crossed 1 (—1) somewhere at r* > 7o, and return to 1 (—1) at infinity to fulfill
asymptotic flatness, then there would exist a maximum (minimum) between r* and infinity
with w(r.) > 1 (w(r.) < —1). This contradiction prevents w from leaving the strip (-1, 1).
Note that for |w(r.)| < 1 Eq.(74) gives ww” < 0. This implies that the critical points of w
are maxima (minima) if 0 < w(r.) < 1 (0 > w(r.) > —1); w can oscillate within the strip
(=, 1},

In summary, a regular solution has to start with the values given by (45) (see Section 3.3.2
for details), and a non-abelian black hole solution must start with the values determined
by (46) and (47) (see Section 3.3.3). Both of them may oscillate between +1 and must
asymptotically approach 41 at infinity. Only recently, the existence of such a solution was
proved rigorously by Smoller at al. [19]; these authors showed that the ‘ground state’ regular
solution exists. However proof of existence of the ‘exited state’ solutions and, especially, black
hole solutions is still absent.

3.3 Equilibrium Solutions

3.3.1 Analytic Solutions

There are two well-known analytic solutions for the equations (42)-(44). In one case we have
w = *£1 and

m = M = const,

e =g % -] _ 24 (76)

r ?

where M is the total mass. The solution (76) represents the Schwarzschild metric with
vanishing YM curvature if M > 0, or Minkowski metric if M is chosen to vanish.
The other analytic solution is

1
= =M- —
w=0,m o
2M 1
6202 e—26= 1 __T+ 131 (77)

which is just the Reissner-Nordstrgm metric with magnetic charge ¢ = 1 and u(1)-valued
YM curvature (so effectively abelian)

F=(=0"A6%+6° A6 (78)
T

Both solutions are, of course, singular at the origin » = 0.
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Figure 1: The variable w of the Yang-Mills field for the first three
Bartnik-McKinnon solutions. The subscript of w denotes the number
of zeros in [0, c0).

3.3.2 Regular Particlelike Solutions

To find regular solutions from (42)-(44), we require the energy density to be finite at r = 0.
This implies

w=1-6r*+ 0(r*),
m = 28%r% + O(r°), forr — 0. (79)

This condition, together with the asymptotic flatness requirement (20), reduces the problem
of finding regular solutions of (42)—(44) to a regular two-point boundary value problem. By
adjusting carefully the free parameter 3 to ‘shoot’ the boundary values, a discrete family of
regular solutions was found by Bartnik and McKinnon [7]. We have repeated their calcula-
tions and arrived at the same results. The first three solutions are plotted in Fig.1. Some
interesting features are observed with these results, for instance:

o For each solution wy, where k stands for the number of zeroes of w, there are three
distinguished regions: an inner core region with r < 1,w ~ 1,a transition region: » > 1,
w ~ 0, in which the metric is close to Reissner-Ngrdstron, and finally an outer-region,
r > 1, w ~ %1, where the metric approaches the Schwarzschild metric with total mass

M.
o The global YM charge are all equal to zero.

e The total mass for each solution can be indexed by an integer k, the number of zeros.
The sequence of masses M, increases monotonically and approaches 1 as k£ — co. An
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empirical mass formula is given by®

M;, =1 —1.05944¢ 18095k (80)

e The shooting parameters §; seem to converge to 0.7065, as k£ — oo.
e The zeros of the solutions wy accumulate near » = 1.
e B2 B? and hence the energy density Too fall off rapidly for » > 1.

As already mentioned in the Introduction, these regular solutions came as a surprise,
since various no-go theorems for related systems lead to the expectation that such solutions
should not exist. In Section 4 we shall present in detail a linear stability analysis for these
solutions. It turns out that the BK solutions are unstable [21]. For this reason, the physical
interest of the BK solutions is less clear.

3.3.3 Black Hole Solutions
The static SU(2) EYM system (42)-(44) admits also a family of black hole solutions [15, 16,

17, 18]. These solutions can be constructed in the following steps:

1. Suppose there exists a horizon r, where 2m(ry) = 7n. From eqgs (42) and (44) we
obtain the first derivatives

w, _ (1 —wi)whr;.
NG R
(1 —wj)?

where the subscript h stands for 7.

2. Pick a value 7, and calculate m, w at » = r, + € using the Taylor expansion
m(r) = 5 +mije+ (),
w(r) = wy, + whe + O(e?) (82)

and (81). Therefore, m(r) and w(r) are determined uniquely by the parameter wy that
replaces § in Section 3.3.2 as a shooting parameter. The expansions (82) help us start
the integration at 7, + € rather than at 7, in order to avoid the coordinate singularity.

3. Shoot for asymptotically flat solutions by adjusting the parameter wy,.

®The formula for M}, given in ref.[7] is wrong.
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Following these steps we have repeated and confirmed the numerical calculations published
in the refs. [15, 16, 17, 18]. The first two solutions with the horizon at 74 = 1 can be found
in Fig.2. These numerical results show that although the global YM charges and the angular
momentums of these solutions vanish, their metric is much richer than Schwarzschild. There-
fore, the existence of such black hole solutions is in contradiction with ‘no hair’ conjecture.

1 10 100 1000
leg ¢

Figure 2: The first two non-abelian black hole solutions with the
horizon located at r, = 1.

Unlike the regular solutions, the black hole solutions are specified by two parameters 7,
and k, the radius of the event horizon and the number of zeros of w, respectively. For a fixed
horizon 74 € (0, 00), the black hole solutions form a discrete sequence which can be indexed
by the integer k. The total mass of the solution in the sequence increases monotonically as
k increases and converges to a finite value. If 7, > 1 (remember that we are using planckian
units), the limiting solution coincides with the Reissner-Nordstrgm solution as ¥ — co, and
the limiting mass converges to M = r,/2+1/2r, [28]. It is easy to see that for r, — oo and
k — oo, the limiting mass approaches that of the Schwarzschild solution, i.e. 74/2. Finally,
if 7, < 1, the limiting mass is independent on r, and converges to 1 from below as k — oo
[28].

