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Semiclassical Expansions of the
Thermodynamic Limit for a

Schrodinger Equation
Il .The double well case

by
B.Helffer and J.Sjostrand
DMI-ENS Département de mathématiques
45 rue d’Ulm Université Paris-Sud
F-75230 Paris Cedex 05 F-91405 Orsay

(24. II. 1992, revised 23. IV. 1992)

Abstract :
We give a proof of the semi-classical expansion of the thermodynamic limit
which works also for the double well case. This permits also the study of the

splitting between the two first eigenvalues and a partial proof of a conjecture of

M.Kac and C.].Thompson [Ka- Th].
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§0 Introduction

This article is motivated by a course of M.Kac [Ka] (see also [Br-He]) and
completes the study started in [He- Sjl.

Let us first recall the origin of the problem in statistical mechanics. M.Kac
proposes to study the following model (called Model A in 87 in [Ka]) whose
hamiltonian is given by :

Evinmn (©) = =Zp q)c v Ve, %60

with :

VINM) = [1....NIx(Z/MZ) in Z2°,6,¢e{-1,+1}, Je R, * yeR *

VRP=0

and

Vpo = Jyexp (k-8 +(1/2) (8p, 5, ,+8p o_}if P=(k,E)= Q=(K"0).

M.Kac observes that the free energy per spin in the thermodynamic limit :- ¥/kT
can be computed (see formula (7.11)) as :
-¥/kT = In2 - vy/2 + Lim___(In A__ (m)/m)

where A___(m) is the largest eigenvalue of the m-dimensional integral operator

max
K given by :
K = exp (- Q(m)/z) exp (-y(-A(m)) ) exp (- Q(‘“)/z)
with
Q™ (y) = (tanh(y/2) / 2) 2.0,y -5, T Incosh(VAy/2 (v, +y, , )
and v = J/kT.

As vy tends to zero, the operator is well approximated by

exp ( _7(_A(m)) _ Q(m) )

(see [Br-He] for rigorous results in this direction or [He]) and it is consequently
natural (see (7.17) in [Kac]), after a scaling argument x, =y”2yk, to study the
problem of the existence and the properties of the limit of &, (m;h,v) /m where
A, (m;h,v) is the smallest eigenvalue of

(0.0) P™ (xhD_; v) = -n2A™ 4 v (x)
with
0.2) V™™ (x:v) = (1/4) Ek‘flxkz - Ekfiln cosh(vv/2 (x +x, , )

with the convention (x  ,  =x, ).
h is essentially equivalent to y as 7y tends to 0 and we finally arrive (after some
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approximation) to the usual semiclassical problem for a Schrod inger operator.
Moreover, the splitting between the second eigenvalue,(m;h,v) and the first
one appears to be strongly connected (see for example formula (7.32) in [Ka])
to the behavior as r tends to oo of the behavior of the correlation function of two
spins in a row separated by a distancer.

Of course all these connections are not mathematically rigorous but this gives us
the motivation for our study of the Schrodinger case.

As already mentioned this study was started in [He-Sj]. More precisely by
completing results of [Sj], , we treated completely the case where the parameter
v (which in the corresponding statistical problem is the inverse of the temperature)
is less than 1/4, assumption which implies the convexity of the potential.

Let us recall the three results which were obtained in this case .

Theorem 0.1 (Cf [He-Sjl, [Sil,)
Foreveryvin R” thelimit A(hy)=Lim__ (2, (m:hy)/m) exists

Theorem 0.2 (Cf [He-S;jl)

If v<1/4, Alhw)=Lim___ (& (m:;h,v) /m) admits a complete asymptotic
expansion :
Alhyv) ~ hZ, . Ai(v).hi as h tends to 0.

Moreover, if we denote the corresponding semiclassical expansions for
A, (m;hv)/m by:

&, (m:hv) /m) ~ hZ, o A(mv)n',

there exists &,(v)>0 s.t. for each j, there exists a constant Clv), st
IAi(v)—Ai(m.v)ls Ci(v). exp(-&, m).
£,(v) and Ci(v)can be chosen locally independent of v .

