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Approximation semi-classique du propagateur d'un système électromagnétique et
phénomène de Aharonov-Bohm
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U.R.A CNRS n° 758 - Université de Nantes
2. rue de la Houssinière 44072 Nantes Cedex 03 FRANCE

(3. VIII. 1992, revised 15. I. 1992)

Abstract
We study an electromagnetic physical system : with the classical B.K.W method, we show that the

unitary group of this system is a Fourier integral operator; then, we write this group as an integral
operator with smooth kernel. In particular, we establish, in this case, the well-known Feynman's rule,
wich explains the Aharonov-Bohm effect.

I INTRODUCTION

Cet article est consacré à l'étude semi - classique du groupe unitaire d'un opérateur Hamiltonien quantique

de Schrôdinger, donné par l'opérateur diflérentiel sur Rn, n^2 :

(1.1) PAV (h) 2 (hD,-A,(x))2+V(x)

décrivant l'interaction d'une particule avec un champ électrique VV et un champ magnétique B, où :

D -ia
i

A 2 A. dx est la l-forme potentiel magnétique définissant la 2-forme

champ magnétique B dA

h est la constante de Planck, paramètre semi-classique.

Ce système électromagnétique est régi par l'équation de Schrôdinger :

(1.2)

(ihatï(t.x) PAiV(h)*(t.x)

î'(o,x) 'ï(x)
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de solution *(t,x) u£(t) *(x) où :

-it/hp (t.)
(1.3) U*(t) e

AV

D. Fujiwara ([FU]2), pour le cas A o, puis K. Yajima ([YA]), ont abordé ce problème : en utilisant une

méthode due à Feynman, ils ont obtenu un développement asymptotique en puissances de h du noyau

intégral (ou propagateur) du groupe unitaire donné par (1.3).

Nous proposons ici une autre approche : en utilisant une méthode B. K. W, nous écrivons Uh (t), à

temps petit, sous la forme d'un opérateur Fourier intégral global (O.F.l), (cf. [RO]), dont la phase S vérifie

une équation de Hamilton-Jacobi, et dont l'amplitude admet un développement asymptotique

semi-classique. Pour cela, il est nécessaire d'adapter les techniques de Kumanogo ([KU]), pour le produit

des O.P.D, au produit des O.F.I.

Dans une seconde étape, à l'aide d'un théorème de phase stationnaire global, nous réécrivons U^(t) sous la

forme d'un opérateur intégral à noyau C admettant un développement asymptotique semi - classique.

Nous retrouvons ainsi des résultats analogues à ceux de [YA]; notons que Yajima les obtient en écrivant

directement le groupe unitaire comme un opérateur intégral, et en résolvant les équations de transport

associées. Il obtient ainsi un développement asymptotique du noyau intégral, puis il réécrit cet opérateur

intégral sous la forme d'un O.F.I.

L'approche B.K.W présente un avantage : elle permet de déterminer un développement asymptotique de

l'amplitude de cet O.F.I beaucoup plus simple que celui de [YA]. De plus, l'expression des

difféomorphismes liés aux caractéristiques est plus naturelle lorsque l'on travaille directement dans

l'espace des phases.

Comme application, nous donnons une explication d'un phénomène physique, dénommé effet de Aharonov

-Böhm, ([AH-BO], [PE-TO], [RU],... phénomène qui a été notre motivation principale. Brièvement,

l'effet de Aharonov-Böhm est un phénomène d'interférences dues à l'existence d'un potentiel magnétique

dans une zone où le champ magnétique est identiquement nul. Cet effet apparaît ici comme une

perturbation dans la phase du noyau intégral, due à la circulation du potentiel magnétique le long d'orbites

classiques, résultat que les physiciens connaissent empiriquement sous le nom de règle de Feynman ,(cf.

[BA], par exemple).
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Nous obtenons ce résultat en suivant la dépendance de solutions d'équations de Hamilton-Jacobi. par

rapport au potentiel magnétique A. dans une zone où le champ B est nul.
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II HYPOTHESES - RESULTATS

Dans toute la suite de cet article, nous supposerons que :

(H,) V€C°°(IRn)

Va multi-indice, lalj2.BC >0 tel que |6 V(x)I^C

(HJ A6C°°(IRn)v
Va multi-indice. |a|jl.3Ca>0 tel que l3^A(x)UCa

(H3) 3p>0, Va multi - indice, lai^1,3Ca>0 tel que ^"B(x)UCa<x>"

ou <x> (1 + x

Remarques

L'hypothèse (H3) a été introduite par Yajima ([YA]), et permet d'établir des difféomorphismes globaux

nécessaires pour la résolution de l'équation de Hamilton- Jacobi.

On peut aussi remarquer que les champs magnétiques B constants vérifient (H2) - (H3) lorsqu'on leur

associe le potentiel magnétique : A(x) B.x

Enfin, notons que les hypothèses (H() et (H2) entraînent que PA v(h) est essentiellement autoadjoint, ce

A.
qui nous permet de définir Uh (t) par le calcul fonctionnel usuel.
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Notations

a(x,4) (Ç-A(x)) + V(x) est le Hamiltonien classique du système.

B (RxxR) désigne l'ensemble des fonctions bornées sur RxxR» a'ns' 1ue 'eurs dérivées.

Sous les hypothèses (H,) - (H3), on obtient les résultats suivants :

Théorème 1

// existe T > 0 assez petit, il existe une fonction b t, x, q,h e B R " x R °
pour 111 § T, il existe une

fonction SA(t,x.q) e C°°([- T.T] x Rxx RJJ) telles que :

(i) U h(t) est un opérateur Fourier intégral global Jh(SA b de la forme :

fr i/h(S (t.x.q)-y.q)
U*(t)*(x) (2reh)"nJJ e b (t.x.q.h) *(y) dy dq

(ii) L'amplitude b admet un développement asymptotique dans B (RxxR

|axa>A(t.x.q.h)-z0<j<N h'bf(t.x.q)]| « CapN |t|N+2+"V+1

où:

(l) La phase SAest solution de l'équation de Hamilton-Jacobi

'3tSA(t,x,q) + a(x,3xSA(t,x,q)) 0

(H-J)

