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Approximation semi-classique du propagateur d'un systéme électromagnétique et
phénoméne de Aharonov-Bohm

Frangois Nicoleau

Département de Mathématiques
U.R.A CNRS n° 758 - Université de Nantes
2, rue de la Houssiniére 44072 Nantes Cedex 03 FRANCE

(3. VIII. 1992, revised 15. I. 1992)

Abstract

We study an electromagnetic physical system : with the classical B.K.W method, we show that the
unitary group of this system is a Fourier integral operator; then, we write this group as an integral
operator with smooth kernel. In particular, we establish, in this case, the well-known Feynman's rule,
wich explains the Aharonov-Bohm effect.

I INTRODUCTION

Cet article est consacré a I'étude semi-classique du groupe unitaire d'un opérateur Hamiltonien quantique
de Schrodinger, donné par 'opérateur différentiel sur R", n32:
2
(1.1) PA,V (h)=2 (hDi—Ai(x)) +Vix)

décrivant I'interaction d'une particule avec un champ électrique VV et un champ magnétique B, o0 :

%
A=ZX Ai dx]. est la 1-forme potentiel magnétique définissant la 2-forme

D].=-1a

champ magnétique B=dA
h est la constante de Planck, paramétre semi-classique.

Ce systéme électromagnétique est régi par ’équation de Schrodinger :

ihd ¥(t,x)=P, ,(h) ¥(tx)
(1.2)
¥(0,x) = ¥(x)
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de solution ¥(t,x) = Ug(t) ¥(x) ol :

-it/h P (h)
(1.3)  Uf=e Y

D. Fujiwara ([FUL), pour le cas A = 0, puis K. Yajima ([YA]), ont abordé ce probléme : en utilisant une
méthode due a Feynman, ils ont obtenu un développement asymptotique en puissances de h du noyau

intégral (ou propagateur) du groupe unitaire donné par (1.3).

Nous proposons ici une autre approche : en utilisant une méthode B. K. W, nous écrivons U:(t), a
temps petit, sous la forme d’un opérateur Fourier intégral global (O.F.I), (cf. [RO]), dont la phase S vérifie
une équation de Hamilton- Jacobi, et dont {'amplitude admet un développement asymptotique
semi - classique. Pour cela, il est nécessaire d'adapter les techniques de Kumanogo ([KU]), pour le produit

des O.P.D, au produit des O.F.I.

Dans une seconde étape, 2 'aide d’un théoréme de phase stationnaire global, nous réécrivons Uﬁ(t) sous la

forme d'un opérateur intégral a noyau ¢ admettant un développement asymptotique semi-classique.

Nous retrouvons ainsi des résultats analogues a ceux de [YA]; notons que Yajima les obtient en écrivant
directement le groupe unitaire comme un opérateur intégrai. et en résolvant les équations de transport
associées, [l obtient ainsi un développement asymptotique du noyau intégral, puis il réécrit cet opérateur
intégral sous la forme d'un O.F.I.

L'approche B.K.W présente un avantage : elle permet de déterminer un développément asymptotique de
I'amplitude de cet O.F.I beaucoup plus simple que celui de [YA]. De plus, I'expression des
difféomorphismes liés aux caractéristiques est plus naturelle lorsque I'on travaille directement dans

'espace des phases.

Comme application, nous donnons une explication d'un phénoméne physique, dénommeé effer de Aharonov
-Bohm, ([AH-BO], [PE-TO], [RU], ... ), phénoméne qui a été notre motivation principale. Briévement,
1'effet de Aharonov-Bohm est un phénoméne d'interférences dues a I'existence d'un potentiel magnétique
dans une zone oU le champ magnétique est identiquement nul. Cet effet apparait ic'i comme une
perturbation dans la phase du noyau intégral, due  la circulation du potentiel magnétique le long d'orbites
classiques, résultat que les physiciens connaissent empiriquement sous le nom de -régledeFeymrian J(cf.

[BA], par exemple).
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Nous obtenons ce résultat en suivant 1a dépendance de solutions d’équations de Hamilton - Jacobi, par

rapport au potentiel magnétique A, dans une zone ou le champ B est nul.

Remerciements
L'auteur tient a exprimer sa reconnaissance a Didier Robert pour les nombreuses discussions fructueuses
concernant ce papier, ainsi qu'au referee de cet article pour lui avoir signalé une erreur dans la premiére

version de ce travail.

Il HYPOTHESES - RESULTATS

Dans toute la suite de cet article, nous supposerons que :

(H)  vec”(R"

V o multi- indice, lo 32, 3C_>0 tel que [,V (x)I< C,

(H)  AeC(R"
Vo multi-indice, kel >1,3C, >0 tel que H;A(x)lg g,

(H,) 3p>0, Yo multi-indice, lol»1, 3C_ >0 tel que R B(x)l < C, <x> P

. /
o0 <x> = (1+x)"2

Remarques
L'hypothése (Hs) a &té introduite par Yajima ([YA]), et permet d'établir des difféomorphismes globaux

nécessaires pour la résolution de I'équation de Hamilton- Jacobi.

On peut aussi remarquer que les champs magnétiques B constants vérifient (H,) - (Hs) , lorsqu'on leur

associe le potentiel magnétique : A(x) =B.x .

Enfin, notons que les hypothéses (Hl) et (Hz) entrainent que PA_V(h) est essentiellement autoadjoint, ce

qui nous permet de délinir Uﬁ(t] par le calcul fonctionnel usuel.
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Notations
a(x.8) = (€~ A(x))*+V(x) est le Hamiltonien classique du systéme.