Theorem 0.3 (cf [Sjl,, [He-Sjl)
If v<1/4 then the splitting between the two first eigenvalues 4, and 2, is
controlled by

(h/C)) <&, (mhv) -2 (mhv)l ¢ C, .h
for some C, >0 which can be chosen locally independent of v .
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The purpose of this paper is to complete the description of the properties of the
thermodynamic limit and of the splitting in the case wherev >1/4.
More precisely we shall prove the following theorems :

Theorem 0.4

If v>1/4, Alhw)=Lim___ (2 (m;h,v)/m) admits a complete asymptotic
expansion :
Alhw)~ A°(v) +h3; A(v)h' ash tends to 0.
Moreover, if we denote the corresponding semiclassical expansions for
A, (m;h,v) /m by:

(&, (m:hv) /m)~ A°(w)+hE, ( A(mp)h',

there exists &,(v) >0 s.t. for each j, there exists a constant Ci(v), s.t.
|Ai(v)—~Ai(m,v)|s C;(v). exp(-&, m).
B,O (v) and Ci(v) can be chosen locally independent of v .

Remark 0.5
With the corresponding statement of Theorem 0.2 we have the complete answer
outside the critical value.

Theorem 0.6 :

If v>1/4and let us consider the set in Nx R’ defined by

(0.3) mg Ch~N

(we write shortly m=0(h No)

for some Cand N, ;

then there exists C,, h,and g, >0 such that for all the (m,h) in this set
satislying 0<hgh,, the splitting between the two first eigenvalues 2, and 2, is
controlled by

A,(m,hyv) -2 (mhv) ¢ C,.exp- (¢,. m /h).

Remark 0.7
Here we observe a very different behavior in comparison with the
casev <1/4 (Theorem 0.3) but we have unfortunately a restriction on m . This
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is probably a technical difficulty. We were hoping to prove simply that (first
conjecture) :
Lim_ (1.2(m,h,v) -1, (m,h,v)) =0.

This property will be a sign of a " transition of phase" in the following
sense. If we assume (second conjecturel) that Lim ____(&,(m,h,v) -2 (m,h,v))
always exists and that (third conjecture) it is analytic for v<1/4, then we get
from Theorem 0.3 that this limit is not analytic around 1/4.

In the proof of Theorems 0.4 and Theorem 0.6 we shall follow the
same strategy as in [Sjl, ,,[He-S;jl.

Let us recall that the basic idea in order to analyze the thermodynamic
limit was to compare a formal expansion of the eigenvalue (divided by the
dimension) (deduced from the WKB approximation whose construction with
control with respect to the dimension m was initiated in [Sj]  , ) of a one well
problem and the first eigenvalue (divided by the dimension) of our problem . We
can distinguish three parts.

In the first one, one compares the WKB approximation of the one
well problem and the first eigenvalue of the Dirichlet problem in a sufficiently
small £ - ball around the point where the minimum of the potential was
attained.

In the second one we compare the first eigenvalue of the Dirichlet
problem in this small £ - ball with the global problem.

In these two steps we work modulo m.ON(hN) (for any N) but the dimension is
controled by m= O(h "),

The last part is to eliminate the restriction on the dimension and is
identical to the convex case ( due to the control of the convergence in the
thermodynamic limit).

In fact we shall prove a more precise result permitting to analyze the
splitting between the two first eigenvalues. To understand what is needed recall
the following classical formula for the splitting (see for example [He-Sj], §3) :
(0.4)2,-2, =Inf,{ [[IhVol* (u, )*x) dx)/flof* (u, ,)*(x) dx)],

o€ Jo (u, )" (x) dx=0)
Hereu, . denotes the first normalized eigenfunction.