The black hole solutions have a similar structure for all values of r, € (0,00). For
instance, w starts at the value wj, then oscillates k times around zero and approaches
asymptotically +1. These common structures suggest that there is certain symmetry hidden
behind these solutions [18]. Such a symmetry indeed exists. This is because of a well-known
scaling property of the EYM system [3, 7]. In order to see this, we introduce the variable

z=— (83)
Th
and rewrite the basic eqs.(30), (31) and (33) for equilibrium configurations as follows
1 1 2% 2%, 1,
- g - ) = B (B3e) + 3BLE)) (54)
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1 ;1 . 24 20 i 1 _,
2 + & (E .y ?) = ;‘g‘(BT(m) - EBL(‘B)): (85)
o s ea+b 3
Ou(e* ') + (1~ whw =0, (8d)

where £k = 47 G has been restored and primes denote derivatives with respect to z. Therefore,
the dependence of the black hole solutions on 7, can be absorbed in the effective coupling
constant

= @G

=iy 87
g (81)
Apart from the common properties for all 4, the black hole solutions with r, >> 1 and

75 << 1 have their own characteristics. For 7, >> 1, the effective coupling constant G — 0.
Then, eqgs. (84)-(86) read

1 12y

~2b _
E_e (;—2__?)_0: (88)
1 1 2
—*'m—2+6 (;4"‘&_):0: (89)
ea-l-b
3:(e*Pw') + —(1—w’)w=0. (90)

T

Eqgs. (88) and (89) are just Einstein equations in vacuum, and eq.(90) describes a YM field
on a fixed background satisfying with (88) and (89). This result is not surprising because
the YM field and gravitational field are decoupled when G — 0. Apply scaling argument
described in section (3.2.2) to this case, we find the necessary condition (71) reduces to

fl " T6(p)dp = fl " V(p) dp. (91)

By checking (72), one can convince oneself that the existence of nontrivial solutions is not

excluded by the necessary condition. It is already known that there exists indeed an analytic,
k =1 YM solution on a Schwarzschild background [38], that is

z — (34 +/3)/2
w(z) = .

z 4 3(1 +/3)/2
Thus it is natural to expect that the k = 1 black hole solutions should approach asymptot-

ically the solution (92) as 7, — oo. The numerical calculations show that this is just the
case [28].

(92)
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log r

Figure 3: The BK ground state solutions, w and m (thin lines), and
a non-abelian black hole solution (bold lines) with the horizon located
at r, = 0.2.

For the opposite case, r, << 1, the exterior solution of the colored black holes converges
to the BK solution despite of the different boundary conditions. This can be seen from Fig.3
where a black hole solution with r, = 0.2 is depicted. This was observed numerically by
Galt’sov and Volkov [15, 16, 28] 7. We have also independently investigated this question.
We found that the two shooting parameters 8 in (79) for the regular solutions and wy, for
the black hole solutions can be transformed into each other when 7, — 0. To see this, let us
expand w and m around the horizon to second and third order, respectively:

n
w(r) = wp+wi(r—ra)+ %('r — rh)2 + 0(63),
nN n

mp + my(r —ra) + T—T;‘-(r —rn)? + _"_":"6_:1_,(,’, == 'f'h)3 &0 0(64). (93)

The first derivatives are given by (81). By differentiating both sides of the eqs.(42) and (44),
we can get all higher order derivatives. For instance, differentiating eq.(44) leads to

3
—~~
=3
~—r
Il

o — _4(1 — wwpwh + 771 (1 — w?)? + 2ram), + a1 — 3wﬁ)w,
h— r2(1 —2m}) — (1 — wd)? + 2rpymy b

(94)

and so on. It is easy to see that all orders of the derivative are uniquely determined by wj.
Next, we require that the energy density at the horizon is finite for any r,. This implies that

wp, =1—crs + O(ry), (95)

"Volkov and Galt’sov misinterpreted their numerical results in refs. [15, 16]. This confusion was caused
by the wrong formula for Mj—see (80) and footnote there—given in Ref.[7].
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Table 1: Shooting parameters wy of the 1-node black hole solutions
for different 7. The parameter c is calculated from ¢ = (1 — wy)/r3.

Th 0.4 0.2 0.1 0.01

wy, || 0.933137 | 0.982636 | 0.995561 | 0.9999547

c || 0.4179 0.4341 0.4439 0.4529

where c is an arbitrary constant. Therefore, for r;, — 0, it follows from (81) that

wy, = —2crn+0(rd),

my, = 2c*r2 4+ O(r})-
Likewise, we have

wy = —2c+ 0(rd),

my = 8crn+ O(r}),

and
my = 12¢* + O(r3).

If r, = 0, these derivatives become

wp =1, wy = —2¢, and m} = 12

and
wy, =my, =my =0.
The expansion (93) then reduces to
w(r) =1 —er?,

m(r) = 2c%r3.

Zhou

HlP.A'

(96)
(97)

(98)
(99)

(100)

(101)

(102)

(103)
(104)

Now it is clear that the constant c is nothing but the shooting parameter g for the regular

solutions. The expansion can be rewritten as

wp=1-— ﬂri + O('r:).

(105)

We have shifted the 1-node black hole solution from 7, = 0.4 to r, = 0.01 and calculated
¢, using eq.(95). The results are shown in Table 1. From there we can see that as r, — 0, ¢
approaches 0.4537 — the shooting parameter for the 1-node BK regular solutions. We have
also shifted 2-node and 3-node black hole solutions to r, = 0.01. The values of ¢ converge
again to the shooting parameters for the corresponding regular solutions. Thus (105) holds
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indeed. With the help of eq.(105), the two independent shooting parameters are combined
into one.

The whole spherically symmetric solutions of the SU(2) EYM systems can be specified
by two parameters (7o, k), where ry € [0,00) is a continuous parameter and k = 0,1,2,---.
The parameter 7o = 0 corresponds to the BK solutions and r¢ = 7, > 0 to the black hole
solutions. The integer k > 0 denotes the number of the zeros and k = 0 corresponds to the
Reissner-Nordstrgm solution. However, it is worth indicating that the BK solution is not the
limiting case of the black hole solution since the boundary conditions of e~ are different
for the two families. Indeed, as long as the horizon 4 is set to vanish, the metric e~ jumps
from zero to one. the limiting process is thus discontinuous. But, on the other hand, when
rp, — 0 the exterior solution of the black holes does approach the BK solution in the sense
of the two families can not be distinguished globally. This can be seen from Fig.4, where we
plot €% for the BK solution and for the black hole solutions with different r4, and also from
Fig.3. Therefore we may regard the BK solution as effectively limiting case of the black hole
solutions despite of different boundary conditions.