B™(R]x R,) désigne I'ensemble des fonctions bornées sur R xR} ainsi que leurs dérivées.
Sous les hypothéses (H,) - (H,), on obtient les résultats suivants :

Théoréme 1
Il existe T > 0 assez petit, il existe une fonction bA(t.x.q.h) € B°°(]R:x IRZ) pour |tIgT, il existe une
fonction S, (t,x.q) € c™([-T.TIx R:x R:) telles que :

(i) U:(t) est un opérateur Fourier intégral global  },(S, . b™) , de la forme :

i’/h (S (t.x.q)-y.q)
uﬁ([) w(x)=(2nh)-n”e A b”(t.x,q.h) ¥(y) dy dq

(ii) L'amplitude b* admet un développement asymptotique dans Boo(lex IR:]
Iaiaﬁ [bA(l.x.q.h)-Eo‘i‘N b’ bf(t.x.q)]l < Copn o 2Bl N
ou:
(1) Laphase S ,est solution de I'équation de Hamilion-Jacobi :
3,5, (tx.q)+a(x9,5,(t.x,q)) =0
(H-))
S,(0.x.q)=x.q

et vérifie les estimations suivantes :

¥ o multi-indices,3 Cg>0, ¥ ltl<T, V¥ x,q€ R"

(2-lal -1Bl)
e ",
o M(x,q) = (14 x°+q2)"?

Ia:aq Sa(tx.a)l g Cyg A(x.q)
(2)  Les fonctions b? satisfont les équations de transport suivantes :
a‘h?(t.x,q] = —2(axSA(t,x.q)~A(X)).axbjA(t.X.q}
(T.) -(4,5,(t.x.q)-div A(x)) . b?(t,x,q) +i AxbiA_l(t.x.q)

1
bo(tx.q)=t, b’

imltxa)=0

A . L. L .
avec b _ =0 par convention et vérifient les estimations suivantes .

¥ j20,Vap 3 Copj > O tel que : pour towt (t,x.q) e [-T.TIxR"xR"

3 ] A j+Ipl+1
0,9 (b (tx,0)-8,0)l < C.g It
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Théoréme 2

v te[-T,T], t=o0, U':(t) est un opérateur intégral de noyau U:(l)(x,y) e B® (IR:x IRs), et
admettant un développement asymptotique :

9503 [U (O (x.y) - (2inht) ™2, \ b d2(txy)). exp (i/h $,(Lxy)]l <

N+1-n/2
Cpn - (D]t

0gjgN

ou:
t
(1) Spltxy)=[ 17433, (04 Al (). 3 &, (6)-V (%, (2)) de,
0

Oy 15 S(A (t) étant l'unique orbite classique reliant y au temps 0, a x
au temps t.
A . . . A . .
(2) di sont des fonctions des applications bj , précisées dans la suite de

l'article vérifiant les estimations : la:a.‘; (d?(t.x.y)—s.o)l < Copj - [t

i+t
i i

Ce théoréme fait apparaitre la régle de Feynman sous la forme sujvante :

Théoréme 3
Soient t€]0,T] fixé, (resp.te [-T,0[), x,,v,¢€ R" fixés. On fait I'hypothése suivante :

Soit O un ouvert de R" tel que :

(i) L'unique orbite classique reliant Yoau lemps O el X, au
(H,) temps t appartient a 0.
(ii) B=o0oswO.

t
Notons ¢, (t,x,y) =I A(x,(c)). 3 x, (<) d= lacirculation du potentiel A le long dela  trajectoire
0

classique O gy

Alors : pour X dans un voisinage de X et 'y dans un voisinage de 'y, ona :
¥ o.p multi-indices, YN >0, 3 Copn > O telle que :

Iaiaf, [UR(xy)-exp( iEcl,‘(t.x.y)) ULyl Copn n"
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Remarques
(i) Le théoréme 3 montre que le noyau du propagateur est influencé par B méme au voisinage de points
ou B=0. Ce résultat permet d'expliquer le phénoméme quantique d’'Aharonov-Bohm sur le propagateur.

Nous renvoyons le lecteur intéressé a [BA], [N1], [PE-TO]. ....

(ii) Nous pouvons déduire également du théoréme 3, que cet effet quantique reste indécelable modulo O
(h™) sur les valeurs moyennes d'observables Tr (6.1(P av(D)).

Plus précisément, Tr (8.1(P, ((h)) = Tr (8.f(P;(h))+0 (™) ou 0 est une fonction de localisation
d'espace en dehors du champ magnétique et f une fonction de localisation d'énergie convenable, (cf. [NI]).
Ce résultat est a rapprocher d'un travail de ([B- G- 0]), qui ont démontré que les coefficients du
développement asymptotique de la trace de 1'opérateur de la chaleur sont des fonctions locales de la
2-Torme dA.

En fait, nous pensons que I'effet de Aharonov-Bohm sur ces valeurs moyennes d'observables, est d’'ordre
exponentiellement petit, comme nous le suggeére les travaux de B. Helffer ([HE]) qui a démontré que la
différence entre les états fondamentaux des Hamiltoniens P, ,(h) et P ,(h) est égale a un O Whe™™™,

o>0, pour A et V convenables.
II1 DEMONSTRATION DU THEOREME 1

La méthode d’approximation B.K.W consiste a chercher Uﬂt) sous laformed'un O.F.1:

(3.0)  Up)¥(x)=(2an) ™" H e /M StxI YDy nib(txa) ¥(y) dy dg
En remplagant dans I'équation de Schrodinger (1.2), nous obtenons, pour t, X et q [ixés, une relation dans
I'anneau des séries formelles C[[h]]; en identifiant les coefficients. il est aisé de voir que la fonction S doit
satisfaire (H- J), et les fonctions b, doivent vérifier (Ti)‘
Nous commengons par déterminer les fonctions S et bj , puis nous donnerons un sens mathématique a
toutes ces manipulations formelles.

3.1 Résolution de I'équation de Hamilton- Jacobi

La théorie de Hamilton - Jacobi classique consiste a intégrer I'équation sur les courbes caractéristiques.