I,m
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The estimates about the splitting are then deduced from the choice of
¢ and of information on the decay of u, - in suitable domains.We observe that
under the assumption v >1/4, the potential admits two minima and that there
exists 8 s.t. the region Q(8) defined by :

(0.5) Q(8) = {xeR",-5 < =, x; g 8}

does not contain these two wells. Let us recall also that according to the
symmetries of the problem we have :

(0.6)u, (-x)=vu, = (x)

Let x(t) be a C" functions.t.

(0.7), x(t) = -x(-t)

(0.7), 0gX(t)gt for t 0.

(0.7), x(t) =1 for t »1.

Taking

(0.8) ¢,(x) = x(Zx,/8)

(¢ is not with compact support but the argument can be easily completed by
density), we deduce from (0.4) the following estimate :

(0.9) 2, (m,h)-2, (m,h) C,.m. h%, (a(m,h)?/(1-a(mh)?)

with

(0.10) a(m,h,8) = llu, Il

L(52(8)

Theorem 0.6 will be a consequence of the following theorem which will be
proved in section 3 :

Theorem 0.8

There exists 6 ,h, and §>05.1.
(0.11) a(m,h,8) ¢ Cexp (-m/Ch)
if (0.3) is satisfied and 0<h<h,, .

§1. WKB approximation in a £ -ball

As mentioned in the introduction, one first step corresponds to the study of the
problem in a small neighborhood of some minimum of the potential.

The remark is the following : what we have made in [He-Sj] (adapting previous
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results of [Sj], ,) works also for v>1/4.

For this we return to the verification in §6.2 of [He-Sj] of the conditions

given in 84 of the same article to obtain the Theorem 4.4 and the assumptions
in [Sj], , to compare with Dirichiet problems in some ball.

If v>1/4, let us observe that we have two wells. Let us start by recalling briefly
what we shall get from the study of the harmonic approximation at the bottom
(see §2).
We shall see that we have two equal minimas at + x“(m,v) with x (m,v) =
(t°/2)(1,......1) and let us now work in a small £ -neighborhood of say x°(mv).
Let us verify carefully the different assumptions following section 6 in [He- Sjl.
We shall verify the following properties for the potential V = V(m) "

(1.1) There exist d and k (independent of m) s.t. V is holomorphic in Boo(xc,d)
with [VV(x)|_=0(1),

(1.2) V' (x°) =D+A, where D is diagonal (positive definite) and

lAllsp (o) <1, <rg € ;0 (D) for all p s.t. 1< p gooand for all p with :

() exp(L85 < p(j+1)/p(j) < exp(R).

(1.3) ||V2V||$(BP£P) = 0(1)

uniformly in Bw(xm.cf) for p satisfying (M.

(1.4) V'™ " (x) 5 ((1-4v")/2). I for xinBR (x°,d) with v’ <v" <1/4 .
Here (1-4v’)/2 is the smallest eigenvalue of V?m) " (x°) (which appears to be
independent of m, see (2.8)).
With °w§ < ylim)_ (V(")Ea V(m-")) (tgngm-1) , we must have :

(1.5) For all m, for all n ((1gngm-1)), for all p defined on {1,....,m} and
satisfying (*) and

(** p(j) =1for je>n+1, and p(1) =1,

we have uniformly with respect top, m, n:
IVT&;'JE(W = 0(1) in a complex ball B(x® d).

(1.6) V ) and more generally (1-t) (V(n) ® V(m"n)) +t V™ for Ogtgl
satisfy (1.1)-(1.2) uniformly for the p satisfying (*) and

( ** (more generally ( *) and

exp(-£) < p(n)/p(1) < exp(R)

(***)

exp(-R) < p(m)/p(n+1) g exp(R))
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- Here

oy X ).

s 4, peei
(1.7) For every m, V(m) satisfies :

i ): V(m)(x X

gy m)-

The verification of (1.1) is easy. We first observe (always with the convention
that x o x ) that :

(1.8) 9, v ( ) =

= x/2) -vv/2 th (V72 (x+x,
and that if |x- xI is gr,

VO7Z (x4, , -t) €rvav
According to the analyticity of t —=th t in the neighborhood B(t*, d ) of t° we
just choose d s.t.