1 T L) I II T T
-9 [ BK =
8 -
T =
6 —
exp(-2b) .5 |- -
‘; T/ =001 [rm=01 i
2+ ; -
.1 S Thp= 04 —
0 i bt gl 1 ol L i
.01 1 1 10
log r

Figure 4: The profiles of metric e~? for the 1-node BK solution (thin
line) and 1-node black hole solutions with different horizons (bold and
dotted lines). The boundary values are different for the two families.

As already mentioned, the discovery of these non-abelian black hole solutions is surprising
since it is in contradiction with the ‘no hair’ conjecture. However linear stability analysis as
well as non-linear numerical computations show that these solutions are unstable too. We
shall analyze the stability of these colored black holes in next section and in section 5.

4 Analysis of Linear Stability

In view of the “principle of linear stability”, it suffices to consider only spherically symmetric
perturbations, provided that the system turns out to be unstable. This is indeed the case



790 Zhou H.P.A.

for the BK particlelike solutions. For the black hole solutions, although the conclusion is the
same, analysis of linear stability is not as simple because the event horizon is involved.

4.1 Linear Perturbation Equations

For a small-amplitude, spherically symmetric departures from a static equilibrium configu-
ration, described by a.(r), be(r) and w.(r), we introduce the notation

a(r,t) = a.(r) + ba(r, t),
b(r,t) = be(r) + 8b(r, 1),
w(r, t) = we(r) + dw(r,t), (106)

where éa, 6b and éw are considered to be small quantities. Relative to the basis (5), the

linear deviations of the relevant components of the Einstein tensor GE},,) are given by (see,
e.g., ref.[32])

b
M = —g(Sb’ — 2b.6b+ a—)e-zbe, (107)
T r
G = g(J)Qa,' — 2al8b— -@-)e‘zb’, (108)
T r
2 ;
G = ~e™%6b. (109)
Linear deviations of the components of the energy-momentum tensor become
oM — —47:?(26_%‘(111;&0' — w_28b) — Tz-—z(l — w?)w.bw) (110)
1 o ' 2
THY) = (2 2be (! Sw' — w,26b) + S (1= wl)w.bw) (111)
1 .,
I oo 2w e, (112)
From the ¢r Einstein equation G’Il,(l) = 8rT, (1), it follows that
‘ 2 )
6b = —w dw. (113)
T
It has a solution 5
8b = —w bw + f(r), (114)
T

where f(r) is a free function of 7. On the other hand, the ¢t Einstein equation Gg(l) = 8Ty ()
reads

6b' = (26, — %)61) + %(w;&w — w?6b) — %(1 - wz)w,&w. (115)
r
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Substitute the solution (114) into (115), with the help of the static equations, we find
f=0. (116)
Thus f has to be a constant. We require that §6 — 0 and dw — 0 at infinity. This implies
f(r)=0. (117)

Finally the sum of ¢t and rr Einstein equations G3*) + GI) = 87 (Ty 4 T (1)) provides
the relation

da’' — &b’ = f—sezb‘(l — w?wbw + 2(% + al — b.)6b. (118)

The linearization of the Yang-Mills equation D* F = 0 about the equilibrium solution
gives, after straightforward calculations, the following differential equation for dw:

e Heebe) gy — §w" — (a!, — b.)6w' — (6a' — 88" )w!

r

2, 1 o, _
——e®(1 — wl)w.6b— ﬁez (1 - 3w?)éw = 0. (119)

The only metric perturbations which enter the linearized equation (119) are §b and éa’ — 6.
It is amazing to see that with (114) and (118) these perturbations are already determined
by édw, without any further integration. This fact simplifies the analysis very much.

In order to study the stability of the system, we decompose éw into

bw(r,t) = €(r)exp(iot), (120)

and then substitute (114) and (118) into (119). We obtain the pulsation equation

g4 ot + UE = g%, (121)
where, we have introduced the notation & = —2(a. — b.) and the effective potential
_4 ,2a' 1 825, ' 2 12b, 2
U= ;('we) (-5- - ;) — e wew, (1 —w?) — € (1 —3wy). (122)

It is easy to see that U — 2/r? is bounded on [0, 00).

4.2 Small Deviation from the BK Solutions
4.2.1 Instability of the BK Solutions

The pulsation equation (121) is an eigenvalue equation. According to the theory of linear
stability, the configuration is stable against arbitrary small radial perturbations if and only
if all eigenvalues o? are positive (see, e.g. [39]). Physically we require finite energy density
everywhere. This implies £(r) = kr? as r — 0, where & is an irrelevant constant because of
the linearity of the eq. (121). We further impose a boundary condition {(r) — 0 as r — oo.
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It is very helpful to bring (121) into the form of a standard radial Schrédinger equation.
For this we introduce a new radial coordinate p defined by

d
2 = o=z, 5(0) =0, (123)

The perturbation equation (121) then has the form of an one-dimensional, p-wave Schrédinger
equation:

[7$+§+vmmm:mm, (124)

where

E = Uzea(o),

V(p) = Ulp)e"tel==1 - =, (125)
The potential V(p) is illustrated in Fig.5. It is not difficult to show that V is bounded for
all p, this is the reason that the term 2/p? s introduced in eq. (124).

2+ -
|4 -4 - i
-6 il
8 ~
10 E

-12 2 L L PR S S WA | L s R Y (B
1 1 10
log p

Figure 5: The bounded effective potential V.

The existence of a bound state is demonstrated numerically. The eq. (124) is integrated
along with eqgs. (42)—(44)by using the DO2EJF routine from the NAG mathematical library.
The equilibrium solutions of the eqgs. (42)—(44) are used to generate the potential V' in
Schrédinger equation (124). With tolerance 1072, we found a bound state for 1-node BK
solution, which is shown in Fig.6 as a function of original radial coordinate r [21]. The
corresponding eigenvalue o2 is

o = —0.0525. (126)
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The perturbation dw grows unboundedly due to the negative sign of 0. The BK solution is
thus linearly unstable. General theorems then imply that the BK solution is also unstable
in the sense of Liapunov. One may ask what the final fate is for the perturbed solutions if
they are unstable. This will be the subject of the section 5.

1-2 T T LI B B L | T T T r rrrj

logr

Figure 6: A bound state with eigenvalue 0> = —0.0525 for the linearly
perturbed, 1-node solution.

