Zeitschrift: Helvetica Physica Acta

Band: 65 (1992)

Heft: 5

Artikel: Classical theories, atomicity and nonclassical theories
Autor: Ivanov, Al.

DOl: https://doi.org/10.5169/seals-116507

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116507
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv Phys Acta 0018-0238/92/050641-11$1.50+0.20/0
Vol. 65 (1992) (c) 1992 Birkhduser Verlag, Basel

Classical theories, atomicity and nonclassical theories

By Al. Ivanov
Institute of Physical Chemistry, Spl. Independentei 202, R-77208 Bucharest, Romania

(26. XII. 1990, revised 4. III. 1992)

Abstract. The classical theories, represented by a special type of Boolean orthomodular lattices,
are defined. By using the notion of classical theory, several reasons are given, permitting to assume that
any orthomodular lattice which may be considered as a physical theory is “constructed”” from a set of
“classical components”. This assumption leads to an interpretation of the atomicity of physical
theories/orthomodular lattices. Arguments for the existence of nonclassical theories are examined by
employing nonclassical observables, which are also defined in the paper.

1. Introduction

There are physical arguments to consider that any physical theory—if iden-
tified with a collection of *“yes—no” experiments (tests)—has the mathematical
structure of an ortholattice (a lattice with an orthocomplementation defined on it).
Roughly speaking, a physical theory should be a mathematical object able to
describe empirical states (modes of preparation) [1, 2]. Consequently, a physical
theory must have a sufficiently rich mathematical structure, i.e. a structure which
allows the correct description of the relations between states, time-evolutions of the
states, symmetries, etc. It is clear that, from this point of view, ortholattices are too
poor mathematical structures. Therefore, we have to find some other mathematical
properties which confer to ortholattices the quality of being physical theories.

In a previous paper, using the fact that for any ortholattice which may be a
physical theory there exists a compatibility relation defined on it, we proved that
any physical theory is an orthomodular lattice [3]. This does not mean that any
orthomodular lattice is a possible physical theory, so that it is necessary to complete
the structure of orthomodular lattices with some new physically interpretable
properties. It will be shown below that such a property is the atomicity (of
orthomodular lattices).

One of the main purposes of this work is to make clear that any theory/ortho-
modular lattice may be completely embedded into an atomic theory and this is a
physically interpretable statement. The argumentation of this fact is based on a
careful analysis of the so-called classical theories. Since we consider that any theory
may be thought of as a collection of observables, we will define first the observables
as objects which are independent on any theory (Section 2). We will distinguish also
between classical and nonclassical observables. Then it will be seen that there are
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theories which may be naturally considered as “constructed” from classical observ-
ables, so that they appear as a “‘superposition” of classical theories. These will be
called total theories (Section 3). It will be also clear that, even if an arbitrarily given
theory/orthomodular lattice is not total, it may be considered as a subtheory of a
total theory. On the other hand, it will be proved that any total theory is atomic,
and this fact offers an interpretation of the atomicity as a basic property of
orthomodular lattices which are physical theories.

In Section 4 we will discuss the very interesting problem of the existence of
nonclassical theories. It is well known that Heisenberg’s uncertainty principle
assures the existence of pairs of incompatible observables and this fact is naturally
described in the language of Hilbert-space theory. The Hilbert-space theory is a
non-Boolean one (classical theories are Boolean algebras) so that we might think
that the existence of nonclassical theories is a direct consequence of the uncertainty
principle. We will show that there is another interesting point of view. More
precisely, the arguments used in Sections 2—3 do not imply necessarily the existence
of non-Boolean physical theories, so that they appear as being independent on the
uncertainty principle. In other words, the fact that any theory is an orthomodular
atomic lattice does not imply directly the existence of incompatible pairs of
tests/observables. It results that we have to look for a physical argument for the
existence of non-Boolean theories and it seems to be interesting to find one which
does not depend on the incompatibility of tests. It will be seen that it is sufficient
to consider a total theory having a nonclassical observable described by an atomless
Boolean algebra (such as the position of a microparticle). Such a theory is
necessarily a non-Boolean orthomodular lattice. Taking into account this result, we
may affirm that the existence—in a theory—of a nonclassical observable implies
the existence of incompatible tests/observables and, consequently, the uncertainty
principle. We could also say that there exists a close connection between atomicity
and Heisenberg’s uncertainty principle via nonclassical observables.