(1.9) dv2v <d /2

and under this condition 9 V(m)(x) is bounded independently of m.

N-vv/2th (Vv/2 (x,+%; )

j+1

Let us observe for future use that :
(1.10) (@ V™)) -

—( (1/2) -v) + (v/2)[th* (\/\T(x +X.
(1.11) 9 ax v (x )-

IS (1-th* (V72 (x, %, )= - ~v/(2 cosh” (Vo72 (x,+x.
(1.12) A, 6 V( x)=0 if lj-kl =0,-1,+1 modulo m.

))+th® (Vv72 (x, i+X; )

j+1

)

j+1

For (1.2) we deduce from §2. :

(1.13) D=((1/2) -v) I

where |_ is the identity in R"™, so we have :

(1.14) ry=a_. (D) =((1/2) -v’).

If we denote by « the operator on R"™ defined by: (tx) ;=X
(1.15) A= -(v'/2) (x +17° ")

The eigenvalues of A are easily computed as -v’ . cos(2nk/m) for k=0,1,......,m-1.
It is then easy to verify that for p satisfying to (¥ :

(1.16) llAllgg(gglgg)sv’.exp(%)

i - We can write :
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Because v’ <1/4, we observe that one can choose & such that :

(1.17) r, = v'.exp(R) <((1/2) -v’)

and we shall make this choice now.

The proof of (1.3) is immediate if we observe that all the second derivatives are
bounded and that we have (1.12).

(1.4) is a consequence of (1.11)-(1.12) by choosing d small enough :
(1.18) 0<d g d, (V' V")

Let us now verify (1.5). We just observe that :

9. = In cosh(v&/72 (x_+x,))+In cosh(vv72 (x_+x_ . )
~1n cosh(vv/2 (x_+x,))-1n cosh(vv/2 (x_ +x

The only j for which axfwf arenot 0 are j=1,n,n+1,m

and using 1.11 one has for each of these terms :

Iaxi%‘lf(x)l < 4Vv/2 Sup, .4 ) (th(v2v 1)

for xe €, Ix-x°|_<d. °

According to the (™), the property (1.5) is clear.

)

n+l1

Let us verify (1.6). We first observe that :

D™= 1-t) DWeD'™* ™ 4 ¢ D™
and :
A[(m) - (1-t) A(n)GBA(m—n) 5 tA(m).

All the properties we need are stable by arithmetical means, so it is sufficient to
treat the case (V'™ & V™ ™) for p satisfying (™) and

( * which can be reduced by separation of variables to the study of V=V ) for
p satisfying ( ¥.

We now observe that lmin(D) =(1/2)-v’ and that [|Al| g¢v’.exp(x).

Because v’ <1/4, it is easy to choose x >0 S.t:

v.exp(x) < (1/2)-v') .

Finally (1.7) is clear from the definition.

Conclusion
If we take d satisfying the two conditions (1.10) and (1.18), we have a



Vol. 65, 1992 Helffer and Sjoéstrand 757

complete analysis of the first eigenvalue of the Dirichlet problem modulo o(h™)
but under the condition (0.3). |

We shall need the same properties for V(m) replaced by

{,‘(m).N =v(m)__ Ej (Xi_ (tc/Z))zN‘

By symmetry we have also the same properties near - X' (m,v).