4.2.2 Determination of the Bound States

It is interesting to ask if there are other bound states. The well-known Bargmann bound
[40] for the number of (p-wave) bound states gives a rather loose upper limit 5. However,
since the potential V(p) in the p-wave Schrédinger eq. (124) satisfies
lim [V (p)] = 0, (127)
we can use the well-established ‘variable phase method’ in quantum scattering theory to
compute the number of bound states (see, e.g. [41]). Maison has found with this method
that the number of bound states is equal to the number of zeros of BK solutions [42]. In the
following we shall give a brief description of this method.
Introduce a ‘phase shift function’ §;, which is governed by a first-order differential equa-
tion [41]:
1(p) = —k7'V(p)[cos 8(p)1(kp) — sin &(p)iu(kp)]? (128)
with initial condition

51(0) = 0: (129)
where 7; and #; are Riccati-Bessel functions. For p-waves (I = 1), these functions have form

71(z) = —cosz + smz; fiu(z) = —sinz — S
z

(130)
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The well-known Levinson theorem states that the zero-energy value of the phase shift §
is 7 times Nj, the number of the bound states with angular momentum [ (see, e.g. ref.[41]),
ie.

Nim = &t |k=0 - (131)

One can not, however, compute §;(p) directly for £ = 0 since eq. (128) is singular at
k = 0. The value of phase shift at £ = 0 is actually defined by continuity from the values
for k # 0. By solving (128) and (129) for small k, we computed the phase shift function é;.
The potential V in eq. (128) is again generated by the equilibrium BK solutions. The result
for the ground state BK solution is depicted in Fig.7a. Fig.7a shows that é; converges to a
step function with a mod(n) jumping as k — 0. According to Levinson’s theorem, there is
exactly one bound state for the ground state BK solution. Therefore the bound state which
we found numerically in the last section is unique.

3.5 T

2.5

& 1.5 F

.1 1 10 100
log r

Figure 7a: The P-wave phase shift function é; for the potential V'
belonging to the 1-node solution. As k& — 0, the phase shift function
converges to m. One concludes from Levinson’s theorem that there
exists exactly one bound state.

We have also calculated the phase shifts for 2-node and 3-node BK solutions. The results,
depicted in Fig.7b, demonstrate that the phase shift for w; is 27 and for w; is 3. This means
that there exist two and three bound states for 2-node and 3-node solutions, respectively.
These results confirm Maison’s conclusion: the number of bound state is equal to the number
of zeros.
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Figure 7bh: The P-wave phase shift functions & for the potential V
with 2-node (thin line) and 3-node (bold line) solutions. In both cases
k = 0.01. According to the Levinson’s theorem, the number of bound
state is equal to the number of nodes.

4.3 Instability of Non-Abelian Black Holes

To analyze the stability of black hole solutions, we first carry out a linear stability analysis
along the same lines as for the BK solutions. Instead of (123), which is no longer a good
definition because of the existence of the horizon, we introduce a new radial coordinate p by

& _
dr

ea/2

, plrs) = —oo. (132)

It follows that the amplitude £(p) for linear perturbations satisfies the eigenvalue equation

(—g;; + U(p)e™)é(p) = a*¢(p). (133)

Egs. (42)-(44) and (133) form a complete set of equations. For black hole solutions, the
boundary conditions are §(r) — 0 for r — r, as well as for r — oco. Without loss of
generality (see discussion in section 3.3.3), rs can be set to 1. With the same method as in
section 4.2.1), we found numerically a zero-node eigenfunction of (133) with a negative o2
[22]

o? = —0.02685. (134)

This describes an exponentially growing mode. The effective potential Ue™® in (133) vanishes
asymptotically as p — —oco. Therefore, from eq. (133), we obtain the asymptotic behavior

E~e’ p— —c0 (135)
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where w? = —¢? and w > 0.
In order to check whether such a bound state is well-behaved at the horizon, we transform
to Kruskal coordinates

u = e cosh(nt),

v = €™ sinh(nt), (136)
where 7 has to be chosen as
1d
L AL
1 (1 —_— wz(rh))z ( h)+b( h)
= =1 = LT Ye\Th))  alra)+b(rn) 1
27']; [1 r}zl ]e ( 37)

It is obvious that the amplitude ¢ transforms like a scalar (since ¢ and ¢ remain unchanged).
This implies that £, as a function of the Kruskal coordinates, is certainly bounded at the
horizon.

The metric perturbations transform as

gK _ dr’s dz’s gs
af dZ?( d:n?( B

(138)

where K and S refers to Kruskal and Schwarzschild, respectively. It is also easy to see
that all metric perturbations in Kruskal coordinates (and, by construction, the background
metric) remain finite as the horizon is approached. For instance,

dt dp
bgm, = (E)zﬁgft*"(a)ztfgfp
= n72e"P(6g5v? + Egpspuz)

= —bgun e’

= —26ae®n 2P, (139)
It follows from (118) and (34) that
Sa' — 8b' ~ ¢ + ¢ (140)
where we have used the solution (114)
8b~ &. (141)
In the p-coordinate, we have
0,(6a — b))~ £ — 0 (142)

as p — —oo. Hence, §a — const. The metric perturbation §gX is therefore bounded at the
horizon, and so is §gX. These well-behaved perturbations, 6¢, §a and §b, led us to reach the
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conclusion in ref. [22]. However, Bizon pointed out that the perturbed YM field strength
behaves like [23]

§F = (bwdt+ Sw'dr)AQ
= nlwée " (du + dv) A
~ elene (143)

where 2 = 7162 + 7,63. For the ground state (k = 1) black hole solution, o = —0.02685, we

have

w=0.164 and 7 = 0.184, (144)

it follows that w — n < 0, thus 6 F blows up as p — —oco. From this, Bizon concluded that
the 1-node non-abelian black hole solution is linearly stable [23]. This is, however, not the
case, as was noted later by Bizon and Wald [24]. Indeed, we can choose superpositions of
the unstable mode with the stable modes in such a way that the initial perturbation of F' is
regular. In the long run, the unstable mode will win. The colored black hole turns out to
be unstable.

In next section, we shall discuss non-linear evolutions of the perturbed EYM system. As
we shall see, the results coincide with the linear analysis.

5 Nonlinear Perturbation

In this section, we shall study numerically non-linear evolutions of the perturbed equilibrium
configurations of the EYM system. This section is based on ref. [26], but in more detail.