2. Observables

In this section it will be shown that any observable may be described, in
principle, by an appropriate Boolean algebra. More precisely, it will be seen that the
Boolean algebra associated with a given observable exists, but in order to construct
it effectively we have either to consider some experimental facts, or/and to make
specific physical hypotheses.

Let us consider an observable w. From the empirical point of view, w is a
physical quantity and an experimental procedure permitting to measure it in any
state. Intuitively, we understand by a state a mode of preparation [2]. Suppose that
the result of any single measurement of w is a real number (we restrict ouselves to
this situation for the sake of simplicity, but it must be noted that there are
observables whose “measured values” may be considered as elements of other sets,
like R? or appropriate spaces of functions—here R denotes the set of real numbers
and R? its third Cartesian power). The basic object of our discussion is the
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c-algebra Z(R) of Borel subsets of the real line R. The elements of #(R) may be
interpreted as tests with respect to the observable w : B € (R) represents the test
which gives the answer “yes” when the measured value of the observable w is a
number from B. The set #(R) itself may be organized as a Boolean algebra if we
put B,v B,=B,uUB,, B,AnB,=B,nB,, B-=R—B for all B,, B,, Be #(R).
Taking into account these facts, we may show easily—by a standard reasoning—
that any arbitrarily fixed state o defines an unique probability p, : Z(R) — [0, 1].

Let us consider now a set of states denoted by %. The set
I, ={B € #(R); p,(B) =0 for all ¢ € 4} is an ideal in Z(R) [4]. If no state besides
that contained in ¥ is considered, any element of I, corresponds to the “impossible
test” (the test which gives always the answer “no”). This affirmation has an obvious
statistical character since it does not exclude the possibility to obtain ‘““sometimes”
by single measurements of the test B € I, the answer “yes”. Now it is almost
evident that the quotient algebra #(R)/I, is the Boolean algebra describing the
observable @ when a set of states ¢ is fixed. This is because two Borel sets B,, B,
represent the same test if B, — B,, B, — B, € I,. All these facts lead to the conclu-
sion that an observable w is described by the quotient algebra #(R)I, when ¥ is the
set of all possible states. Unfortunately such a set cannot be defined, so that, for the
moment, we know only that a Boolean algebra describing a given observable
exists and is—in some sense—unique. It will be denoted by #,,. For #, we may
propose different concrete forms, depending on the physical hypotheses which are
made. A model of the Boolean algebra #, may be obtained if there are physical
reasons—related to the measurement of the observable @ —which permit to choose
an ideal 7 whose elements may be considered as corresponding to the “impossible
test”. If such an ideal is given, we consider that £, may be identified with Z(R)/I.
This is the idea which will be used in what follows.

Definition 1. Let 4, = #(R)/I be the Boolean algebra of the observable w. We
say that w is a classical observable if there exists a set S, € Z(R) such that
I={Be#R);BnS, =T}

It would be more correct to consider that #(R)/I is a classical model of the
observable w, but we will often prefer to say simply that w is a classical observable.

The most important property—from the physical point of view—of classical
observables is given in the following proposition, which may be proved without
difficulty.

Proposition 1. Let w be a classical observable and %, = #(R)/I its Boolean
algebra. Then A, is an atomic algebra and the set of its atoms is UAB,,) = {{a};
aesS,}.