.SA(0,x,q) x.q

et vérifie les estimations suivantes :

V a,ß multi-indices, 3 CKp>0, V Itl^T, V x,qeRn

(2-M-IN)
|3x3q SA(t,x,q)| « Ca(( Mx,q) * où Mx.q) (l + x +q

(2) Les fonctions b. satisfont les équations de transport suivantes

dtbA(t,x,q)=-2(axSA(t,x,q)-A(x)).3xbjA(t,x,q)

(T() -(AxSA(t,x,q)-divA(x)) .bj(t.x.q) +i AxbA,(t,x,q)

UA(t,x,q) l,bA,(t,x,q) 0

avec b
_, s o par convention et vérifient les estimations suivantes :

V j ^ 0, V a,ß, 3 Ca(sj > 0 tel que .pour tout (t.x.q s [- T.T] x RnxRn

laX(bf(t,x,q)-5j0)l,c„pj|tr^
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Théorème 2

V te [-T.T], t*0, UA(t) est un opérateur intégral de noyau UA(t)(x,y)e B°° (E°xRJ), et

admettant un développement asymptotique :

k>x8y [UA(t)(x,y)-(2ijtht)"n/2(20<j<N h' dA(t,x,y)L exp (i/h SA(t.x.y))]| «

CapN (h.|t|)N—
où:

ç t
(1) §A(t,x,y)= l/4 3^A(x)2+A(îcA(x)).3^A(t)-V(iA(t))dt,

o

öt x y
: t ~" XA^' étant l'unique orbite classique reliant y au temps 0, à x

au temps t.

(2) d. sont des fonctions des applications b. .précisées dans la suite de

l'article vérifiant les estimations : |3X3^ (dA(t.x,y)-Sj0)| § C-. Iti '*'

Ce théorème fait apparaître la règle de Feynman sous la forme suivante :

Théorème 3

Soient te]o,T] fixé, (respXQ [-T,0[), x0 y0€ Rn fixés. On fait l'hypothèse suivante :

Soit O un ouvert de R tel que :

(H4)

(i) L'unique orbite classique reliant yQau temps 0 et x0 au

temps t appartient à O.

(ii) B =0 surO.

Notons cA(t,x,y)=l A(xA(t)). 3txA(t) d* la circulation du potentiel A le long de la trajectoire
o

classique alx
Alors : pour x dans un voisinage de x0 et y dans un voisinage deyQ, on a:

V a.ß multi-indices, VN s 0, 3 CK„N > 0 telle que :

|3^[UA(t)(x,y)-exp(icA(t,x,y))U^(t)(x,y)]UCa))NhN
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Remarques

(i) Le théorème 3 montre que le noyau du propagateur est influencé par B même au voisinage de points

où B=0. Ce résultat permet d'expliquer le phénomème quantique d'Aharonov-Böhm sur le propagateur.

Nous renvoyons le lecteur intéressé à [BA], [NI], [PE-TO]

(ii) Nous pouvons déduire également du théorème 3, que cet effet quantique reste indécelable modulo O

(h sur les valeurs moyennes d'observables Tr (8.f(PA v(h)).

Plus précisément, Tr (B.f(PA v(h)) Tr (9.f(P0V(h)) + 0 (h°°) où Best une fonction de localisation

d'espace en dehors du champ magnétique et f une fonction de localisation d'énergie convenable, (cf. [NI]).

Ce résultat est à rapprocher d'un travail de ([B-G-o]). qui ont démontré que les coefficients du

développement asymptotique de la trace de l'opérateur de la chaleur sont des fonctions locales de la

2-forme dA.

En fait, nous pensons que l'effet de Aharonov- Böhm sur ces valeurs moyennes d'observables, est d'ordre

exponentiellement petit, comme nous le suggère les travaux de B. Helffer ([HE]) qui a démontré que la

différence entre les états fondamentaux des Hamiltoniens PA v(h) et Pov(h) est égale à un 0 (Vh e
a

a>0, pour A et V convenables.

III DEMONSTRATION DU THEOREME 1

La méthode d'approximation B.K.W consiste à chercher U^t) sous la forme d'un O.F.I :

(3.1) UA(t)*(x) (2Kh)-nJ|ei/h(S(t'xq,-y'q,Zj>0hibi(t,x,q)<F(y)dydq

En remplaçant dans l'équation de Schrôdinger (1.2), nous obtenons, pour t, x et q fixés, une relation dans

l'anneau des séries formelles C[[h]];en identifiant les coefficients, il est aisé de voir que la fonction S doit

satisfaire (H-J), et les fonctions b, doivent vérifier (T.).

Nous commençons par déterminer les fonctions S et b. puis nous donnerons un sens mathématique à

toutes ces manipulations formelles.

3.1 Résolution de l'équation de Hamilton-Jacobi

La théorie de Hamilton- Jacobi classique consiste à intégrer l'équation sur les courbes caractéristiques.

Notons exp (t Ha)(y,q) (xA(t,y,q) pA(t,y,q)) le flot classique associé à a(x,Ç).
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On a les lemmes suivants :

Lemme 3.1

// existe T > 0 assez petit tel que pour toutlÇ. [-T.T], pour tous y ,q £ Rn, 1'application : y —

x A t ,y,q est un difféomorphisme global C d'inverse yA t,x, q

De plus, nous avons les estimations suivantes :

V a.p multi-indices, |a| + |ß|jl, 3 Cap>0, V te [-T.T], Vx.y.qeR"

(O laX^y^-Y-^fa Capiti'^'

(ii) l3ye!>A(t,y.q)-q)U cap|t|w

(iii) |3$(yA(t.x.q)-x + 2tq)| « Cap|t|
W+'

Lemme 3.2

// existe T>0 assezpetil tel que pour tout te[-T,T], t* 0, l'application : q -xA(t,y,q) est un

difféomorphisme global C d'inverse qA t, x .y

De plus, nous avons les estimations suivantes :

V u.$multi-indices, |a| + |ß|>l, 3Cap>0, Vte [-T.T], t*0, Vx,yeRn

(iv) |a;|dy(2tqA(t.x.y)-(x-y))U C„plt|

Démonstration des lemmes 3.1 et 3.2 : Nous faisons simplement une esquisse de démonstration et

nous renvoyons le lecteur à [NI] et [YA] pour de plus amples détails. Introduisons le formalisme