5.1 Numerical Method
5.1.1 Algorithm

The basic nonlinear partial differential equations (37)-(41) were solved with the help of a
modified MacCormack predictor-corrector scheme [43, 44, 45]. We recall that the standard
MacCormack algorithm for an equation of the type 8,U(t,z) = F(U, 8.U, ...) proceeds along
the following scheme. For the time slice n + 1, the ‘predicted’ value of U, Upt?, is defined
by

Uttt = g 4 AeF(U, 800, ), (145)

where U™ are the values of U on the nth time slice and 35_2) is a forward 2-point difference

APU(z) = L=t AA’Z — ) (146)

The “corrected” value of U on the time slice n + 1 is then given by

_ (@)pm
Uttt = U3 4+ U + ALF(UDT, 82000 L), (147)

N =
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where 8 is a backward 2-point difference,
8 (z;) = (U(x:) — U(z: — Az))/Ax. (148)

An alternative method is to backward difference at the predictor level and forward difference
the corrector equation. Second derivatives are always centered differenced, that is

U(z; + Az) — 2U (=) + U(z: — Az)
Az? )

FU(z;) = (149)
Although the two steps in above MacCormack algorithm may be unstable separately, the
overall combined scheme is stable and of second order in space and time due to the cancel-
lations of the truncation errors of each step.

Instead of 3:(:), we used in a modified scheme 4-point difference formulae for the first
spatial derivatives (see, e.g. [46]),

—2U(z; F Az) — 3U(z;) + 6U(z; £ Az) — U(z; £ 2Az)

8U(z;) = + A :

(150)

The second derivatives are still approximated by centered differencing. This modified Mac-
Cormack algorithm has shown better performance in numerical computations of the bosonic
star [45].

The strategy for solving (37)-(41) involves the following steps. First one gives initial
values for w and 7. With the help of (37) and (38) we can then compute the initial data for
m and a. In a predictor loop, eqgs. (39), (40) and (41) provide predicted values for m, = and
w. For instance,

mit = m™ 4 At(2e* '), (151)

P

The predicted values al*! for a is obtained by integrating eq. (38) inward from the outer
edge of the spatial grid to the origin, using the predicted values of m, w and w. Next the
corrector loop ‘corrects’ these three quantities. For example, the m in eq. (151) is then
updated to

1
mn+1 = E[m:‘i"l + m» | At(zeav_abPﬂpw;)ﬂ+l]_ (152)

The corrected value for a is obtained by another inward integration of (38). This spatial
integration is performed using a fourth order Runge-Kutta method. The data at the midpoint
between grid points required by this method are obtained by cubic spline interpolations
provided by the E01BAF and E02BBF routines from the NAG mathematical library. We
programmed these steps; a flowchart of the program we used can be found in Appendix B.

Both the grid size and time steps are equally spaced. The working values which were
chosen are Ar = 0.008, At = 0.001 (thus At <« Ar). The radial range of our grid covers
[0.01, 40], which is a compromise of CPU time and accuracy.
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Table 2: Parameters in (153), (154) for the simulations shown in the
figures.

=
q
C

simulations
If, 11T 1.515.0]0.1
Iy, I 2.0[5.0]0.1
Iy 2.015.0]0.2

5.1.2 Initial and Boundary Conditions

We chose two different types of perturbation as initial conditions. In the first class we only
perturb w from its ground equilibrium configuration w. and set # = 0 (hence Ex = 0). In
the second class w is taken to be in w,, but 7 and thus the kinetic energy density of the
YM fields are nonvanishing. For both cases, Gaussian-like perturbations are added in some
region of the equilibrium configuration. The region, height and width of the perturbation can
be chosen at will. Once the perturbation has been made, we can compute the corresponding
initial metric functions m and a using eqgs. (37)—(38) with appropriate boundary conditions.
From the asymptotic form of m for large distances we obtain the total mass M, which is in
general different from that of the unperturbed equilibrium configuration.

In a representative sample of the initial perturbations, we distinguish four classes of initial
conditions for the YM field variables w and = as follows:

type I* :  w=w, + k exp[—o(r — 7)?],

x =0 (153)
type IT* : w = w,,
T = +k exp[—o(r — 7). (154)

The values of the positive parameters 7, o, k, which we chosed in the simulations discussed
below, are listed in Table 2.

Beside the initial conditions we must also supply boundary conditions at the origin and
at the outer boundary of the grid. Like for equilibrium configurations, the desired regular
solutions of the time-dependent system can also be expanded in powers of r near the origin.
Similarly, the basic differential equations (37)—(41) lead to certain relations for the coefficients
of these expansions. As a result of the requirements of finite energy density and regular
metric, we have the following expansions for m and w near the origin,

w = 1-p8r*+0(r?),
m = 26%°+0(r®), (155)

which have the same form as (79), but here B can be a function of ¢. The initial value of
B is fixed by the initial condition for w and is arbitrary. Its time dependence is determined
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by the evolution. (For the equilibrium solution 8 is the ‘shooting parameter’.) With the
help of (155), we can start integrating at ro = 0.01, rather than at 7o = 0. (Note that the
eqs. (37)-(41) are singular at » = 0.) The expansion (155) provides also the boundary value
of w at 7o, which are required by the derivatives of w in egs. (39) and (40). The boundary
value w(ro) is chosen as

To

T0+A

w(ro) =1+ ( )*(w(ro + A) - 1), (156)
where A denotes the spatial step. The 3, therefore, does not appear explicitly.

At the outer boundary one should impose a kind of outgoing-wave condition. We have,
however, fixed the functions w and = to their initial values. This means that outgoing waves
are not allowed to escape the grid. It turns out, however, that — for the size of our grid — the
interesting phase of the evolution of the perturbations occurs well before the outgoing wave
hits the boundary. This holds particularly for the collapsing perturbations. The boundary
value of the lapse €22 can be fixed at will because of the freedom of choosing the time variable.
In our code, a is always normalized such that a(r — oo) = 0. The value of m at the outer
boundary is determined by the evolution. We use eq. (39) to evolve m on interior points of
the grid and then use the Hamiltonian constraint (37) to check its consistency.

5.1.3 Code Tests

A first obvious test is to run the program by chosing the unperturbed BK ground state
solution as an initial condition. Because of the intrinsic instability of the solution, small
numerical truncation errors accumulate and are magnified at long times. We found little
deviation from the equilibrium solution for times ¢ < 24. In this time interval the maximal
deviations for €%, m, w are about 0.2%, 0.06%, and 0.6%, respectively. From the linear
stability analysis of Section 4.2.1 we know that the intrinsic time scale for instabilities is
4.4, as |o?| = 0.0525. The time interval ¢ = 24 is thus about 5.5 times longer than this
intrinsic time scale. Therefore these numerical deviations are acceptable. Moreover, we also
observed that for smaller spatial and temporal steps the numerical stability can maintain
longer than ¢ = 24. On the other hand, as a matter of the fact, it will turn out that even small
perturbations of the equilibrium configuration have already reached the nonlinear regime at
shorter times.