§2.The harmonic approximation in the case v>1/4 .
Following Kac, we observe that :
20 V™= 016)2," x-x,, )+
+(1716)%, 7 (x, +x, , )'-3, T Incosh(Wo72 (x, +x, . ).
(with the convention x_ . =X, ).
and we can write :
220 V™) - 1/16)5," x,-x, , )+
"'zklf L 4l +x )W)
with
(2.3) qlt,v) = (1/16) t* - 1n cosh(vv/2 t)
To find the minimas we observe that :
(2.4) V(m)(x):,am.min q
If v>1/4,
(2.5) q admits two equal minimas at + t° (t°>0)
where t° satisfies
2.6) t© =4v2v th(x"~72 t).
[t is then easy to see that there are only two points in R"™ s.t. we have equality
in (2.4) and we get the

Lemma 2.1

If v >1/4, the minimum of V'™ is equal to m.min g

and is only attained at the following two points:

(2.5) x, (mv)=+x (my) withx" = (t°72) (1,0.1,.....1).

)

Approximation at the bottom.
At x°, this approximation is given by :
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2.6)Q,(x) = (1/4) 5,7 %° - (v/4) (2,7 (X +%, , )*)

where we have written :

2.7) X=X + X

and

2.8)v' = vl1-th? (72 %))

Here we observe that v’ <1/4, and that the quadratic approximation

is the same as for v <1/4 but with v replaced by v’.

This is well analyzed in [Kal. We shall prove later (see also manuscript [He])
that the harmonic approximation is valid and in particular that the first eigenvalue
of the Schridinger equation is approximated modulo O(mhz) by

m.Minq +h(1/2%) f’; V-4v cos 0 do .

§3. Exponentially weighted estimates for the eigenfunctions.

As a preparation we consider f(t) = In (ch (vV{v/2) t)) so that f(t) is an even
strictly convex function with the asymptotic behavior
(3.1) f(t) ~vV(v/2) t - In 2 + Oexp(-t/C), t = +oo.
If x,ye R, we have f(x-vy)-f(x+y) = f(x-v]) - f{{x+vl),
and we first assume that :
lvl < Ixl and xy 0.
Then [x+yl| g Ix-yland |[x-y|-|x+yl|=2lyl.
Hence
flx-yl) - fllx+yl) ~ Iyl . [x-yl/ (Q+[x-y])
~ lyl.max (|x.lyl)/ (1+max ([xl.lyl)) .
Here we have the convention that a ~. b with a and b >0 (depending of
different parameters) , if (a/b) and (b/a) are bounded uniformly.

In the general case, we then get :

(3.2) f(Ix+y)-f(x-yl) ~ sgn (xy) . min(|xl.ly]).max (Ix|.lyl)/{t+max (|xl.lyl))
and if we assume that max(/x|,lyl) » Const. >0, we obtain :

(3.3) fllx +yl) - f(Ix-y]) ~sgn (xy) . min(|xl.ly]).

We shall use the fact (see §2) that
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(3.4) Vx) = (1/16)%, 7 (x,-x, , )+

+3, 7 vllx +x, , )/2) = (1/4)(Z, xkz)—zkf: Sl +x, , )/2)
with
(3.5) v(t) =q(2t,v) = (1/4) t* - 1n cosh(v2v t)
and recall that for v>1/4, v has a double well with two minimas at + t (v)
with t,(v) >0.

Let 0<g < <8, < <1and consider two types of intervals in R:
Ivpe .

I=1, =[t,-8,t,+8,] or

I=1_=[-t,-8,,-t,+8,].

These intervals correspond to neighborhoods of the wells of v.

Teane

Type 2
I=[t-g,.t+e ] with|t—t | »8,-¢, and [t+t | »8,-¢,.
If I is of the second type then +t, € L

Let us remark also that one can cover R with intervals of this type.

We want to estimate the lowest eigenvalue of the Dirichlet realization of ~hPA+V
inQ = H:n li where Ii is of type 1 or 2 for every j. We write :
>0 if I,c Ie, 00l L 0if Iic] - 2¢,,00[ . We say that (j,k) with j k€ Z/mZ

is a change of sign for a given Q if Ii>=uo' I < 00r Ii<500. I;>0and if ;3,0
(that is 1, meets [-&,.g,]) forallveljkl=, {j+t.j+2,..k-1}.