Newtonien, qui est mieux adapté :

zA(t,y,-n) xA(t,y,ÌTi+A(y)) vA(t,y,T|) 3tzA(t.y,T|)

Désignons par v une des variables y, ou i\. En utilisant l'équation aux variations, il vient facilement :

avvA(t)=3vi|+2[ [3XB (zAW).vA(t)-axxV (zAd;))].3vy
o

|-t ft+2I { [J 3XB (zA(t)).vA(t)-3xxV (zAM) dt]+B(zA(o)))avvA(<j) do
O o

On utilise ensuite l'estimation suivante démontrée dans [YA] et utilisant l'hypothèse (H3) :

r T

VaelM", 3Ca>0,3T>0 assez petit, Vy.TieR": J |3XB (zA(-c))| |vA(t)| dt $ CK

pour en déduire :

(3.2) l3yxA(t,y,q)-l| « C|t|

(3.3) |3qxA(t,y,q)-2t| SCt2

ce qui permet d'établir les difféomorphismes demandés.
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Enfin, les estimations sur les caractéristiques s'obtiennent par récurrence sur lal+lßl de manière classique,

(cf. [NI], [YA]). ¦

Nous pouvons en déduire :

Proposition 3.3

3T>0 assez petit tel que l'équation (H-J) admet une unique solution SA€ C ([-T,T] xRaxU")donnée

(3.4) SA(t.x.q) yA(t,x,q).q+j LA(ï,t,x,q) dt

où : LA(*,t,x,q) 1/4 (3^zA(t)) +A(zA(t)).3tzA(t)-V(zA(t)) est le Lagrangien du système sur le

chemina :t - zA(t)= xA(t,yA(t,x,q),q).

La fonction SA vérifie les relations :

'3xSA(t,x,q) pA(t,yA(t.x,q).q)

(3.5)

.3 SA(t,x.q) yA(t.x.q)

et les estimations suivantes :

V a.ß multi-indices,3 Cap>0, V |t|$T, V x,qeRn

(2-lal-lpl)
(3.6) |3X3^ SA(t,x,q)| « Cop Mx.q)

Démonstration : (3.4) et (3.5) découlent de la théorie classique de Hamilton-Jacobi, (3.6) des

estimations des lemmes 3.1, 3.2 et de (3.5). On pourra consulter [NI], [RO] pour plus de détails. ¦

3.2 Résolution des équations de transport

Proposition 3.4

Les fonctions b. définies par récurrence par :

(i) bA(t,x,q) exp (-J [AxSA(t,zAW,q)-div A (zA(i))] dt

(ii) bA ,(t,x,q) b^t.x.q) .J [ iAxbA(t,zA(t),q)/ b£(i.zA(i).q)] dt.
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sont solutions des équations de transport (T.) et vérifient les estimations :

V Js-O, Va,ß, 3 Cap>0 tel que : pour tout (t,x,q)e [-T,T]xRnxRn :

(3.7) |ayq(bA(t.x,q)-8j0)ls Cap Iti
i+lpl+1

Démonstration ; Traitons brièvement la résolution de b0. Posons u(t) b0(t,xA(t,y,q),q). Par

conséquent, (T0) se traduit, en utilisant (3.5). par l'équation sur u :

u'(t)= -(AxSA(t,xA(t.y,q),q)-divA (xA(t,y.q))) u(t)

D'où le résultat. La résolution de (T.) se traite de la même façon, à l'aide de la méthode de variation de la

constante. Enfin, les estimations des fonctions b. s'obtiennent par récurrence sur j, en utilisant les lemmes

3.1, 3.2 et la proposition 3.3. ¦

3.3 Approximation du groupe unitaire

Notons eA (t.x.q.h) 2
0<j<N

h' bA(t,x,q).

Grâce aux estimations (3.6) et (3.7) on peut définir 1' O.F.I global, (cf. [RO]) :

(3.8) uJJ(t) Jh(SA, eA(t,x,q,h))

On définit ensuite l'opérateur :

(3.9) R^t) (ihat-PAV(h)) U^(t)

En utilisant les propositions 3.3 et 3.4, il est aisé de montrer que ;

(3.10) RjJ(t) Jh(SA, rA(t,x.q,h))

A
où 1 amplitude rN est donnée par :

(3.11) rA(t,x,q,h) [ih3tbA+2i (3xSA-A).3xbA+(AxSA-div A).bA_,
A -i .N + 1 r/. „ \ <A .Ai .N+2

+ AxbN_,]. h +[(AxSA-div A).bN + AxbN], h

et vérifie les estimations suivantes :

(3.12) |3^rA(t,X,q,h)U CapNtfa'|t|N

d'après la proposition 3.4 et les équations de transport (T).

Par conséquent ;

(3.13) HRN(t)|| « CNhN+1|t|N dans 2,(L2(Rn)).

d'après les théorèmes de continuité des O.F.I, (cf [RO]).

De la formule de Duhamel, on déduit une relation entre uf(t), Uh(t) et Rh(t).
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Lemme 3.5 : ([RO] Th. IV.30)

uA(t) u*(t)- ìj'ufcd-t) RjJ(t) dt VltUT.

En particulier, le lemme 3.5, (3.13) et l'inégalité II uJJ(t)-uJJ"'(t)|| $ CN Iti
N+1 hN, nous donnent une

première estimation :

(3.14) l|UA(t)-u£-'(t)IU CNlt|N+1hN

Nous allons maintenant affiner ces résultats en montrant que Uh (t), te [-T,T], est en fait un opérateur

Fourier intégral, de phase SA(t,x,q), d'amplitude bA(t,x,q,h), C°°en les variables (x,q) et vérifiant : |3x3q

[bA(t,x,q,h)-eA.1(t,x,q,h)] I «C^ hN |t|N+1+W

Notre méthode consiste à itérer autant de fois que nécessaire la formule de Duhamel.