Notons exp (t H,)(y.q) = (x, (t.y.q) . p,(t.y.q)) le flot classique associé a a(x ).
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On a les lemmes suivants :

Lemme 3.1
Il existe T > 0 assez petit tel que pour tout t€ [-T,T], pour tous y,q € R", l'application : y —
X, (L,y,q) est un difféomorphisme global c™, d'inverse Y, (Lx.q)
De plus, nous avons les estimations suivantes :

¥ o, multi-indices, lel +1pl 31,3 C,g>0, V te [-T.T], Vx.y.qeR"

(i) 8208 (x, (Ly.q)-y-2tq)l < Copltl ca

) a3 (p,(ty.a)-a)l ¢ Cyyltl®

(i) Ia:az (y,(tx.a)-x+2tq)l < Cgltl Il
Lemme 3.2

1l existe T >0 assez petit tel que pour tout t€ [-T,T], t= 0, I'application : q —x,(Ly.q)  estun
difféomorphisme global C™°, d'inverse q Altxy).
De plus, nous avons les estimations suivantes :
V o.B multi-indices, lo|+(Bl 31, 3C 4> 0. Vi€ [-T.T], t=0, Vx,yeR"
v) 1938 (2t g, (txy)-(x-y)l < Cyltl

Démonstration des lemmes 3.1 et 3.2 : Nous faisons simplement une esquisse de démonstration et
nous renvoyons le lecteur a [N1] et [YA] pour de plus amples détails. Introduisons le formalisme
Newtonien, qui est mieux adapté :

z,(tym)=x,(Ly.dn+Aly)) . v, (tym)=3 2, (tyn)

Désignons par v une des variables Yy, oun, En utilisant I'équation aux variations, il vient facilement :

t
ava(t}=avn+2L [0,B (2, (x)).v, (5)-32 V (2, ()] 3,y
t t
v2] (1 3,8 (2,(0)).v,(e)-22 V (2, () del +B(z, (0))} a,v,(0) do
0 (]

On utilise ensuite I'estimation suivante démontrée dans [YA] et utilisant I'hypothése (Hs) :

T
YoeN", 3C, >0, 3T >0 assez petit, Vyne R": J_T Ia:B (2,(x) . v ()l d < C,

pour en déduire :
(32) o x,(ty.q)-1] ¢ Cll
(3.3) 13 x,(ty.a)-2t] g Ct?

ce qui permet d'établir les difféomorphismes demandés.
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Enfin, les estimations sur les caractéristiques s'obtiennent par récurrence sur kd+[pl de maniére classique,

(cf. [NI], [YA]). =
Nous pouvons en déduire :

Proposition 3.3

3T > 0 assez petit tel que I'équation (H- J) admet une unique solution S, € C”([-T.TIxR"x R")donnée
t
(3.4)  S,(txq)=y,(t.x.q).q +J L,(.t.x.q) de
0

ou:L,(tt,x,q)=1/4 (atZA(‘C)]2+A(2A(1)).a{zA(‘c)—V(ZA(‘c)) est le Lagrangien du systéme sur le

chemino 11— 2,(t) = x,(z,y,(t.x,0).9).

La fonction S, vérifie les relations :
3,5,(Lx.q)=p,(ty,(t.x.9).q)
(3.5)
3,5,(t.x.q) =y, (t.x.q)

et les estimations suivantes :
V o.p nulii-indices, 3 C,4>0, ¥ [ti<T, V x,geR"

(2-I<>:I—IB!]+

(3.6) ia:aﬂ Salt.x.q)l < €y A(x.q)

Démonstration : (3.4) et (3.5) découlent de la théorie classique de Hamilton- Jacobi, (3.6) des

estimations des lemmes 3.1, 3.2 et de (3.5). On pourra consulter [N1], [RO] pour plus de détails. =
3.2 Résolution des équations de transport

Proposition 3.4

. A , .
Les fonctions bi définies par récurrence par :

t
M bAtxa)=exp (-] [A,5,(2,(:).9)-div A (z,(e))] de
0

t
(ii) b, (t.x.a) = bolt.x.q) L [0, (z.2,(2).0)/ bolr.z,(c).0)] d=
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sont solutions des équations de transport (Ti) et vérifient les estimations :
V j»0, Vo, 3 Cy>0 tel que : pour tout (1.x.q) € [-T.TIxR"xR" :
o.p A j+Ipl+1
(3.7) 3, (b (tx.q)-8,0) < Cqltl
Démonstration : Traitons briévement la résolution de b,. Posons u(t) =b(t,x,(t,y,q),q). Par
conséquent, (T,) se traduit, en utilisant (3.5), par I'équation sur u :

u'(t) = -(A,5,(tx,(ty.q).q)-div A (x,(ty.q))) u(t)

D’ou le résultat. La résolution de (Ti) se traite de la méme fagon, a I'aide de la méthode de variation de la
constante. Enlin, les estimations des fonctions bj s'obtiennent par récurrence sur j, en utilisant les lemmes

3.1, 3.2 et laproposition 3.3. m

3.3 Approximation du groupe unitaire

Notons ef: (tx.qh)=Z o, y h b?(t.x.q).
Grace aux estimations (3.6) et (3.7) on peut définir I' O.F.] global , (cf. [RO]) :
(3.8) UMD =J,(S,. ex (tx.q.h))
On définit ensuite I'opérateur :
(3.9)  RN()=(iha-P, ,(h) UN(Y)
En utilisant les propositions 3.3 et 3.4, il est aisé de montrer que :
(3.10) RN = J,(S,. ryltx.q.h)
ou 'amplitude rﬁ est donnée par :
(3.11)  rp(x.ah) =[ihapg+2i 0,5,-A)d,bg+(D,S,-divA)by
vobn 10V (A5, -divA)bg+ A bRl 0"

et vérifie les estimations suivantes :

o.p A N+t N
(3.12) 19,9, ry(t.x.q.h)l g Cgy b Itl
d'aprés la proposition 3.4 et les équations de transport (Tj).
Par conséquent :
N+
(3.13) IRy (W1 ¢ ¢y 01y

d'aprés les théorémes de continuité des O.F.I, (cf [RO]).

N dans 2L3(R").

De la formule de Duhamel, on déduit une relation entre U:(t), U:(t) et Rﬁ(t) )
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Lemme 3.5 : ([RO] Th. IV.30)

Lot
U =UN0- & Ul -) R¥) de, VT,
o

En particulier, le lemme 3.5, (3.13) et I'inégalité || UE(tLUﬁ"(t)I] < Cylu N1 1N nous donnent une

premiére estimation :

(314)  lupv)-uy

VYOl < eyl

. . ) A . .
Nous allons maintenant affiner ces résultats en montrant que U, (t), te [-T.T], est en fait un opérateur

NHhN

Fourier intégral, de phase S, (t.x.q). d’amplitude b, (t,x.q.h) . en los variables (x.q) et vérifiant : Ia:ag
A " .