760 Helffer and Sjostrand H.P.A.

(We define similarly [j.k[, 1j.k], [j.k] and write for instance j<v gk if ve ]jk]).
Let us observe that the number of changes of sign is even.
Let (j, k, ) and (j, k, ) be two consecutive changes of sign so that
i <kL$j2 <k, <j, . Then consider the map x from R" into R":
X = X =x(x)
w1th
xv_ -x, fork, g<vgi,, x =X, for all other v,
For xe Q, we consuier
V(x)-V(k(x)) = [*f((xk Xy )/2)+f((xk ~ Xy, )/2)]
+]- f((x X )/2)+f((x -X,

:81+32
Ifj, =k, -1, then either I, <OI >00rI >01 <:Uandl:heg1
be bounded (using 3.3) from helow by (1/C(e )) BO » where B, >0.
Ifj =k -1, then [, k12 .0 and 9, =- B, £, for some constant B,
(we observe here that f is globally Lipschitzian).
The same discussion holds for {J, where we distinguish between the cases
k,=j,+1and k, #j, +1.
Let us call the change of sign (j.k) strict if k = j+1.

Applymg the same procedure several times, we get a map

KiQ= Hml = I, I =
x—x(x) = xwﬂ.h x -—+x I =+,
such that I' e,0 and such that forx €Q:
(3.6) V(x)-V(x(x)) > (a, (@)/Cley)) -ay(Q) B g,
Here o , (Q) is the number of strict changes of sign and ao(ﬁ) is the number of
l s meetmg[ €4€,]- Notice that « (§)=a0(9).
Now con31der Q=TI I with l,,e 0. Let xigbe the midpoint of Ii and set
X" = (x ..... X
Let k: @@, =(I,)" be the translation with k(x™)=x"+
Using (3.4), we see that for xeQ :
(3.7) V(x)-V(x(x)) » (p(Q)/C(5,))
where B(Q) is the number of I; which do not contain t (or -t,). Notice that
B() is unchanged by the first " "
We now compose our two maps, notice that a,(Q) <p(Q) and choose ¢, so

)/2)]

j2+ 1 ja+ 1
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small thate, < < (:(60)' ' We then get a new map x(x) being the composition of
reflexions in 0 in some of the coordinates and a translation such that

x: Q — Q_,(Qis the original box)

k(x")=x"+ and

(3.8) V(x) - V(x(x)) 2(1/C) (a, (R)+p(R)), x€ Q.

C is here a strictly positive constant, independent of 2, once we have fixed €
and 3, conveniently as explained before.

Let P, denote the Dirichlet realization of ~h®A+V in @ and let i, denote the
lowest eigenvalue of P, . Let p, denote the lowest eigenvalue of _h®A+V on
R". By the minimax principle, we have

(3.9) pygh,

and recall from section 1 that, under the assumption m=0(h NO), we have a
good knowledge of the asymptotics for p, deduced from WKB constructions.
(3.8) shows that :

(3.10) P,-p, >(1/C) (&, () +B()).

Since all our maps take the mid point of the boxes into mid points of the
image - boxes, we also get (cf [Sj] [He-Sj]l), under the assumption
m=0(h" ") .
(3.41) Po-21tx-x) -, (h)3(1/C) (o, (Q) +B(R)) if @ =, .

with a new constant C>0, where

(3.12)p" (h)-p, (h) = 0" ™)

with N(M) tending to oo with M€ IN and h> 0 sufficientty small.

From this point we can imitate the argument of [Sjl (.2 and we only recall the
main steps . We have a o positive function y  with

(3.13) [Ty < (1/2) 2% -x T,y 68) =0,

Xg inCC;(Q) and a measure p(dQ) such that

(3.14) fxg(x)z. exp (-2y,(x)/h) p(dQ) = 1 + O(exp(-1/Ch))

where O is uniform with respect to x.

We first show that :

(3.15) p.rf < Bt oh™).