Notons Sh (t) -irRhlt) de sorte que la formule de Duhamel s'écrit :

uA(t)=uîj(t)+fuA(t-c)s;;(t)dT

uJJ(t) +(UA*sJJ) (t) par définition

u£(t) +«) (t) + + (U^S^... SJJ) (t) +

(k fois)

Commençons d'abord par l'estimation triviale suivante, où r est la fonction Gamma usuelle :

Lemme 3.6

V te[-T,T] VN^O 3 CN>0 Vk^O ona:

II <? su*... * sJJ) (t) lu (c/ hNkitik,N+1) r(k)-.
(k-fois)

Démonstration : par récurrence, découle immédiatement de (3.13). ¦

Onposera v£h(t) (uJJ*s[J*... * sJJ) (t). On déduit du lemme 3.6 que l'on a :

(k fois)

Corollaire 3.7

Vte[-T,T],o«a: UA(t) U*(t) + 2 k>1 v£h(t) <toS,(L2(R°)).
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Précisons l'opérateur Vk h(t) :

Lemme 3,8

V te [- T,T], VN £ 0, Vk £ 0 il existe une amplitude cN t(t) telle que :

<»(t) Jh(SA.cN,k(t))

et vérifiant : V a,ß multi-indices, 3 CaPN > 0 indépendante de k, V x,q e R

i,o,p | ,_ ,k+l Nk k(N + l) ,_,. -1.
I3xaq cNk(t.x,q,h) I «(C„pN) h Iti r(k)

Démonstration : On utilise les estimations précédentes et la formule de produit des O.F.I On se

reportera à l'Appendice 2. théorèmes B.l et B.2 ¦

On peut maintenant conclure ce paragraphe :

Démonstration du théorème 1 : D'après le lemme 3.8 on peut définir

(3.15) bA(t.x,q,h) 2k;(1cNk(t.x.q.h) eB°°(RxxRq).

et on a :

(3.16) Jh(SA.bA)=2kXh(t)
Par conséquent, UA(t) Jh(SA, b où la fonction b est donnée par: b =eN + bN En ce qui concerne les'hv"~ JhwA

estimations demandées, de la relation

bA=(eM-eN) + bM • M^N + l

on déduit d'après (3.7), (3.15) et le lemme 3.8 :

,a,(l A /. - .N + 1
1 N+2 + IPI 1M..1M+1

I3x3, bN (t.x.q.h)UCapNh Iti +C„pMh|tl
D'où le résultat, en prenant M N + l+|ß|. ¦

IV DEVELOPPEMENT SEMI-CLASSIQUE DU PROPAGATEUR

4.1 introduction

Nous avons montré dans le paragraphe précédent que : Uh (t) Jh(SA. b

Par conséquent, le noyau distribution de Uh (t) s'écrit formellement :
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r i/1) (S (t.X.q)-y.q)
UA(t)(x,y) (2«h)""J e

A bA(t,x,q,h) dq

Notre but est de déterminer un développement asymptotique de ce noyau distribution, appelé

propagateur, à l'aide d'un théorème de phase stationnaire global, donné dans l'appendice 1 et d'en déduire

des résultats de régularité sur ce noyau. Nous retrouvons ainsi des résultats proches de ceux de Yajima

avec une méthode différente.

On commence par remarquer que si l'on utilise directement le théorème de phase stationnaire de

l'appendice 1 en variable q, il apparaît alors une singularité en t 0.

Pour éviter ce problème, on modifie légèrement l'écriture du noyau Uh (t) (x,y) à l'aide d'un changement

de variables sur l'impulsion q :

f i/th (tS (t.x.q/t)-y.q)
UA(t)(x.y) (2Rth)"nJ e

A bA(t,x,q/t,h)dq

et v=th sera considéré comme paramètre semi-classique.

4.2 Etude de la phase 4>A(t,x,y,q) tSA(t,x,q/t)-y.q

Lemme 4.1

Vte [-T,T], t* 0,Vx, y, l'application q — *A(t,x,y,q) vérifie les conditions (A.2), (A3) de

l'appendice 1, et admet qc tqA(t,x,y) comme unique point critique.

Démonstration : Déterminons d'abord les points critiques. On doit résoudre : 3q*A(t,x,y.q) 0. i.e

yA(t,x,q/t)-y 0. D'après le lemme 3.2, l'unique solution est qc tqA(t,x,y).

La condition (A.2) découle immédiatement de la proposition 3.3 et des estimations du lemme 3.1. En ce

qui concerne (A.3),

estimons 3q ^(t.x.y.q) -f3qyA(t,x,q/t), d'après (3.5). On part de la relation :

xA(t,yA(t,x,q),q) x que l'on dérive par rapport à q.

D'où : 3yxA(t,yA(t,x,q),q).3qyA(t,x,q) +3q xA(t,yA(t,x,q),q) 0.

i* 3qyA(t,x,q) -[ayxA(t,yA(t,x,q),q)]"'.3qxA(t,yA(t,x,q),q).

En particulier :

-|-3qyA(t,x,q/t) -[dyxA(t,yA(t,x,q/t),q/t)r\ •j-3qxA(t.yA(t,x,q/t),q/t).

En utilisant les estimations (3.2) et (3.3), on en déduit que :

|iaQyA(t,x.q/t)l= [1 + 0 Iti) J"' Iti" [ |2t| + 0 (t2) ]
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D'où : |détâqyA(t,x,q)l jl pour T assez petit. Par conséquent, la condition (A.3) est vérifiée pour t*o.

Remarque 1

En partant de la relation qA(t,x,yA(t,x,q)) q que l'on différentie par rapport à q, on obtient

3yqA(t,x,yA(t,x,q)). 3qyA(t,x,q) I

En particulier, pour q qc :

(4.1) 3q q*A(t,x,y,tqA(t,x,y)) [ t3yqA(t,x,y)] ~'=QA(t,x,y).

Remarque 2

On se ramène au cas où *A est une forme quadratique via un difféomorphisme de Morse de manière bien

connue. Nous allons la rappeler de façon à expliciter sa dépendance par rapport au champ magnétique,

dépendance qu'il faudra étudier dans le théorème 3.