[b,(tx,a.h)-ey_,(tx,q.h)] | ¢Cogy b 1"+ ¥

Notre méthode consiste A itérer autant de fois que nécessaire la formule de Duhamel.

Notons S: ()= ——ih—R:(t) de sorte que la formule de Duhamel s’écrit :

t
UR (D =UNO +] UA(t-c) SHGe) de
0

UN®) +(USsSY) () par définition

UR(E) +(UNSH) (1) 4ot (UF % Sh ..+ S1) (1) +
(k-1fois)

1]

A N N
(Up*Sy *... *S) (1)
(k fois)

Commencons d'abord par I'estimation triviale suivante, ou I' est 1a fonction Gamma usuelle :

Lemme 3.6
Vte[-T.T]. VN30, 3C;>0,Vkx0 ona:

l(up«sh«..»sh) (0 1 < (¢ a™ 1 M rio ™
(k -fois)

Démonstration : par récurrence, découle immédiatement de (3.13). m

On posera V::h (t) = (U: * S: *,,, * S;’) (t). On déduit du lemme 3.6 quel'ona:
' (k fois)
Corollaire 3.7

Vitel-T.TLona: Up(t) = Up(t) + 2, Vi () dans 2 (L(R%).
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Précisons I'opérateur V':,h(t) :

Lemme 3.8
vV te[-T.T], VN30, VK >0, il existe une amplitude c\ , (t) telle que :
N
Vi n(t) = 3,5, oy (1))
et vérifiant : ¥ op multi-indices, 3 C,qy >0 indépendante de k, ¥ x.q € R",

k+1 hNk '[' k(N+1) r(k)—l.

Ia:az Cy i (tx.a.0) | < (Cgy)
Démonstration : On utilise les estimations précédentes et la formule de produit des O.F.I . On se

reporteraa I’Appendice 2, théorémes B.1etB.2 .

On peut maintenant conclure ce paragraphe :

Démonstration du théoréme 1 : D'aprés le lemme 3.8 on peut définir

(3.15) bﬁ(t.x.q.h) = Zbl cy(txah) € Bm(lelez).

etona:
A N
(3.16)  J (S, by) =2, V(1)
Ay . A , A A A .
Par conséquent, Uﬁt) =J,(S, b)) ou 1a fonction b”est donnée par: b =ey+by . En ce qui concerne les
estimations demandées, de la relation
b§=(ea-eﬁ)+bﬁ . M3N+t

on déduit d’'aprés (3.7), (3.15) et le lemme 3.8 :

A N+ N+2+ M, M+
| 358 by (Lx.a.h) | ¢ Cupy 0V NP e MM

D’'ou le résultat, en prenant M=N+1+[p| . =

tl

IV DEVELOPPEMENT SEMI - CLASSIQUE DU PROPAGATEUR
4.1 introduction

Nous avons montré dans le paragraphe précédent que : U:(t) = J.(S,. b™).

Par conséquent, le noyau distribution de U:(t) s'écrit formellement :
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i/h (S (t,x,q)-y.q)
A bA(t.x.q.h) dq

U:(t) (x,y)= (Zuh)_n‘[ e
Notre but est de déterminer un développement asymptotique de ce noyau distribution, appelé
propagateur, a I'aide d'un théoréme de phase stationnaire global, donné dans 'appendice 1 et d'en déduire
des résultats de régularité sur ce noyau. Nous retrouvons ainsi des résultats proches de ceux de Yajima
avec une méthode différente.
On commence par remarquer que si I'on utilise directement le théoréme de phase stationnaire de
I'appendice 1 en variable q, il apparait alors une singularitéent=0.
Pour éviter ce probléme, on modifie légérement I'écriture du noyau U: (t) (x,y) al'aide d’'un changement

de variables sur I'impulsion q :

A i i’th (ISA(t.x.q/t)-Y-Q) A
U, (1) (x,y) = (2nth) Je b™(tx.a/t.h) dq

et v=th sera considéré comme parameétre semi-classique.

4.2 Etude de la phase ¢, (t,x,y,q) =tS,(t,x,q/t)-y.q

Lemme 4.1
vie [-T.T], t=0,Vx, vy, l'application q - ®,(t.x,y.q) vérifie les conditions (A.2), (A.3) de

l'appendice 1, et admet q=1q,(t,x,y) comme unique point critique.

Démonstration : Déterminons d'abord les points critiques. On doit résoudre :aqtbA(t.x.y.q) =0, i.e
¥,(t.x,a/t)-y = 0. D'aprés le lemme 3.2, I'unique solution est q_=tg, (tx.y).

La condition (A.2) découle immédiatement de la proposition 3.3 et des estimations du lemme 3.1. En ce
qui concerne (A.3),

estimons a:.qflh(t.x.y.q) = 'Tﬁqu(t.x.q/t). d'aprés (3.5). On part de la relation :

xA(l.yA(t.x,q).q) =X quel'on dérive par rapportaq.

D'ou:  ax,(Ly,(tx.4).a)d y,(tx.q) +3 x,(Ly,(t.xq).q)=0.
ie 3 Yaltxa) = - [3x,(Ly,(tx.a).a)] . 3, x, (Ly,(t.x.q).9).
En particulier :

'Taqu(t,x,q/t) = —[ayxA(t,yA(t.x,q/t),q/t)}"’. ‘Taq x, Ly (t.x.q/t).q/1).

En utilisant les estimations (3.2) et (3.3), on en déduit que :

113y, (tx.q/0=0+0 (1th 17 17" [12t/+0 () ]
t g’ A
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D'ou:|dét 3,¥A(tx.q)l >1 pour T assez petit. Par conséquent, la condition (A.3) est vérifiée pour t=0. »

Remarque |

En partant de la relation q, (tx,y,(t.x,q)) =q que I'on différentie par rapport 4 g, on obtient :
3,9, (txy,(t.x.q)).3 y,(tx.q) =1

En particulier, pourq =q e

(4.0) 3 @, (Lxy.ta,(txy) = [13,q,(tx.y)] '=Q,(txy).