Another very useful check is provided by the Hamiltonian constraint. As egs. (38)-(41)
form a complete set of equations for all unknown variables, the Hamiltonian constraint (37)
therefore performs as an independent monitor of the accuracy. We found in our simulations
that this constraint was satisfied to a high accuracy, better than 10~%. However, if the
perturbed solution collapses to a black hole, the Hamiltonian constraint fails to maintain
the accuracy of 10~° around the Schwarzschild radius; the Hamiltonian at the radius, H(74),
can become as high as 1072 at ¢ = 24 for the simulation I;. After ¢ = 24, the simulation is
no longer reliable since the Hamiltonian constraint is no more satisfied. In Fig.8a, absolute
values of the Hamiltonian constraints at » = 1.0, 1.66(ry) and 2.0 for the simulation I are
plotted against time, from which we can see that the deviation of the Hamiltonian constraint
from zero rises drastically around the Schwarzschild radius while it is still below 10~ in other



Vol. 65, 1992 Zhou 801

Table 3: Comparison of the simulations I; for different spatial and
temporal steps, but constant ratio Ar/At. The value r = 1.66 is the
Schwarzschild radius for the parameters of I; .

t Ar r==1.0) r=1.66 r=5.0
] W T w 1r w T
0 {0.5099 [ 0.0 |-0.1906 0.0 |-0.7960 [ 0.0
24 8 0.4696 | -0.2139 | -1.0312 | -1.5493 | -1.0577 | 0.0135
4 0.4696 | -0.2138 [ -1.0312 | -1.5929 | -1.0577 | 0.0135

regions. In Fig.8a, we also show the Hamiltonian constraint at the Schwarzschild radius when
the spatial step size is chosen to be one half of the previous simulation. The Hamiltonian
constraint for the simulation I at different times is presented in Fig.8b.

In order to check the consistency of the results, we have varied the temporal step At and
the spatial step Ar. Instead of our working temporal step At = 1.0 x 1073, we also tested
At = 0.5x 107>, It turned out that the resulting differences for w and 7 never become larger
than 107 for ¢t < 30. The working spatial step Ar = 8.0 x 102 was also taken two times
smaller. In Table 3, we compare the simulations I] that lead to collapse (see Section 5.2) for
different spatial and temporal steps. The spatial step was changed from 8 x 1072 to 4 x 1073,
meanwhile, the temporal step was shortened by one half so that the ratio Ar/At was kept
constant. From the table we can see that the results are quite independent of the chosen
parameters.

As an another check, we applied the program to study the collapse of textures and
compared our results with the analytic solutions published in refs. [47, 48]. Furthermore, we
also compared our MacCormack code with the code used in ref. [49]. In both cases we got
agreement to a high accuracy.
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Figure 8a: The absolute value of the Hamiltonian constraint vs. time
for simulation I for different spatial steps. The constraint is broken
at the Schwarzschild radius when the event horizon is formed. While,
the Hamiltonian constraint is satisfied within 107%. The bold line cor-
responds to the simulation with the same parameters chosen as for the
thin lines but for half spatial step size. The broken Hamiltonian con-

straint at the horizon indicates that the simulation is no longer reliable
after t = 24.
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Figure 8b: The Hamiltonian constraints for simulation I are plotted
at different times.
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5.2 Results and Discussions

In this section we present and discuss our numerical results for evolutions of the perturbed,
ground state BK solution. Our program was run on an Alliant computer.

In the simulation I, the parameters are chosen such that the initial perturbation is
concentrated inside the Schwarzschild radius which corresponds to the total mass of the
system (Fig.9). For this perturbation gravity wins and the gauge boson star collapses.
Figs. 10a — 10d present the evolution of various quantities for the parameters I; in Table
2. Fig.10a shows the radial profile of the field amplitude w at various times. Snapshots are
taken in time intervals At = 4. The star collapses rapidly to a Schwarzschild black hole since
outside 7 = 1.64 the value of w becomes close to —1, which corresponds to the Schwarzschild
metric (see Section (3.3.1)). This can also be clearly seen from Fig.10b, where the evolution
of the metric variable m is depicted. At r = 1.642, 2m/r), approaches 1 from below as the
perturbation evolves. At ¢t = 24, the ratio of 2m/ry is about 0.998, which indicates that an
event horizon is forming. Outside the horizon the mass function becomes constant, which
is just another characteristic of the Schwarzschild black hole. The lapse function e®, whose
evolution is plotted in Fig.10c, is very small (< 107°) at ¢ = 24. This reflects the well-known
fact that Schwarzschild-like coordinates are inappropriate when the star becomes almost
a black hole. At late times, the variable w, which is proportional to w, becomes strongly
peaked near the horizon (Fig.10d). The appearance of the horizon and the strong peak of =
at ¢ = 24 suggest that the numerical results are no more reliable for ¢ larger than about 24.

In the simulation I, the total initial mass is (in Planckian units) equal to 0.8297, which
is slightly larger than the ground state mass 0.8286 of the BK solution. The mass of the
formed black hole is 0.8194, which means that about 1.2% of the total initial mass is lost
during collapse.

1 T
8 = =
.6 =]
4+ -
2 =

w,m 0

-2 F =
-4+ -
-6 - =
-8 F w —

-1 1 Lol

.1 1 10

log r

Figure 9: Initial perturbations of the YM amplitude w and the metric
function m for simulation I7 (bold lines). The thin lines depict the
equilibrium BK ground state solution.
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For the parameters I (sign change in (153)) the star expands very rapidly, as can be
seen from Figs.1la — 11d. In this case the repulsion of YM fields wins. Notice that the
outgoing motion has not yet reached the boundary of the grid at ¢ = 40. From Fig.11b we
can see that the 90% mass boundary moves outwards with about 3/4 of the speed of light.
The explosion of the star is also reflected in the evolution of the lapse function (Fig.11c) and
in the outward motion of the peak of 7 shown in Fig.11d. Like for I}, the parameters in I3
are chosen such that the initial perturbation is still concentrated inside the Schwarzschild
radius. This is changed in the runs If for which the position of the gaussian-like initial
perturbation was placed outside the Schwarzschild radius.

log r

Figure 10a: The radial dependence of the YM amplitude w at various
times in the interval 0 < ¢ < 24 for simulation I;. Snapshots are
taken in time intervals At = 4. The mini star collapses rapidly to a
Schwarzschild black hole. For times ¢ > 24 our numerical results are
no more reliable.
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Figure 10b: The evolution of the metric variable m for the same
parameters as in Fig.2a (simulation I7 ). At ¢t = 24 the star is already
close to the Schwarzschild radius which corresponds to the total initial
mass 0.8297. The latter is slightly bigger than the mass 0.8286 of the
ground state BK solution.
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Figure 10c: The evolution of the inverse lapse function e~ for simu-
lation I; . For t = 24 the lapse function is already smaller than 10~5.
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Figure 10d: The evolution of 7, eqn.(41), for simulation I; in the
interval 0 <t < 24.