La formule de Taylor avec reste intégral nous donne :

*A(t,x,y,q)-+A(t,x,y,tqA(t,x,y)) -jT(q-tqA(t,x,y)).QA(t,x,y,q).(q-tqA(t,x,y))

où QA(t,x,y,q)=j 2(l-s)23qq*A(t,x,y,tqA(t,x,y) + s(q-tqA(t,x,y))) ds

et QA(t,x.y,tqA(t,x,y)) QA(t,x,y).

Soit §n le groupe des matrices (n.n) symétriques.

Notons GA(t,x,y): QA(t,x,y)"'gn - §n

R - TRQA(t,x,y)R

On vérifie facilement que GA(t,x,y) est un difféomorphisme au voisinage de l'identité. L'application

hA(t,x,y,q) GA(t,x,y)"' .QA(t,x,y,q).(q-tqA(t,x,y)) est un difféomorphisme (de Morse) sur un voisinage

deoeR pourq dans un voisinage de qA(t,x,y).

Remarquons que ce difféomorphisme est contrôlé uniformément en t, d'après les lemmes 3.1, 3.2 et la

proposition 3.3.

4.3 développement asymptotique du propagateur

Le théorème de la phase stationnaire (cf. Appendice i) nous amène à poser :
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Notations

gA(t,x,y,.) l'inverse du difféomorphisme de Morse.

bA(t.x,y.z) bA(t,x.gA(t,x,y,z)/t). I DzgA(t,x,y,z)|.

LA opérateur ^ < t3yqA(t,x,y).3z 3Z>

sign [ (t3yqA(t,x,y))"'] signature de (t3yqA(t,x,y))_1

SA(t,x.y) | ^3,xA(t)2+A(xAM).a,iA(t)-V(iA(t))di:

oùxA(t) xA(t,y,qA(t,x,y)).

FA(t,x,y)= I dét t3yqA(t,x,y)r1/2 exp (i* sign [ (tayqA(t,x.y))"']).

Remarque 3

D'après le lemme 3.2 :

(4.2) l|tayqA(t.X,y)4l|| O (Iti)

On en déduit que : sign [ (tdyqA(t,x,y))"'] -n pour t>0.

On a donc la relation plus simple : FA(t,x,y) i'D/2\ dét tdyqA(t.x,y)f fa

On peut maintenant démontrer le théorème 2. On considère le cas t>0 pour simplifier.

Démonstration du théorème 2 : On part de la relation : bA(t,x.q/t,h) eN(t,x,q/t,h)
+ [b (t,x,q/t,h)-eN(t,x,q/t,h)]. D'après le théorème 1 et le théorème A.l de l'appendice 1, le noyau

associé au dernier terme est un O t(th) + " dans B (RxxRy). On applique ensuite de nouveau le

A/théorème A.l pour obtenir le développement asymptotique du noyau distribution associé à eN(t,x,q/t,h),

cette amplitude vérifie l'hypothèse (A.l) de l'appendice l d'après les estimations (3.7)). Les applications

d. du théorème 2 sont données par :

dA(t.x.y)=|détt3yqA(t,x.y)r,/2

et pour j£l :

dA(t,x,y) I dét tâyqA(t,x.y) fa2 [ bA(t,x,qA(t,x,y)) +

2t+e,i,k>1tkr(k)-lL^&eA(t.x,y.Z))lZi0].

Les estimations se vérifient aisément grâce à la proposition 3.4 ¦

4.4 Phénomène de Aharonov-Böhm

Comme corollaire du théorème 2, nous allons faire apparaître mathématiquement la règle de Feynman,
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mettant en lumière l'effet Aharonov-Böhm ([NI], [PE-TO]): nous montrons que le champ magnétique

engendre une perturbation de phase exp ^-cA(t,x,y)), même dans une zone où il est identiquement nul,

où cA(t,x,y) représente la circulation du potentiel A le long de l'unique orbite classique <ot x reliant y au

temps 0, au point x au temps t.

Rappelons que les notions de circulation du potentiel et de flux du champ sont intimement liées grâce au

théorème de Stokes.

Ce résultat est obtenu en effectuant une transformation de jauge sur le potentiel magnétique.

Dans toute la suite de ce paragraphe, on suppose vérifiée, pour t e ] 0,T] fixé, l'hypothèse (H4) :

Vt e [o.t], xA(t,y0.qA(t.x0,y0))eO et dA o sur O.

Nous allons comparer les noyaux intégraux U^(t)(x,y) et Uh(t)(x,y) pour x proche de x0 et y proche de

y0, à l'aide du théorème 2.

Cela nous amène â étudier :

Lemme 4.2

Pour x dans un voisinage de \Q y dans un voisinage de yQ on a :

Vte [O.t], xA(t,y,qA(t,x,y)) x0(t,y,q0(t,x,y)) z(t).

Enparticulier, qA(t,x,y)-A(y) q0(t,x,y).

Démonstration : C'est évident en utilisant l'équation d'Euler-Lagrange (cf. [AR])

dt(3v LA)-3XLA 0 où LA est le Lagrangien du système

et les dépendances C des fonctions : t ->xA(t,.,.) et i -x^t,.,.) qui sont deux chemins vérifiant cette

équation avec B 0 On conclut par unicité. ¦

Explicitons maintenant la transformation de jauge :

Définition

Pour xeRn, on pose :

<p(x) cA(t,x,y0) avec les notations du théorème 3.

On obtient alors ;
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Lemme 4.3

Pour x dans un voisinage de x0, y dans un voisinage de y0 et t e [o.T], on a :

(i) <p(z(t))-<i>(y) cA(t,z(i),y)

(ii) 3x<p(z(t))=A(z(t))

Démonstration : (i) découle immédiatement du théorème de Stokes et de l'hypothèse (H4). En ce qui

concerne (ii), en utilisant la relation (3.4) et le lemme 4.2, on obtient :

LA(s,x,z(t),qA(t,x,y)) L0(s,t,z(t),q0(t,x,y))+A(z(s)).asz(s)

Donc, de l'égalité :

SA(t,z(t),qA(t,x,y)) y.qA(t,x,y)+j LA(s,i,zM,qA(t,x,y)) ds
o

on tire :

(4.3) SA(t,z(x),qA(t,x,y)) S0(t,z(t),q0(t,x,y)) + cA(t,zM,y)-y.A(y)

où cA(x,z(t),y) représente la circulation du potentiel A le long de l'orbite classique s -z(s), 0 ^ s gt.