Remarque 2

On se rameéne au cas ou A ESt une forme quadratique via un difféomorphisme de Morse de maniére bien
connue. Nous allons la rappeler de fagon a expliciter sa dépendance par rapport au champ magnétique,
dépendance qu'il faudra étudier dans le théoréme 3.

La formule de Taylor avec reste intégral nous donne :

@, (txy.a)- &, (Lxy.ta, (txy) =5 (a-tq, (Lxy)).Q, (txy.a).(a-tq, (t.xy))

1
o Q,(t.x.y.q) =J0 201-5)3] &, (tx.y.ta, (Lxy) +s(g-ta,(txy))) ds

et Q,(txy.ta,(txy))=Q,(txy).

Soit S’n le groupe des matrices (n,n) symétriques.
Notons  G,(t.xy): Q,(txy) "sn -8,

R~ 'RQ,(txy)R

On vérifie facilement que GA(t.x,y) est un difféomorphisme au voisinage de I'identité. L'application
h,(t.xy.q)=G,(t.xy) & Q,(tx.y.q).(q-tg, (t.x.y)) est un difféomorphisme (de Morse) sur un voisinage
deoe lR", pour g dans un voisinage de qA(t,x.y).

Remarquons que ce difféomorphisme est contrdlé uniformément en t, d'aprés les lemmes 3.1, 3.2 et la

proposition 3.3.

4.3 développement asymptotique du propagateur

Le théoréme de la phase stationnaire (cf. Appendice 1) nous améne a poser :
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Notations
g,(txy..) l'inverse du difféomorphisme de Morse.
o A A
b; (t.xy.2) =b; (tx.8,(t.xy.2)/t) .| D g, (t.xy.2)l.
L, =opérateur 3 < 0,9,(t.x.).9,,3,>
sign [ (lanA(t,x.y)) i signature de ([aqu(t.x,y)) -

t
Su(txy)=[ Lo %, ()7 +A( &, (). 0, %, (0)-V( &, (<)) de
(4]

0l X, (t) = x, (z.y,9,,(t.x.y)).
F,(txy)= |dét tayq,c,‘(t,x,yllﬂj2 exp (%u sign [ (taqu(t,x.y))_l]).

Remarque 3
D’aprés le lemme 3.2 :
(42) N, (txy) +511 =0 ()
On en déduit que : sign [(tanA(t,x.y))'t] =-n pour t>0.
On adonc 1a relation plus simple : F,(t.x,y)= ™2 det taqu(t.x,y)lwz-

On peut maintenant démontrer le théoréme 2. On considére le cas t>0 pour simplifier.

Démonstration du théoréme 2 : On part de la relation : bA(t,x.q/t.h)=eﬁ(t.x.q/t.h)
+ [bA(t.x.q/t.h)-eﬁ(t.x,q/t.h)]. D'aprés le théoréme 1 et le théoréme A.1 de I'appendice 1, le noyau

associé au dernier terme est un O ( t(th) ™2

) dans B°°(IR:>< lRS). On applique ensuite de nouveau le
théoréme A.1 pour obtenir le développement asymptotique du noyau distribution associéa eﬁ(t.x.q/ t.h),
( cette amplitude vérifie I'hypothése (A.1) de I'appendice 1 d'aprés les estimations (3.7)). Les applications
d?du théoréme 2 sont données par :

dg(txy)= | dét g, (txy) |
et pour jx1:

+1/2

A A
d, (Lxy)= [dét g, (Lxy) 7. [b(tx,q,(txy)) +

2

Les estimations se vérifient aisément grace a la proposition 3.4 . =

k -1, k2 A
eeto o U T LS (Bp (Lxy.2) ,_ ]

4.4 Phénomeéne de Aharonov-Bohm

Comme corollaire du théoréme 2, nous allons faire apparaitre mathématiquement la régle de Feynman,
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mettant en lumiére I'effet Aharonov-Bohm ([NI], [PE-TO]): nous montrons que le champ magnétique
engendre une perturbation de phase exp ( %c A(t.x,y)). méme dans une zone ouU il est identiquement nul,
ou ¢, (L.x,y) représente la circulation du potentiel A le long de I'unique orbite classique o,  reliant y au
temps 0, au point X au temps t.

Rappelons que les notions de circulation du potentiel et de flux du champ sont intimement liées grace au
théoréme de Stokes.

Ce résultat est obtenu en effectuant une transformation de jauge sur le potentiel magnétique.

Dans toute la suite de ce paragraphe, on suppose vérifiée, pour t€]0,T] fixé, I'hypothése (H,) :

veelotl, x,(ry,q,(t.x,y,))e0et dA =0 sur O.

Nous allons comparer les noyaux intégraux Uﬁ(t)(x.y) et Ug(t)(x,y) pour X proche de X, et y proche de

Yo al'aide du théoréme 2.
Cela nous ameéne a étudier :

Lemme 4.2
Pour x dans un voisinage de X, , y dans un voisinagede 'y , ., ona :
Ve [0.t], x,(ry.q,(txy)) =x,(y.q,(txy))=2().
En particulier, q, (t.x,y)- Aly) = g (t.x,y).

Démonstration : C'est évident en utilisant I'équation d'Euler - Lagrange (cf. [AR])
dt(av LA)—axLA =0 oulL, estle Lagrangien du systéme
et les dépendances ¢ des fonctions : ¢ --xA(‘:..,.) et ¢ —X,(t....) qui sont deux chemins vérifiant cette

équation avec B= 0. On conclut par unicité. m
Explicitons maintenant la transformation de jauge :
Définition

Pour x€R", on pose :

o(x)=c,(txy,) avec les notations du théoréme 3.