Here Q(L) denotes the set of all atoms of the orthomodular lattice L and {4} is the
element of Z(R)/I having as representant the one-element set {a}. The atomicity of
the algebra 4, has a clear physical interpretation, which results directly from the
physical meaning of the ideal /. Indeed, if a € R has the property {a} ¢ I, it results
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that we have accepted the existence of a state ¢ such that p,({a}) #0. Since a € S,
represents a possible result of a single measurement of the observable w, we may
say that there exists at least one mode of preparation (state) such that the
measurement of the test corresponding to {a}, performed on identical copies of this
state, gives the answer ‘“‘yes’” with a statistically significant frequency (we will say
that {a}—or another Borel subset having this property—is statistically significant).
In conclusion, a classical model of an observable w is obtained when a set S,
of possible values of w is chosen, all tests associated with the measurements of w are
described by subsets of S, and any one-element subset of S, is considered to be
statistically significant. It follows that, when a Boolean algebra & is supposed to
describe an observable w and ./ is atomic, we may affirm that @ is a classical
observable. Hence, the following definition appears as being quite natural.

Definition 2. An observable w is said to be nonclassical if 4, is a nonatomic
algebra.

The classification of observables into “‘classical” and ‘“‘nonclassical”, given in
Definitions 1, 2, has an obvious intrinsic character since the observables are defined
as objects which do not depend on any theory. A discussion concerning other
possible classifications of observables into classical and nonclassical is given in
Appendix A.

In what follows any orthomodular lattice will be denoted by a triple (L, <, 1),
where L is a nonempty set, “ <" an order relation on L—such that L is a lattice
with respect to L having a lowest and a greatest element—and “.1” an orthocom-
plementation on the lattice (L, <).

Suppose now that an orthomodular lattice (L, <, 1)—considered as a physi-
cal theory—and the Boolean algebra %, of the observable w are given. We want
to obtain a mathematical form of the statement “w is an observable of the theory
L. Unfortunately, the whole “physical content” of this statement cannot be
expressed in a purely mathematical form. Nevertheless, for our purposes it is
sufficient to work with the following definition.

Definition 3. Let (%4,, <, 1,) be the Boolean algebra of the observable w
and (L', <, 1) a physical theory/orthomodular lattice. We say that w i1s an
observable of the theory L’, if there exists a mapping ¢ : #, — L’ such that:

(1) x <,y <= 0(x) <p(y);
(i) o(x*t») =@(x)* for all xeL’;
(ili) x, € B, i€l and A\,ielx, exists in B, = /\;c,;¢(x,) exists in L’ and
(i €x;) = /\i 9(x;).

We will say often that the pair (¢, w) is an observable of the theory L.
We want to notice also that a mapping ¢ : L —» L’, where L, L’ are orthomod-

ular lattices, having the properties (i)—(iii) from Definition 3—L instead of
A, —will be called a complete embedding. Concerning this definition, we must take
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into account sometimes that it is not complete from the physical point of view.
More precisely, the implication

4., is isomorphic to 1S an
(I) =

an orthosublattice of L observable of L

is true provided that nothing but the “logical structure” of the theory L is
considered. If some other physical facts have to be taken into account, then ¢ must
satisfy some additional conditions. Nevertheless, all results of this paper are

physically correct since the implication (I) was not used for proving them (see also
Appendix A).

3. Atomicity and classical theories

It has been seen in Section 2 that the Boolean algebras of classical observables
are atomic and their atomicity may be interpreted in physical terms. In this section
we will justify the following assertion: any theory is an atomic orthomodular lattice
or may be embedded into such a lattice.

It is important to point out that classical observables exist. Indeed, any
arbitrarily given test a generates a Boolean algebra &/, = {0, a, a*, 1}, where a*
denotes the test which gives the answer “yes” if and only if a gives the answer “no”’.
It i1s easy to understand that o/, may be considered as describing a physical
quantity w,. It is also a trivial fact that w, is a classical observable.

Let (L, <, 1) be a theory/orthomodular lattice. Since L = (J, ., <, the theory
L may be considered as a collection of classical observables interconnected by the
lattice—operations “v* and “ A”. In order to use efficiently this observation, we
need some special technical results concerning orthomodular lattices.

Let (L, <, 1) be an orthomodular lattice and A = L. We will denote by [A4] the
smallest orthomodular sublattice of L containing the set 4 and having the following
property: F = A and v F exists = vF e[A]. Given & ={&/;;1 <i<n} a finite
family of atomic Boolean orthosublattices of L, the set

sz{“i,’\"'Aaik;aikeg(&{k)alSksn}

will be called the nucleus of the family #.