Différentions (4.3) par rapport à x :

SXSA3XZ -^qVV^ 3xVxZ +3QS0-3x^O +axCAaxZ

Or, d'après le lemme 4.2 et (3.5) on a :

aqsA(t.z(t).qA(t,x,y))= aqs0(-t,zW,q0(t.x,y)) y

3xqA(t,x,y)=3xq0(t,x,y)

Par conséquent :

3 S..a z =3 S„.3 z + 3 C..3 zx a x x o x x a x

D'autre part, en utilisant le lemme 3.2, ainsi que (3.3), on obtient facilement pour t * 0:

|3xz(t) 1 + 0 (W)

Donc, a^k) est inversible pour 1 petit non nul et on en déduit :

3xSA(t,z(t),qA(t,x.y))= 3xS0(t.z(i:),q0(t,x,y))+3xcA(t.z(i),y)

(résultat prolongé par continuité en 0).

Toujours d'après (3.5) :

3xSA(t,z(t),qA(t,x,y)) pA(t,z(t),qA(t.x,y)).

3xS0(t,z(i),q0(t,x,y)) p0(t,z(t),q0(t,x,y)).

De plus, pA(i,z(t),qA(t,x,y)) Pgh.zM.qgU.x.yM+Afx), ([AR]). Par conséquent, on en déduit :

3xcA(t,z(t),y) A(z(t)). Or, cA(t,z(t),y) =<p(z(t))-(p(y) d'après (i). D'où le résultat. ¦

Effectuons à présent la transformation de jauge annoncée :
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Définition

Pour xeRn, on pose :

A,(x)=A(x)-3x<p(x)

Remarques

(i) En utilisant les lemmes 3.1, 3.2, il est facile de voir que A, satisfait l'hypothèse (H2).

(ii) D'autre part, en utilisant le lemme 4.3 (ii), ainsi que les difféomorphismes des lemmes 3.1 et 3.2, on

obtient aisément : pour x dans un voisinage de x0 et y dans un voisinage de y0 A, =0 dans un voisinage

deot.x.y

On peut en déduire

Lemme 4.4

Pour x dans un voisinage de xQ y dans un voisinage de yQ

Va,ß multi-indices VN^O 3 CaPN >0 tels que :

l3$(Uh'(t)(x,y)-U°(t)(x,y)U CaßN
hN

Démonstration : D'après le théorème 2, nous avons le développement asymptotique suivant :

A A

Uh'(t)(x,y)= (2i*ht)"n/2I h' dj '(t,x,y).exp(^SA(t,x,y))
A

Or, il est facile devoir que les applications d. '(t.x.y) et S. (t,x,y) sont des fonctions locales de la
1

i
A

1-forme A, le long des orbitres a : il suffit pour cela de suivre la construction des fonctions b. et du

difféomorphisme de Morse. D'après la remarque (ii), A, =0 sur un voisinage de wtxy D'où le résultat. ¦

On peut maintenant établir :

A A
Démonstration du théorème 3 : D'après le théorème 2, Uh' (t) (x.y) et Uh (t) (x,y) eB°°(RxxRy).

D'autre part, comme dA dAr on a :

Ujt)(x.y) ei/h*(x)u}(t)(x,y)e-i/h*(y)

ei/hWx)-",y)lu}(t)(x.y)

On conclut en utilisant le lemme 4.3 (i) et le lemme 4.4 ¦
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Appendice 1 : un théorème de phase stationnaire

Nous énonçons ici un théorème global de phase stationnaire classique, inspiré de [FU],.

Notations

v paramètre >o.

U ouvert de Rm.

I(x,v) j a(x,y,v) e"* xy dy où y parcourt Rn

Hypothèses

(A.l) Va.ß multi-indices,3C<xp>0, Vx.y.v, |3x3^a(x,y,v)| ^ CKp.

(A.2) <t> est à valeurs réelles et Va.ß multi-indices, |al + lßl^2, SC.^O.

V X.y, |3x3£*(x,y)| « Cap.

(A.3) 3 C>0, Vx.y, |dét3yy*(x,y)| > C.

Remarque

L'hypothèse (A.3) implique que : Vxe U, l'application y —3 "Mx.y) est un difféomorphisme global sur R

En particulier, il existe un unique point critiquey(x) solution de l'équation 3y>I>(x,y) 0.

Notations

II a(.,.,v) ||p sup Il3x3*a(x,y,v) Il |a| + |ß|<sp }.

Q(x)=32y*(x,y)|y=y(x).

Notons k l'inverse du difféomorphisme de Morse pour x fixé dans U, W étant un voisinage de 0 e R

(k : UxW - Rn

(x ,z) -k(x, z)

R(x,z,3z)= opérateur différentiel j< Q~'(x)32,32 >.

â(x,z,v) a(x,k(x,z),v).| D,k(x,z)|.
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Théorème A.l
Sous les hypothèses précédentes, I(.,v) e B (Rm) et V N jl :

I(x,v) (2R/v)n/2|détQ(x)rI/2exp(i[^signQ(x)+v*(x,y(x))])

{^¦o<k<N-iv /k! R (x,z,32) â(x,z,v)|2=0+v" pN(x,v) }

avec II pN(..v)||p s CNplla(....v)Hm(PiN).

Démonstration : Posons Ç=3y*(x,y). Comme l'application y - Ç est un difféomorphisme, on en déduit

que 3R>0,|ybR=* IÇlji.

Soit X une fonction C telle que :

0 pour |y| j2R.

x(y)= •

.1 pour lyl ^ R.

On écrit I(x,v) sous la forme: I(x,v) Ijfx.vJ + I^x.v) où

I1(x.v) |a(x.y.v)x(y)eiv*,xy)dy.

I2(x.v) {a(x,y,v) (i-x(y)) eiv*(xy,dy.