On obtient alors :
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Lemme 4.3
Pour x dans un voisinage de x,,, y dans un voisinage de y, ett€[0.T].ona:
(i) el2(t))-ply)=c,(t.2(x)y)
(ii) 3 p(zk))=Alz(z))

Démonstration : (i) découle immédiatement du théoréme de Stokes et de I'hypothése (H,). En ce qui
concerne (ii), en utilisant la relation (3.4) et le lemme 4.2, on obtient :

L, (s:t.2(r).q,(t.xy)) = Ly(six,2(1),q,(t.x.y)) + Alz(s)). 3 .2(s)
Donc, de I'égalité :

Sylr.z(e).q,(txy)) =y.qA(t.x.y)+f L,(s.2(e).q,(tx.y)) ds
(1}

on tire:
(4.3) S, lr.2(z).q,(tx.y)) =Sy (e.2(e).q,(tx.y)) +c, (z.2(e) y)-y.Aly)
ol ¢, (z.2(t).y) représente la circulation du potentiel A le long de I'orbite classique s —2(s) , 0gS<7.
Différentions (4.3) par rapport a x :
9,5,.9,2 +aqu.aqu = 9,5,.9,2 +aqSO.8xq0 +3.C,.9,2
Or, d'aprés le lemme 4.2 et (3.5) ,on a:
3,5,(r.2(1).a, (txy)) = 3. Sy(r.2(e)a,(txy)) =y
3,4, (Lxy) =d,q,(t.x,y)
Par conséquent :
9,5,9,2 =3,5,9,.2 +9.,.9,2
D'autre part, en utilisant le lemme 3.2, ainsi que (3.3), on obtient facilement pour t = 0:
t
29,2(x) =1+0 (k)
Donc, 3 2z(<) est inversible pour ¢ petit non nul et on en déduit :
3,5, (x.2(z).q,,(t.x,y)) = 3,5,(z,2(c).q,(t.x,y)) +3,¢, (z.2(z).y)
(résultat prolongé par continuité en 0).
Toujours d'apreés (3.5) :
3.5, (t.2(t).q, (txy)) = p,lr.2(x).q,(tx.y)).
3,5,(t.2(1).q,(t.xy)) = pyle.z(t).q,(tx.y)).
De plus, p,(e.2(t).9,,(t.xy)) = pyle.z(e).q (t.x.y)) +A(x). ([AR]). Par conséquent, on en déduit :

3,c,(z.2(z)y) = A(2(z)). Or, ¢ ,(v.2(r).y) = p(2(x)) - (y) d'aprés (i). D'ou le résultat. =

Effectuons a présent la transformation de jauge annoncée :
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Définition
Pour xeR", on pose :

A (x) = A(x)-3,0(x)

Remarques

(i) Enutilisant les lemmes 3.1, 3.2, il est facile de voir que A, satisfait I'hypotheése (H,).

(ii) D'autre part, en utilisant le lemme 4.3 (ii), ainsi que les difféomorphismes des lemmes 3.1 et 3.2, on
obtient aisément : pour x dans un voisinage de X, ety dans un voisinage de y, , A, =0 dans un voisinage
dew

Lxy "

On peut en déduire

Lemme 4.4
Pour X dans un voisinage de X, , y dans un voisinagede 'y , ,

Yo B multi-indices , YN0 , 3 Copn >0 tels que :

o, B Al s} N
13,8, (U " (1) (x.y)-Uy(t) (xy) | g Cppy

Démonstration : D'aprés le théoréme 2, nous avons le développement asymptotique suivant :

A A .
U,' (1) (xy) = (2inht) ™2 ', Y(txy) . exp(5 S, (Lx.y)
1

A
Or, il est facile de voir que les applications di "(tx,y) et §A (t.x.y) sont des fonctions locales de la
1

: . . . . ; A
1-forme A, le long des orbitres o, L il suffit pour cela de suivre la construction des fonctions bj et du

difféomorphisme de Morse. D'aprés la remarque (ii), A, =0 sur un voisinage de - D’'ou le résultat. =

On peut maintenant établir :

A A
Démonstration du théoréme 3 : D’aprés le théoréme 2, U, ' (1) (x.,y) et U, (1) (x.y) € B°°(IR:><IR;‘).

D'autre part, comme dA = dA,ona:

i/h ¢(x) -i/h oly)

A Al
U, (0 (xy)=e"®*™y (1) (xy)e

] A
- el/h lo(x) -(y)l Uhl (t) (xy)

On conclut en utilisant le lemme 4.3 (i) et le lemme 4.4 . »
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Appendice | : un théoréme de phase stationnaire

Nous énongons ici un théoréme global de phase stationnaire classique, inspiré de [FU] 5

Notations
v parametre >0.
U = ouvert de R".

I(x.v) = j alx.yy) e Y4y ouy parcourt R".

Hypothéses
(A1) Voup multi-indices, 3C,;>0, Vx.y.v, [9jba(xy.v)l g Cyy.
(A.2) & estavaleurs réelles et Vo,p multi-indices, jol+IBl32, 3C >0,
. B
V xy, 8,9, 8(x.y)l
(A.3) 3 C>0,Vxy, |détad

G

3
2
sy PEYI > C

34

Remarque

L'hypothése (A.3) implique que : Vx€ U, 'applicationy -*ay<l>(x.y) est un difféomorphisme global sur R".

En particulier, il existe un unique point critique y{x) solution de I'équation aytb(x.y) =0.

Notations

laC.,.v) Iy =sup { ll3jasalx.y.v) Il ldd+IBl<p ).
2

Q (X) = GY'Y‘P(X.Y) |Y=Y(x)'

Notons k !'inverse du difféomorphisme de Morse pour x fixé dans U, W étant un voisinage de 0 € R":

kK:UxW - R"

(x .2) —k(x, 2)
R(x,z3,) = opérateur différentiel %< Q7'(x)3,.9, >.

a(x.zv) =a(x.k(x,2)v).| Dk(x,z2) .
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Théoréme A.1

Sous les hypothéses précédentes, 1(..v) € B*(R™) et V N31 :

1(x,v) = (2r/v)™2

{ZO‘RN_,V—]‘/H R"(x,z.az) 5.(x,z,v)|z=o+v'NpN(x,v) }

avec [l py (W)l < Cyg llal W)l y, -

|dét Q(x)l-v2 exp(i[%sign Q(x)+vd(x,y(x))])

Nicoleau

H.P.A.

Démonstration : Posons C:ayrb(x.y). Comme I'application y — { est un difféomorphisme, on en déduit

que 3R>0, lylxR= [{>1.
Soit X une fonction C™° telle que:
0 pour ly|>2R.
xly) =
1 pour |y|lgR.
On écrit I(x,v) sous la forme : 1(x,v) = I,(x,v) +L,(x.v) o0
Lxv) = [ alxyw) xly) e
L(x,v) =J a(x,yv) (1-x(y)) e

iv‘b(x.y)dy_

ive(x.y) dy.