Definition 4. Let (L, <,1) be an orthomodular lattice and
F ={(¢;, w;); 1 <i<n} a finite family of classical observables of L.
(1) # is said to be reproducible if |J'_, ¢,(%#,) <[Qs]
(i) # is said to be independent if 0 ¢ Q.
(i1) # i1s said to be maximal if [ J;_ | ¢;(%,,,)] is a maximal Boolean sublattice
of L.

The following proposition characterizes the reproducible families of classical
observables. It gives also a characterization of independent families of classical
observables when these families are reproducible.
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Proposition 2. Ler (L, <,1l) be an orthomodular lattice and
F ={(¢;,w;); 1 <i<n} a finite family of classical observables of L. Then the
following statements are equivalent:
(1) & is reproducible;
(i) vQz =1;
(i) [F= :(%,,)] is a Boolean sublattice of L.

Proof. Let us denote ¢,(%,) by ;. We will prove first the implication
(11) = (1). Since (o, 7p)K (the relation K is defined by the equivalence
(@, b)K<>a=(anb)v(ianbt) for all yeQz,0eQ(;) (1 <i<n), we have

#=\/,eq, (@ AY).

The sublattices ./, are atomic, so that we may write (J'_, &/; S [Qz]. In order
to prove that (i) = (iii), let us notice first that the elements of Q; are mutually
orthogonal. Indeed, if o, A -~ - A a,,a] A" A, € Qs are two different elements
and o # a;, we may write

A A, So <ot <attAacccaat=@I A ALt
From this fact we get immediately that [Q;] is a Boolean sublattice. Since
o <[Qyf] for all i, 1 <i<mn, it results that [|J/_, ;] =[Qs]. Therefore,
[Uf_, «/;] is a Boolean sublattice.

It remains to prove the implication (iii) = (ii). It is sufficient to examine the
case n =2, since then the proof may be easily obtained by induction. Let
F ={o,,,} be a family of classical observables such that [«/,u./,] is a
Boolean sublattice of L. Since vQ(2/,) =1, we may write for all a € Q(s/,) the

equality « = \/; . o, (@ A B). Hence,

l=vQ)= \ @A) =vQ,, Q.E.D.
et

It may be proved by examples that the reproducibility and the independence of
a family of observables do not imply each other (see Appendix B). The result
expressed in Proposition 1 is important when we have to decide whether a
subtheory of a given nonclassical theory is or not a classical one (an example is
given in [5]).

Definition 5. Let (L, <, 1) be a theory.

(1) A set # of classical observables of the theory L is said to be complete if
it is finite, reproducible, independent and maximal.

(i1) L is said to be a total theory if, given (¢, w) any classical observable of L,
there exists # a complete set of classical observables, such that the family
F U {(p, w)} is reproducible.

(i) L is said to be a classical theory if there exists %, a complete set of
classical observables, such that for any (¢, w), classical observable of L,
the set # U {(¢, w)} is reproducible.
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Let us discuss first the classical theories. They are characterized by the
following proposition, which has some common points with a category of mathe-
matical results concerning the representation of lattice morphisms by measurable
functions [6].

Proposition 3. Let (L, <, 1) be a classical theory. Then the following statements

are true:

(1) L is an atomic Boolean algebra;

(ii) there exist S a set and (L, =, 1) (here A* =S — A for any A€ L,) a
Boolean algebra of subsets of S, having the property x € S = {x} € L,, such
that L is isomorphic to L, and for any (@, w) a classical observable of L there
exists a unique function f,:S—>QAB,) satisfying the property
fo'(B) =o(B) for all Be #,,.

Proof. (i) Let # be a complete set of classical observables having the proper-
ties required by Definition 5(iii) and a € L. Since &/, = L represents a classical
observable and # is maximal, we get a € [, o) e # ©(%B,,)] = [Q5]. It results that
L =[Qz]. Therefore, L is a Boolean algebra and Q(L) = Q.