O N - W

log r

Figure 11a: Snapshots of the radial profiles of the YM amplitude for
0 <t < 40 in time intervals At = 4 for simulation I;*. The mini star
expands very rapidly. During the plotted time interval the outgoing
motion has not yet reached the outer boundary of the grid.

H.P.A.
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Figure 11b: Evolution of the mass variable m for simulation I;}t. The
90% mass boundary moves outwards with about 3/4 of the speed of
light.

Figure 11c: Evolution of the inverse lapse function for simulation I.
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Figure 11d: Dynamical evolution of 7 (which is proportional to )
for simulation I;7. The explosive character of the outward motion is
clearly seen from this plot. The time increment of each peak is 2.

Fig.12 depicts the profile of w and m at t = 0 and ¢t = 24 for the parameters I, 11,
II;. The final results for the three simulations are so close that their difference is hardly
visible in the figure. This fact reflects that at later times the behavior of the perturbed
SU(2) system is quite universal. This phenomenon also holds for the simulations I, I},
II}. Instead of collapse, these simulations lead to very similar explosions at later times, as
can be seen from Figs.13a and 13b. These figures show the snapshots at £ = 0 and ¢ = 40.

1 T ] LG I'I T T T L] LI II T
m
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w, m
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w
..1 —~ _______._—I,__E
'1-5 . | 1l
.1 1 10
log r

Figure 12: Profiles for w and m at t = 24 for the parameters I; (thin
line), I (bold line), and II; (bold line).
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Figure 13a: Snapshots of the field amplitude w at times ¢ = 0 and
t = 40 for the parameters I; (thin line), II; (bold line), and 115 (bold
line). These three curves are so close together that their difference is

hardly visible.
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Figure 13b: Same as in Fig.5, but for the metric variable m.

In Fig.14, we compare the mass variable m at time £ = 24 with that of the kK = 1 colored
black hole solution. We have chosen the horizon of the latter solution such that m at the
horizon is equal to the formed black hole mass of the simulation I;. The Fig.14 shows
that the perturbed BK solution does not end up as a colored black hole but becomes a
Schwarzschild black hole. This provides us evidence of the instability of colored black holes.
On the other hand, as we discussed in section 3.3.3, the ground state BK solution is very
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close to the exterior solution of the £ = 1 black holes, at least for small ‘size’ black hole.
This can be seen from the Fig.3 where we depict the BK ground state solution and the
non-abelian back hole solution for r;, = 0.2. Therefore, we may regard the BK solution as a
perturbation of non-abelian black hole solutions. The two types of representative simulations
which we made can thus also be interpreted as the evolution of a perturbed black hole. The
results of these simulations provide us further evidence that the colored black hole solutions
are unstable indeed and have certain classes of perturbation evolve.

1.2 T

log r

Figure 14: Profile of the mass variable m of Fig.10b at time ¢ = 24
(thin line) and of the lowest energy colored black hole solution (bold
line). The mass of the colored black hole at the horizon is chosen to be
the same as that of the formed black hole for the simulation I; .

6 Summary

In this paper, we have studied the stability of the remarkable BK and colored black hole
solutions of the SU(2) EYM system. For small radial perturbations, the frequency spec-
trum of the system is determined by a one-dimensional P-wave Schrédinger equation with a
bounded potential. For both the BK and colored black hole solutions, it turns out that there
exist bound states of this Schrédinger equation which correspond to exponentially growing
modes. The BK solutions and the colored black holes are therefore linearly unstable, and
they are also unstable in the sence of Liapunov.

The non-linear evolution of the perturbed EYM system has also been studied. We have
investigated some representative perturbations of the ‘ground state’ BK solution. The non-
linear evolution of these perturbations is in accordance with the conclusions of our linear
stability analysis. Depending on the choice of the initial spherically symmetric perturbation,
we found that either the YM repulsion dominates and the gauge boson star explodes, or
gravity wins and the star collapse to a Schwarzschild black hole, but not to a colored black
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hole. For a representative sample of perturbations, the late time behavior of the perturbed
solutions is quite universal.

A systematic study of the dynamical evolution of the perturbed colored black holes is
difficult because of the problems related with the event horizon. However, since the exterior
solution of the colored black holes is very close to the BK solution, at least for small ‘size’
colored black holes, we may regard the BK solution as a perturbed black hole solution.
Our simulations, therefore, can also be interpreted as the evolution of a class of black hole
perturbations. The fact that the evolution does not end up as a colored black hole provides
us further evidence of the instability of the colored black holes. Of course, in order to
understand the behavior of the perturbed colored black holes comprehensively, we would
need more sophisticated methods. We are working in this direction.

The BK solutions and the ‘colored’ black holes are very remarkable indeed, but they will
never be found in reality because of their instability.
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Appendix

In Appendix A, we first give the d + 1 splitting formalisms for the EYM system. Then,
proofs of the Theorems 1 to 4 mentioned in the Introduction are given. The materials in
this appendix is adapted from the ref. [50]. In Appendix B we present a flowchart for the
program which we used to simulate the non-linear evolution of the perturbed equilibrium

solutions of the SU(2) EYM system.
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A Static EYM Fields

A.1 The d+ 1 Splitting

Consider a static space-time (M, g). M is a direct product M = R x N and g can be chosen
in the form

g = —a’dt® +h, (157)

where o is a non-negative function on N; t is the natural coordinate of R and 0; is the
timelike Killing field corresponding to t. (N, k) is a 3-dimensional Riemanian space with
a (time-independent) metric h. Here, we are not interested in black holes, and therefore
assume that N is topologically an R3.