On peut appliquer pour I^x.v) les techniques usuelles de phase stationnaire :

I,(x.v) (2n/v)n/2 Idét QUlfa2 exp(i[ ^sign Q(x)+v*(x,y(x))])

<2o<k<N-iv"k/k! Rk(x.z,3z) â(x.z.v)|Ix0+v~VN(x,v)}

avec II p'N(..v)||p « CNp II a(.,.,v)||m(p N) (cf. [HOR]M)

Il reste à étudier I2(x,v). Sur supp (l-x), IÇl^l. Par conséquent, on peut définir l'opérateur différentiel

L |Ç| Z Ç. 3 de sorte que (L-iv) e1 x,y=0.
i

On intègre l2(x,v) N-fois par parties à l'aide de L :

I2(x.v) v"N{ (L*)N (a(x.y.v) (i-x(y)) eiv*,xy)dy

où L est l'adjoint formel de L.

D'autre part, I (L*)N (a(x,y,v) (i-x(y))) I «CN Içfa II a(.,.,v) ||N

Doncl I2(x.v)UCNv-NJM)R|çrNdy II a(.,..v) ||„

On effectue le changement de variables y — Ç On obtient :

|l2(x.v)U cNv~N ||a(.,..v)||N}|ç|>1|çrN|détayîr'di;

S CNv~ II a(.,.,v)|lN d'après (A.3).

De la même façon, on estime 3xI2(x,v). ¦
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Appendice 2 : produits d'opérateurs Fourier intégraux

Notations

Pour |t| ^T, on définit:

%(q) Srhf(q)=Je"i/hy-,*(y)(ly

Jh(t,a)*(x) j exp^S^t.x.qJJatx.q.hJiHqJd^oùhelo,!].

Jh(..a) * Jh(.,b) (t) { Jh(t-c,a) Jh(t,b) dt.

Théorème B.l

Onsupposeque : a,b eB (R°xRq).

Alors : il existe une fonction amplitude c(t)eB (R^xR*) telle que

J„(t.c(t))= J„(.,a) * Jh(.,b) (t)

et: llc(t)llp«Kp||a||m(p)||b||m(p)|t|.

où m(p) et K sont indépendants de a,b,t,h.

Démonstration : Soit *e §(R°). On a : Jh(t,b)*(y) jexp(^SA(-t,y,ri)) b(y,i],h) 4>(ti) dht|

Donc : ^ Jh(t,b)*(q) J|exp(^(SA(t,y,Ti)-y.q)) b(y,T),h) *(ti) dhT| dy.

Par conséquent :

Jh(t-t,a) Jh(t,b)*(x) \{ W exp(^ (SA(*,y,T)) + SA(t-i,x,q)-y.q))

a(x,q,h) b(y,t),h) dy dhq 4>(ii) dt|.

Explicitons {....}.

Notons *(t,t,x,y,q,T|) SA(t,y,î|) + SA(t-t,x,q)-y.q Nous voulons appliquer le théorème A.l (phase

stationnaire en les variables y,q) ; par hypothèse, l'assertion [Ax) est trivialement vérifiée et d'après la

proposition 3.3, il en est de même pour (A2). Vérifions maintenant l'assertion (A3) :

Notons M =(Mjk) la matrice définie par blocs : Mu 3 * M^ M21 3y q4> M22 3q<l>.

Nous voulons montrer que I dét MI >C>0 uniformément en toutes les variables.

On a d'après (3.5) :

3y*(t,t,x,y,q.ti) 3ySA(i,y,Ti)-q pAkyA(T,y,T)),T))-q

3q*(t.T,x,y,q,ii)=3qSA(t-i,x,q)-y yA(t-i,x,q)-y
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D'où:

M,2=M21=-l

Mu 3yPA(t'yA(t'y'Tl''1)-3y>'A('t'y',l)

M22 3qyA(t-t,x,q)

Estimons ces deux derniers termes : d'après le lemme 3.1, on a : | M„l O (l). En ce qui concerne le

dernier terme, on part de la relation :

xA(t,yA(t,x,q),q) x

que l'on différentie par rapport à q :

3qxA(t)+3yxA(t).3qyA(t) 0

En utilisant les estimations du lemme 3.1 la xA(t) 1 0 (t) |3yxA(t)-l 1 0 (t) on obtient : I M^
1 0 (t). Par conséquent, I dét M|= 1+0 (t) ^ pour |t|$ Tassez petit. D'où l'assertion (A3).

On en déduit en particulier :3 point critique (yc, qc) (yc(t,t,x,T|), qc(t,t,x,ti)) tel que

pA(i.yA(t.yc.-n).-n) qc (B-0

yA(t-t,x,qc) y(. (B.2)

De (B.2) et de la relation yA(t.x.qA(t.x,y))=y, on tire:

qc qA(t-t,x,yc) ,0$x<t, (B.3)

Calculons maintenant la phase au point critique (y qc) pour 0 ^i< t, et montrons que :

*(t,t,x,yc,qc,ti) SA(t,x,Ti) (B.4)

(par continuité, (B.4) se prolongera pour O^t^t).

D'après (B.3). il vient aussitôt :

<t>(t,t,x,yc,qc,Ti) SA("t,yc,T|) + $A(t-T,x,yc) (cf. notations § 4.3).

Commençons par montrer (B.4) pour t 0 :

SA(o,yc,Ti) + §A(t,x,yc)=yc.Ti+SA(t,x,qA(t,x,yc))-yc.qA(t,x,yc)

Or. (B.l) et (B.3) pourt Onous donnent T) qA(t,x,yc). D'où le résultat. Pour conclure, il suffit de dériver

(B.4) par rapport à t et de montrer que cette dérivée est nulle.

3,tSA(t,yc.i|) + SA(t-t.x.yc)]=a,SA(t.yc.t|)+dJ[SAh.yc.T|).dtyc-at$A(t-t.x(yc) +

aySA(t-i;,x.yc).a,yc

Or, axSA(t,yc,ti) qc etaySA(t-i,x,yc)= -qA(t-t,x,yc)= -qc car (yc,qc) point critique.

Donc:

3,[SA(t,yc,Ti) + SA(t-T,x.yc)]=a,SA(^,yc,Ti)-3tSA(t-t,x,yc)

a(yc, 3xSA(t.yc.i))) -a(x,3x§A(t-t,x,yc)) équation de Hamilton-Jacobi)

a(yc.qA(t-'c,x,yc))-a(x,pA(t-x,yi;,qA(t-t,x,yc))

0 (conservation de l'énergie).