(i1) Let us denote by (¢;, w;), 1 <i < n, the observables of the set #. Since #
is independent and L =[Q. ], it results that L is a Boolean product of Boolean
algebras 4,,1<i<n. Moreover, if we consider the set S§=Q%,)
X x QA , then L is isomorphic to a Boolean algebra L, of subsets of S,
having the property Q(L,) = {{x}; x € S}. Therefore, any observable (¢, w) of the
theory L is completely described by a complete embedding ¢ : £, — L,. It remains
to prove that there exists a mapping f,, : S = Q(4,,) such that /' '(B) = ¢(B) for all
Be#,. It is easy to see that S = (J,cqu, ) @(®) and a« #a’ = o(a) N(a) # J.
Hence, for any x € S there exists a unique a, € Q(%4,,) such that x € (e, ). It results
that we may define a mapping f,, : S - Q(%#,) by the equality f, (x) =, for all
xeS. If Be#,, then B= v{x;x e€4B,), « < B} and, since ¢ is a complete
embedding, we may write @(B) = (J{¢(x); & € Q(4,,), o < B}. On the other hand,
fo'(B) ={x € S; there exists o < B, a € Q(A,,), x € p(x)} and it is easy to verify
that @(B) =f_'(B), Q.E.D.

Proposition 3 may be considered as justifying our definition of classical
theories. Indeed, if we take L a theory, having a complete set of n classical real
observables, then S = R” and all real classical observables of L are described by
Borel—measurable real functions.

Since there are experimental facts which confirm that any classical observable
may be described in the framework of a classical theory, we will accept the
following axiom.

A. For any arbitrarily given theory (L, <, 1), there exists a total theory
(L’, </, 17) and a complete embedding ¢ : L - L’.

It is obvious that for any arbitrarily given classical observable there exist many
classical theories “containing” it. Axiom A affirms that it is possible to choose, for



648 Ivanov H.P.A.

any classical observable of a theory L, a classical theory such that the union of
these theories may be organized as a total theory having a subtheory isomorphic to
L

The most important result of this section is:

Proposition 4. Any total theory is an atomic orthomodular lattice.

Proof. Let (L, <, 1) be a total theory and % the set of all its classical maximal
subtheories. It may be proved easily that L = u%. Let us consider Ue%. If
o e QUU), then o € Q(L). Indeed, let us suppose that a ¢ Q(L). Then we may find
peL,0<p <a. Obviously, (f, a")K for all o’ € Q(U) and § ¢ U. Then [{f} U] is
a Boolean sublattice including strictly the sublattice U, which is impossible since U
is maximal. It results that « e Q(L). If a € L, A > 0, then there exists U € % such
that ae U and we can find o e Q(U) €Q(L) such that « <a. Therefore,
QL) = Uy ca UU), Q.E.D.

The physically significant result of this section is expressed in the following
statement.

Corollary. Any theory may be completely embedded into an atomic theory.

This result represents—in our opinion—a sufficiently good interpretation of
the atomicity axiom.

4. Nonclassical theories

In previous sections we saw that there are natural arguments to consider
classical models for physical observables. Henceforth, taking into account only such
a kind of arguments, we have no serious motivation to consider nonclassical
theories. In this section we will show that nonclassical theories must be considered
if there are physical motivations for describing some observables by nonclassical
models. This statement is based on the following proposition.

Proposition 5. Let L be a total theory having a nonclassical observable. Then L
is a non-Boolean orthomodular lattice.

Proof. Let {A ;i € I} be the family of all classical maximal theories of L. We
know that any ', is an atomic maximal Boolean orthosublattice of L and
L =J,.; A ;. Let (¢, w) be a nonclassical observable of L. For any b € ¢(4,,) there
exists i € I such that b € 4",. Suppose that b € 4, for all b € ¢(#,,). Then it results
that ¢ is a complete embedding of a nonatomic Boolean algebra into an atomic
Boolean algebra, which is impossible. Indeed, it is known that if a complete
Boolean algebra B may be completely embedded into a complete Boolean algebra
A, then B is also atomic [7]. Therefore, let us consider the minimal completions
RBE, A¥ of the Boolean algebras 4, #"; respectively [8]. Since there exists a
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complete embedding & : ¥ — ¥ and A ¥ is obviously atomic, we find that % is
atomic. It remains to observe that, in this case, %, must be also atomic [8]. But #,,
is nonatomic, so that we obtained a contradiction. It follows that {f";; i € I} has at
least two elements, so that L is a non-Boolean orthomodular lattice, Q.E.D.