12"

Let p<pT; we have



762 Helffer and Sjostrand H.P.A.

(3.16)((P-p)x, exp(-y/h)ulX, exp(-y,/h)u)
= (X, exp(-y,/h)(P-p)ulx, exp(-vy,/h)u)
+((hV (X, exp(—wQ/h))zulu)
which can be written as
(3.17)((P-p- |‘§.'3’~4:9|2)Jtsz exp(-y,/h)ulx, exp(-y,/h)u)
= (X, exp(-y /h)(P-plulx, exp(-y,/h)u)
+ (0| J* - 20X VX, Vy_Jexp( -y /h)ulexp(-y,/h)u).
Combining with (3.12) and (3.13), we get :
(™ - X, exp(-y /hul® < (X, exp(-y/h)(P-plulx, exp(-yy/h)u)
+((h2|Vxn|2—2hgixg.ng)exp(—wgfh)ulexp(—wn/h)u).
Integrating with respect to p(d<) gives :
(" - p)(1+0(exp(-1/Ch)I <
< (1+0(exp(-—1/Ch))).(P—p)ulu) +0(exp(-1/Ch) [,
We then take p = p, and get (3.15) and finally (playing with arbitrary M and
using (3.9) and (3.12)) :
(3.18) py=p, + 0(h™) (under the condition m:O(h"No) ).
We next look at exponentially weighted estimates. Let ¥ _ (t) be a positive
function with the shape :

Lw Le
. : o '
M -
Sothat ¥ = 0 nearl, ,

¥, =o>0near]_
and ¥ _ has a small constant slope (in absolute value) outside.
Put¥ (t)=¥, (-t),
(3.19) 0(x) = Inf (2%, (x)), 2% _(x,)).
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Then ¢l, =0and
(3.20) IVo(x)* <(173C)(B() ) if x €.
Let u be the positive normalized eigenfunction associated to p :
(P-p) u=0.Put ¢,(x) =0(x)-¥,(x).
Then
((P-py)xg expldg/h)ult, explp,/h)u)
= (IhV (2, exp(¢,/h)I" ulu)

which we write as
(3.21) ((P-p, -1V ")t exploy/h)ult,, explo,/h)u)

= (202, V2. Vo, +h°| VX * Jexp(0,/h)ulx , exploy/h)u)
Herethbglzs 2|Vol’ + 2 I‘V\I‘Ql2 and combining (3.13), (3.20), (3.14), (3.21)
and (3.16), we get when Q=Q_ :
(3.22) Iix, exp(05/h)ull”

<C (20X VX, Vo +h’| VX |*)exp(o,/h)ult, exp(o,/h)u)
and integrating with respect to p(d$2), we get :
(3.23)J(l+ 0(exp(-1/Ch)) exp(2¢/h)lul* dx

< O(exp(-1/Ch))llexp(@/n)ul’” +llully, + lhully,
which implies :
(3.24) llexp(¢/h)ul”® = O(1) (under the condition m =0(h ™ "o) ).

Let x €¢R". Let " 21, "and "2I_" denote the intervals with the same mid
pomtsas[ and I _but w1th double lengths. We notice that for some ®>0:
¥, (t) >o¢d1st(t 21,) >oc (It-t,l-28,).
Hence):1 X; = ):1 (xl -tg) +mty >- El Ix]. -t,l + mt,
- 2 (1%, - tol-28,) + m t, -2m3,
z 'E[‘+(x1.) /o +(ty-28;)m.

m
|

>
> -

So

EmT (x) >oz(t - 28, )m ozl).“. X; |.

The same estimate holds f or 2 ¥ (x ) so

Mm(E ¥, (x)): ¥ (x))>oc(t —26 ).m - o:l): xI

We have ts —28 >0 and for m large enough we have fmally

(3.25) Min (zf‘m (x)Z, ¥ _(x))3 (1/C) m
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f
(3.26) 2'x; €[-1,+1].
Then, according to (3.19), and (3.24), Theorem 0.8 is a immediate consequence

of (3.25).
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