Next, we split the source-free Y M equations into space and time (d + 1 splitting)®. Let

A = Az’ + Aodt
= A + ¢dt, (158)

be the decomposition of the Y M gauge potential. Throughout the Appendix A, the bold-
face letters always denote spatial objects. For the YM field strength we have then the
decomposition

F = dA+ANA
= dA+AANA+dpAdE+[A, | Adt

= F+D¢Adt (159)
= B+ aEAdL, (160)
where
B = F=dA+AAA (161)
aE = D¢. (162)
The homogeneous YM equation DF = ( gives immediately
DB =0,
D(eE) + [¢,B] = 0. (163)
For the Hodge-dual *F' we find the d + 1 splitting
* F' = xE — a(xB) A dt. (164)

where x denotes the spatial Hodge-dual. Therefore, the YM equation D x F = 0 leads to the
spatial equations

DxE=0,
D(axB) — [¢,+E] = 0. (165)

8This can be generalized easily to stationary situations by following the procedure in ref. [51].
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Note that in the non-abelian case the static field equations for E and B do not decouple.
We will use the general d + 1 splitting formalisms established above in the next section. At
this point we will show that the electric field E has to vanish for a regular solution under
mild fall off assumptions at infinity.

Consider now a particlelike solution. Using the identity

Tr(¢D x E) = dTr(¢«E) — Tr(D¢ A +E) (166)

and (162) in the following consequence of (165)

jN Tr(¢D +E) = 0, (167)
we obtain with the Stokes theorem
/N aTr(E A+E) = 0, (168)

and hence E = 0. The field equations (163) and (165) then reduce to the ‘magnetostatic
equations’

DB =0, ,
D(a+B) = 0. (169)

A.2 Non Existence Theorems
A.2.1 Non Existence of Static Einstein Solitons

Theorem: There exist no static gravitational solitons.

Proof: For the metric(157), the Einstein vacuum equations split as follows (see, eg.

ref. [32])

Aa =0,
Ric(h) = 1Hess(a). (170)

Using the maximum principle for harmonic functions and the asymptotic flatness condition
a—1 (171)

at spatial infinity, we obtain a = 1. Hence, Ric(h) = 0. In three dimensions this implies that
the Riemann tensor vanishes and there remains only the trivial solution (Lichnerowicz|[1]).
a

Remark: If there is a event horizon, the previous argument does not work since the
minimum of a is assumed on the horizon. However, the non-existence of gravitational
solitons still holds (see (8, 9]); we do, however, not repeat the proof here.
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A.2.2 Non Existence of Static YM Solitons

Theorem: Static YM solitons do not exist.

Proof: We recall Coleman’s nice argument that there exist no particlelike solutions of the
YM system in d + 1 dimensions if d # 4 [3].
From (158) we find
(F,F) = (F,F) + (D¢, Dg). (172)
The r.h.s. of this equation is proportional to the Yang-Mills-Higgs Lagrangian without self-
couplings in d dimensions. Thus we have

1
—; [da(FF)
1
= -7 [ @((F,F) - (D4,D¢))
= S(A,¢)
= S] + Sz, (173)
where S; and S; are defined as follows
B = —% [, F)ats,
1
B = Zf(qu,Dq&)dda:. (174)

Since the energy of the soliton should be finite, both terms S; and S, have to be finite.

Suppose now that (A(x), ¢(x)) is a solution to the system, i.e. (A, ¢) is a critical point
of the action S. We can embed this field configuration into the two-parameter family of
variations

$(x;0,1) = oAg(Ix), (175)
A(x;0,)) = AA(Xx). (176)
The action S thus has the following scaling behavior
S(o,A) = a?A*%85; 4+ A44S,. (177)
As (A(x), #(x)) is a critical point of the action S(A, ¢), it follows that
0
a_O'S(U, A) |a=)«=1= OJ (178)
—?—S(a A) | =0 (179)
BA 3 o=A=1— V.
Hence, if d # 4, we find
S1 - 32 = s (180)
Therefore,
F=D¢=0, (181)

which implies F' = 0 (for d # 4). The assumed solution (A, ¢) are trivial only. O
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A.2.3 Absence of Static EM Solitons

Theorem: There exist no Einstein-Maxwell solitons.

Proof: In the abelian case, we replace D in section A.1 by d. Since the same argument in
A.1 applies in the abelian case as well, we have E = 0. It follows from (169) that d(axB) = 0.
Hence, we can repeat the arguments from (166) to (168) — with replacement of E by xB —
we find also B = 0. The EM system thus reduces to the vacuum case and no non-trivial
solutions exist.O

A.2.4 Absence of Static EYM Solitons in 2+1 Dimensions

Theorem: There exist no static EYM solitons in 2+1 dimensions.

Proof: We have proved E = 0 in A.1. However, the reasoning for B = 0 in (A.2.3) can
not be generalized to the non-abelian case. As first remarked by Deser [2], the non-trivial
solutions in 2+ 1 dimensions can be easily excluded. Indeed, w := axB is a space-time scalar
for d = 2. From Dw = 0, we obtain for the norm |w| of w (in group space) the condition

djw| =0, (182)

which implies for d = 2 that |w| = const. This constant must vanish, otherwise there would
be a B field which does not vanish asymptotically. The EYM system in D = 2 4 1 thus
reduces again to the vacuum case and no non-trivial solutions exist. O

B Flowchart of the Program

In this appendix, we present a brief flowchart of the program used for simulating non-linear
evolutions of the perturbed equilibrium solutions of the EYM system. The RK solver in
the flowchart includes a routine of the 4th order Runge-Kutta method and routines of the
cubic-spline interpolation provided by the EO1BAF and E02BBF from the NAG library.
The routines E01BAF and E02BBF interpolate midpoints between grid points so that the
4th order Runge-Kutta method can be used. The Predictor and Corrector are routines
for the modified MacCormack algorithm, in which 4-point difference formulae for the first
order derivative are used. Second order derivatives are centered differenced. For a detailed
description, see Section 5.1. The routine Hamiltonian constraint performs as an accuracy
monitor. The program was written in FORTRAN and run on an Alliant machine.
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RK Solver

Computing m, a

n=n+1 (t=t+6t)

Initial Conditions
for w, 7

Zhou

Predictor

n+l .ntl n+1l
'wp ,Wp ,mp

RK Solver

Computing a

No

Yes

Hamiltonian

Constraint

Corrector

,wn+1, 7I'ﬂ+1, mn+1

End

H.P.A.
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