On peut appliquer pour Il(x,v) les techniques usuelles de phase stationnaire :

(x.v) = (22/v)™? [dét Q(x) ™2 exp(il £ sign Q(x) +v&(x.y(x))])

(2

O<k¢N-1

avec || (VI < Cy, llal..v)lly y, - (cf. [HOR], )

v ¥kl R“(x.2.,) i(x.z.v)lz:ow'Np;(x.v) }

I reste a étudier [,(x,v). Sur supp (1-%), [/ >1. Par conséquent, on peut définir 'opérateur différentiel

ivo(x.y) _

L= ICI-ZZ Ci 3, . de sorte que (L-iv) e 0.
j

On intégre Iz(x.v) N -fois par parties al'aidedeL:
L) = v N WYY alyv) (1-x(y)) ™Yy
ou L est 'adjoint formel de L.
D'autre part, | (L) (alx.y.v) (1-x(y))) | < Cx k™ Il al....v) lly -
Done, | Lxw)lgCyv ™ [1 a1t ™ dy .1l al..v) Iy
On effectue le changement de variables y — { . On obtient :
1,6e0Nlg Sy v ™ Halowlly [, 67 last 2,810t

M

< Cyv  lla(.w)lly d’'apres (A.3).

De la méme fagon, on estime a‘;lz(x.v). .
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Appendice 2 : produits d'opérateurs Fourier intégraux

Notations
Pour [ti< T, on définit :
¥(@)=F 2= e 2(y) ay
Ji(t.a) ¥(x) = I exp(% S.(t.x.q)) a(x,q,h) ¥(q) d,q o0 helo1].

t
Jy-a) * b (0= [ Je-n.a) Jyeb) de.
[+]

Théoréme B.1
On suppose que : a,b € Boo(lele:;).
Alors : il existe une fonction amplitude c(t) € B™( IR:x IRz) telle que
J(te®) = (@) * J(b) (0
et:  lle(Wll, <K, llall,q,, bl It
oum(p) et K, sont indépendants de a,b,t.h.

Démonstration : Soit #€ S(R"). Ona: J (¢,b)&(y) = exp(3:S,(t.yn)) blym.h) &(n) d;n
Done : %, J,(x.0)¢(a) = [ expli (5, (x.y.n)-y.q)) bly:n.h) B(n) dyn d.
Par conséquent :
Jylt-2.a) Jle)0(x) = [t [ exph (5, (eyn)+5,(t-rx0)-y.0))
a(x,q.h) b(y.n.h) dy d,q } d(n) du.
Explicitons {....}.

741

Notons ¢(t,z,x.y.q.n) =S,(x.,ym)+S,(t-1,x,q)-y.q . Nous voulons appliquer le théoréme A.1, (phase

stationnaire en les variables y,q) ; par hypothése, 'assertion (A)) est trivialement vérifiée et d'aprés la

proposition 3.3, il en est de méme pour (A,). Vérifions maintenant I'assertion (A,) :
Notons M = (Mik) la matrice définie par blocs : M, =af,q> M, = M21=af,_qcl> ‘M, =az¢.
Nous voulons montrer que | dét M| >C>0 uniformément en toutes les variables.
Onad’aprés (3.5):

3, ®(tr.x.y.qn) =35, (c.ym)-q=p,(ty,(t.ym)n)-q

9, ®(tr.x,y.qm) =3 5, (t-1.x.9)-y =y, (t-1.xq)-y
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D'ou:
Mpp=My=-1
M,=9,p,(s.y,(s.ym)m)a,y, (x.ym)
M22=aqu([—1.x,q)
Estimons ces deux derniers termes ; d'aprés le lemme 3.1, on a: | M, |=0 (1). En ce qui concerne le
dernier terme, on part de la relation :
x,(ty,(tx,q).q) =x
que l'on différentie par rapportaq:
XA (143, x, (1) 3 y,(t)=0
En utilisant les estimations du lemme 3.1, (13x,(t)[=0 (1) ,[3 x,(t)-1]=0 (1) ), on obtient : | M,,
[=0 (t). Par conséquent, | dét M |= 1+0 (t) »J pour [t|< T assez petit. D'ol I'assertion (A,).
On en déduit en particulier : 3 ! point critique (y_, q.) =y (tx,xn) . g (tx,xm)) tel que
Pty lty mlm)=q, (B.1)
yalt-t.x.q) =Y, (B.2)
De (B.2) et de la relation y ,(t.x.q,(t.x,y)) =, on tire:
q.=9q,(t-1,xy,) , 0ge<t, (B.3)
Calculons maintenant la phase au point critique (y_, q_) pour 0t <t, et montrons que :
P(Laxy.q.m) =S, (t.xn) (B.4)
(par continuité, (B.4) se prolongera pour 0¢z gt).
D'aprés (B.3), il vient aussitdt ;
®(texy,.q.m) =S, ey m+S5,(t-1.xy,) (cf. notations § 4.3).
Commengons par montrer (B.4) pourt=0:
Sy(0y m)+5,(tLxy )=y q+S,(txg,(txy))-y. q,(txy,)
Or, (B.1) et (B.3) pour t = 0 nous donnent n = q,(t.x.y ). D'ol le résultat. Pour conclure, il sulfit de dériver
(B.4) par rapport a < et de montrer que cette dérivée est nulle.
3 [S, ey )48, (t-2xy )]1=35,(r.y . n)+3,S, 1.y . n)ay -85, (t-5.xy )+
aYSA(tut.x.yc).atyc
Or,3,5,(ty.m=q, et aYSA(t—-c.X.YC) =-q,(t-txy)=-q, car(y_.q) point critique.
Donc :
3 [S,(xy.m)+8,(t-1xy)]1=35,(x.y . )-35,(t-1.xy,)
=aly.3.5,(ty ) - a(x.axﬁA(t—t,x,yc)) ( équation de Hamilton- Jacobi)
=aly, g (t-txy ) -alep, (t-vyq,(t-1.xy,))
=0 (conservation de I'énergie).