Ceci termine la démonstration de (B.4). En appliquant le théorème A.l, on a:
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{ } exp( ^ SA(t,x,T))) c(t,t,x,T|,h)

avec II c llp^Kp II a Ilm(p). II b ||m(p) On conclut en posant c(t,x,-n.,h) J c(t,t,x,T|,h) dt. ¦

A l'aide du théorème B.l, étant donnée une famille (a.) LeB (RxxRq), on construit par récurrence

l'amplitude a(t) telle que :

Jh(t,a(t)) Jh(.,aL)*...*Jh(.,a1)(t).

Nous allons améliorer le théorème B.l, de façon à obtenir des estimations uniformes sur a(t) "uniformes en

L". C'est l'objet du théorème suivant :

Théorème B.2

V p £ 0, 3 K m(p) indépendants de L des a et del tels que :

l!a(t)||ps (K/itfa'rU-ir'n,,

La démonstration est assez longue. Nous allons modifier les techniques de [KU] pour les adapter au produit

des opérateurs Fourier intégraux.

Notations

On posera Opha* (x)=JJexp(^ <x-y£>) a(x,y,Ç) v(y) dy dhÇ

Lemme B.2.1

Soient a,,a2e B°°(RxxRq).

Alors: ilexiste b(t,x,y,Ç,h)e B (resp. b'(t,x,y,Ç,h)) telleque

Jh(t,a1)Jh(t,a2)* 0phb(t) (resp. Jh(t,a1)*Jh(t,a2) Ophb'(t))

etona:\\b(t\ + \\b'(t)\\ « C,(p). ||a,||p .||a2llp

En particulier : ilexiste a(t,x,y,Ç,h) telleque Jh(t,l).Jh(t,l) =l-Oph(a(t))

e«o««:||a(t)||p«C1(p).|t|

Démonstration : Nous renvoyons le lecteur à [RO]r th IV.21. en ce qui concerne le premier point. En ce

qui concerne le second, avec les notations de la démonstration du th IV.21, il suffit de voir que
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q —Ç(t,x,y,q) J 3xSA(t,y + s(x-y),q) ds est un difféomorphisme C°° d'inverse q(Ç) tel que :

3qH 3x.q SA(t--> dH 3qPA(t,...)dS l+0(t).

On pose alors : a(t,x,y,Ç,h) |dét (3q4) Q(t)l"'-1. D'où le résultat. ¦

Lemme B.2.2 : [KU], [FU],

Soit a,(x,4,y) aL(x,4,y) une suite defonctions de B (r"xR"xR").
On définit :

b(x,ty,h) (2«h)-n(L-1)J ...Jnuj< Laj(y+Zj t+nx .y+zM)exP(l Gl(itL_m)
nuUL-l d1i dVj •

oûzj y1+...+yj (l^j^L-l) zL x-y ,iiL 0.

Alors : Ophb Op^ ...Op^
De plus, 3C2>0 indépendante de L telle que : Va.ß.v |a| + lß| + |v| m,

II 3$3; b ||0< (C2)L2m nuj<L II a, H3n+6+m_.

Lemme B.2.3

Avec les notations du lemme B.2.1, il existe une amplitude â(t,x.(;,y,h) telle que (l - Oph

a(t))"' Oph â(t) vérifiant II â ||p$ C3(p)

Démonstration : D'après le lemme B.2.1, nous avons formellement :

(l-Opha(t))"' l+2k>1(Opha(t))k.

Nous allons montrer que le terme de droite est un opérateur pseudodifférentiel. D'après le lemme B.2.2, il

existe amplitude ak(t,x,^,y,h) dans B telle que : Oph ak (Oph a(t))

De plus, on a les estimations suivantes : Va.ß.v |a|+|ß|+M m

Ila^aX ll0«(c/2m+...+ffi =B
II a(t) ||3k;:6.11 a(t) ll3mn+6+

1 k

*(C/ (k+l)m [C,(3n + 6)] k_m
[C,(3n + 6 + m)] m Iti

i
m i.ik

On choisit T assez petit pour que

II 3x3^3yak ||0§ \ pour k^k(m).

Par conséquent : 1+2., ak(t,x,Ç,y,h) converge vers â(t) dans B et on a :

â(t) ||m « C3(m)

D'où le résultat.
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Lemme B.2.4 : [RO], Th IV.24

&JemaeBoo(RxxRq).b€B00(R°xRçXRy).

Alors : il existe des amplitudes c(t) et c'(t) telles que

Jh(t,c(t)) Jh(t,a).Ophb (resp. Jh(t,c'(t)) Ophb.Jh(t,a)).

et llc(t)|| + ||c'(t)IUC4(p)||a||M(p)||b||M(p).

On en déduit :

Corollaire B.2.5

// existe des amplitude b(t) dans B telles que :

Jh(t,l). Jh(t.b(t))* l et vérifiant \\ b(t) llp«C5(p).

On peut maintenant conclure :

Démonstration du théorème B.2 : On part de :

Jh(t'a<t»=Jo<Si<...«L_i<, V^L-l' aL>-USL-rSL-2' aL-!>- ¦

Jh(s2-s,, a2).Jh(s,. a,) ds,...dsL_,.

D'après le corollaire B.2.5, on construit b. telle que :

Jh(t,,l).j„(l,.t>,),.|.
Soit c. définie par :

Jh(Sj, Cj) Jh(s,-s, a.).Jh(s-_,. l) (cf. démonstration du Th. B.l).

Enfin, soit g, définie par le lemme B.2.1 par :

opnVVvbfaMvCj).
On en déduit que :

Jh(t,a(t)) }jh(t-sL,aL).Jh(SL.l,i)-Jh(sL.1.bL_1)*

VSL-rSL-2' aL)'Jh(sL-2'l)'Jh(sL-2' bL-2)*

Jh<»ï-8i-«iMM-J|.<,r,>i>"

Jn(s,,a,) HdSj.
JjfcU-'L-i'^JhK-i'^-OPhfcL-r-OPh«! ndsi-
fjh(t.âL).ophgL.1....oPhg, nds,.

On conclut à l'aide des estimations des lemmes B.2.1-B.2.4 ¦
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