We will consider now—as an example of nonclassical observable—the case of
the observable Q corresponding to the measurement of the position of a micropar-
ticle in the “physical space’ R?. It is clear that the possible values of this observable
are points in R’. The Boolean algebra %, may be constructed by considering the
Lebesgue—measurable subsets of R? as tests which determine the position of the
considered microparticle. Let us denote by # and p the class of Lebesgue—mea-
surable subsets of R? and the Lebesgue measure, respectively. It is well known
that—when microparticles are considered-—there are physical reasons to accept
that M e & is statistically significant if and only if u(M) > 0. Taking account of
this hypothesis, we may affirm that 8, = £ /4", where A" ={N € &; u(N) =0}.
The set A" is obviously an ideal of the Boolean algebra .#. The Boolean algebra #,
has no atoms. Indeed, let us consider M e %, u(M) >0. Then there exists
M e %, M’ = M, such that 0 < u(M") < u(M). It follows that A is not an atom
and, consequently, %, is a nonclasical observable. Therefore, any theory describing
systems of microparticles is non-Boolean since it must ‘“contain” the position
observables of the microparticles. It remains to show that there exists at least one
theory having Q as one of its observables. But this is a well known fact: Q is an
observable of the theory whose elements are orthogonal projectors in L*(R?) (the
space of all square—integrable complex functions defined on R?).

It is important to remark that, in our formalism, the existence of non-Boolean
theories results directly from the existence of a nonclassical observable. In other
words, the existence of a nonclassical observable implies the existence of pairs of
tests/observables which are not compatible. It is also interesting to note that a total
theory having Q as an observable has an infinite family of maximal atomic Boolean
sublattices (classical subtheories or classical components).

Proposition 6. Let (L, <, 1) be a total theory such that (¢, Q) is an observable
of L and U the set of all classical components of L. Then % is an infinite set.

Proof. Let U e % be an arbitrarily fixed classical component and B, = ¢(%4,,).
The Boolean sublattice B, nU is complete. Indeed, let {b,;i e I} be a family of
elements of B, " U and a € U. Since B, is complete and (b,, a)K for all i € I, we get

(\/:e1bi, @K. By applying Definition 4(iii) we get \/;.,; b; € U. Now we will prove

that B, N U is an atomic sublattice of B,. Let us denote B, n U by B and consider
a€ B,a>0. Since U is atomic, there exists a € QU),a <a. Let p: U —[0,1] be
the probability defined by the equality

I, a<a’

p(a) ={0 i
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for all a’e U and consider the set B, ={b € B, p(b) =1}. Since B is complete,
ff = A B, € Band f is an atom of B (which is obviously contained in a). Since a < b
for all b € B,, we get a < 8, so that f € B,. Obviously, f is the smallest element of
B,. If B is not an atom of B, then there exists f” € B such that 0 < f” < f. We have
also f—p">0 and g =p"v(f — B’) so that p(B) =p(B") + p(B — B’) = 1. Conse-
quently, p(8”) =1 or p(f — B’) = 1. It follows that we may find y < f3, y € B,, which
is absurd; the atomicity of B, n U is proved. Suppose now that % is finite and let
U, U,,..., U, be its elements. The family & = {B,; B;=B,nU,, 1 <i <n} may
be considered as a family of classical observables of L. Since B, = (J/_ B;, we get
from Proposition 2 that & is a reproducible family and, therefore, B, =[Qg]. This
result is absurd since [Q;] is an atomic sublattice of L and it follows that % must
be an infinite set, Q.E.D.