Ceci termine la démonstration de (B.4). En appliquant le théoréme A.l,ona:
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{..}=exp( lif S,(txm)) . cte,x,n.h)
t

avec || ¢ <Ky lallygy - bl - On conclut en posant c(t.xn,h) =J c(t.e,x,n,h) dr. m
0
A l'aide du théoréme B.1, étant donnée une famille (@), ., L€ Bw(lR;lleS), on construit par récurrence

I'amplitude a(t) telle que :
Ja(ta®)=J Ca) == J(.a) (1)
Nous allons améliorer le théoréme B.1, de fagon a obtenir des estimations uniformes sur a(t) "uniformes en

L". C'est I'objet du théoréme suivant :

Théoréme B.2
Vv p>0,3 K, m(p) indépendants de L , des a, et de U tels que :
la ¢ k)" "' rL-0"m

la,l

IKigp m(p) *

La démonstration est assez longue. Nous allons modifier les techniques de [KU] pour les adapter au produit

des opérateurs Fourier intégraux.

Notations

On posera Op,a ¥ (x) =Hexp(i; <x-v&>)alxyg) ¥(y)dy d.§ .

Lemme B.2.1
Soient a,a, € Bw(R’;xIR;I).
Alors : il existe b(t,x,y.&,h)€B”  (resp. b’(t,x,y.E,h)) telle que
Jo(ta)) (ta,) =0pp(t),  (resp. J(t.a) ), (t.a,)=0p,p' (1)
etona: ()l +lIb" ()l ¢ C(p). llafl .la,ll; .
En particulier : il existe a(t,x,y &,h) telle que J, (t,1).],(t,1) =1-0p, (alt))

etona: Ha(t)ﬂps_ Cp).ltl .

Démonstration : Nous renvoyons le lecteur 2 [RO]I. th IV.21, en ce qui concerne le premier point. En ce

qui concerne le second, avec les notations de la démonstration du th IV.21, il suffit de voir que
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1
q —~&(txy.q)= J 3,5, (ty+s(x-y).q) ds est un difféomorphisme ¢ d’inverse q(E) tel que :
0

1 2 1
& =J0 4q Salti) ds =foaqu(t....) ds =1+0(t).

On pose alors : a(t,x,y,g,h) =|dét {aqg) -1.D'ou le résultat. u

|—l
1a=q(g)
Lemme B.2.2 : [KU], [FU],
Soit al(x.u";.y),....aL(x,ﬁ.y) une suite de fonctions de B°°(|R2X|R2X ERs).
On définit :
b(x.E,y.h) = (Zuh}-n(l’_”'[ ...J’Hl‘j‘ 13y +2, 5+, .y+zi_1).exp(% CygeL-ymy)
H:.:jd..-l d'qi dy’. .
OhZ=Y +...+Y; (tgjgL-1), 2z =x-y,n =0,
Alors : Op,b=0p,a, ...0p,2,.
De plus,3C,> 0 indépendante de L telle que : Y o.B.v , lol+|Bl+|v|=m,

o,.p.v L
“ axaéav b "0S (cz) E:ml+...+mL=m H1<i<L I aj ".‘Sn«»lfwmi ?
Lemme B.2.3
Avec les notations du lemme B.2.1, il existe une amplitude a(t,x.£.y.h) telle que (1-0p,

:}.(t))-l=0ph a(t) vérifiant || a I, < C(p).

Démonstration : D'aprés le lemme B.2.1, nous avons formellement :
- k
(1-0p, a(t)) '=1+2,, (Op, a(t))".
Nous allons montrer que le terme de droite est un opérateur pseudodifférentiel. D'aprés le lemme B.2.2, il
existe amplitude a,(t,x.£,y,h) dans B” telle que : Op, a,=(Op, a(t))".

De plus, on a les estimations suivantes : Voa,p.v , lol+Bl+vl=m

k k-
lajafaya, llg (€ 2., Lo o lla(®) 5,7 Ilalt) I3, .0 -
1 kK i

<(C)" (k+1)™ [C(30+6)] “ "™ [C(3n+6+m)] ™ |t .
On choisit T assez petit pour que :
I a:af;a;ak lly< '3 pour k>k(m).
Par conséquent : 1+2,  a (t.x§.y.h) converge vers a(t) dans B*, eton a:
Il a(t) Il < Cy(m).

D'ou le résultat. m
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Lemme B.2.4 : [RO], Th IV.24
Soien a€ B™ (RyxRy), be B (RExRyxRY).
Alors : il existe des amplitudes ¢ () et ¢'(t) telles que
Jplt.e(t) = J,(ta).0p, b (resp. J, (t.c'(t)) = Op,b.], (t.2)).
et e l+lic'(t) I €C,(p) Il allypy 1ol -

Onendéduit :

Corollaire B.2.5
Il existe des amplitude b(t) dans B™ telles que :

Jp(t1). Jh(t.b(t))':l et vérifiant || b(t) |l < C,(p).

On peut maintenant conclure :

Démonstration du théoréme B.2 : On part de :

Jp(t.a(t)) =J0<sl<...<sL_l<t Jalt=s . a)Jy(sy -5 5 8 ).

Jo(s,-s,. ). ) (s.a)ds..ds; _ .
D’aprés le corollaire B.2.5, on construit b, telle que::
*

Jh(si, l).Jh(s]. , bi) =1.
Soit ci définie par :

Jh(si " ci) = Jh(si"si—n 2 ai).ulh(sj_l .1) (cf. démonstration du Th. B.1).
Enfin, soit B; définie par le lemme B.2.1 par :

X

Op, §;= Jh(si .b) ,lh(si . C,).

On en déduit que:
x
Jn(ta(t)) = _[ Joft-sp a) (s ). gy (sp by )

Jnlsp =5y o ap) Jplsp o) 0y sy, bL—z)*

Ju(s,-s.a )., (s,.0) ), (s, b‘)*

Juls, a) Ids,.
= J'Jh(t-sL_,. a.).Jy(s,_, 1).0p, 8 _....0p, g Ilds;.
= IJh(t. a,).0p, g _...Op, g, 1lds, .

On conclut a I'aide des estimations des lemmes B.2.1-B.2.4 . »
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