Appendix A

We will present here another possibility of classifying observables into classical
and nonclassical. Let G be a classical theory and @w an observable. Any triple
(H, &, @), where H is a total theory and &, ¢ are complete embeddings of G
respectively 4, into H, is called an extension of G containing w. Usually we are
interested in such extensions which satisfy certain physical properties, so that we
will consider the so-called #-extensions, where # is a set of physical properties. If
H is a classical (nonclassical) theory we will say that (H, &, ¢) is a 2-classical
(2-nonclassical) extension.

By using these notions we may define 2-classical and #-nonclassical observ-
ables with respect to a given classical theory G. We say that o is a #-classical
observable with respect to G if there exists a #-classical extension of G containing
w. The observable o is said to be #-nonclassical if any £ -extension of G containing
w 1s nonclassical.

From Proposition 5 we get immediately that, given G a classical theory and w
a nonclassical observable, any 2-extension of G containing w is nonclassical. In
other words any nonclassical observable is #-nonclassical with respect to any
classical theory, irrespective of the set 2.

The problem of classifying classical observables is completely solved by Pro-
position 2. Indeed, from this proposition we get that a classical observable w
is #-nonclassical with respect to G if £ contains a condition which implies
that v Q # 1, where Q is the nucleus of the family {£(G), ¢(%,,)}. Such a condition
may be, for example, the existence of a state ¢ whose correspondent p, : H —[0, 1]

has the property >, . o p,(a) < 1 (here Qis assumed to be denumerable). Animportant

case is that when £ contains only the condition of independence of G and w. Then
w is P-classical with respect to G since the Boolean product of the family {G, %, }
is obviously a £ -classical extension of G containing w. It is also interesting to notice
that, even if G, @ are independent, @ may be 2-nonclassical with respect to G since
2 may contain a condition which entails v Q # 1. In Appendix B an example is given
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which proves that such a situation is possible. Finally, if there exists a complete
embedding ¢ : 4, — G and we take 2 = J, then we see that G is a classical extension
of G containing w, situation which corresponds to Definition 3.

In conclusion, besides the “intrinsic”” classification of observables into classical
and nonclassical adopted in Paragraph 2, there are many other classifications,
depending on the “reference classical theory”” G and the set 2 of physical proper-
ties. For any concrete problem which requires such a classification of observables,
we have to choose an appropriate classical theory and a set of relevant physical
properties.

Appendix B

Given p €« M x M a relation on M, we will write (a, b)p if (a, b) € p and (a, b)p
if (a, b) ¢ p. We will denote by L, the lattice of all orthogonal projections in the real
Hilbert space R” and by “L” the orthogonality relation on L,.

Let us construct now an example of a family of independent observables,
which is not reproducible. The Hilbert space R® is ismorphic to the direct sum
R*®R?. We consider the mutually orthogonal one-dimensional projectors
Oy, 02y Oy, 02y € Ly and the orthogonal pairs of one-dimensional projectors
Bi.B.e L,, By, Bs€ L, such that (B, )L, (B, B;,)L for j=3,4. By using the
projectors oy = oy, V oy, &5 =0y V Oa, by =0y, V 0y, by =05 V &y, WE mMay con-
struct the following projectors from L¢: a,=a\ v B,, ax=a5 Vv B,, by =01V B3,
b,=b5 v B,. Since ai =a,,bi =by,a,va,=1,b, v b,=1, it is easy to see that
o ={0,1,a,,a,}, #=1{0,1,b,,b,} are atomic Boolean sublattices of L,. The
family {7, 2} is obviously independent. We will show now that (a,, b,)K. Indeed,
if (a,, b,)K, then, since (a}, b,))K, (b}, a,)K, (a;, b})K, it results that a,, b,, aj, b}
are all elements of a maximal Boolean orthosublattice #". Therefore, f,, ;€ A
since ff, = a, A ai*, By = b, A b}t Tt follows that (B,, f;)K, which is absurd, so that
[«/ U %] is not Boolean and {</, #} is not reproducible. If we denote by f the
projector B, v B,, we see that the family {/’, #’}, where & =[{a},a’, B}l
B’ =[{b1, b5, B}], is reproducible but not independent.
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