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Abstract. A detailed formalism of antinucleon-nucleon scattering in a convenient form for
experimentalists is presented. Special attention is devoted to the discrete C, P and T symmetries as well
as to a discussion of possible direct tests of the fundamental CPT invariance. A phase shift analysis of
antinucleon-nucleon data is-discussed, including electromagnetic and one-pion exchange contributions.

1. Introduction

This article is to be viewed as the fourth in a series devoted to the detailed
formalism of the two-body scattering of spin 1 particles, i.e. reactions of the type

1+2=3+4, s5=1, i=1,...4, (1.1)

The first article [1] was devoted to the elastic scattering of two identical
particles, e.g. proton-proton scattering, or neutron-proton scattering under the
assumption of exact isospin invariance. The second article [2] treated the case of the
elastic scattering of nonidentical particles, e.g. np = np with isospin invariance not
imposed. The third article [3] in the series presented the case of a reaction that is
not self-conjugate under time reversal. This can be viewed as the formalism of time
reversal tests in elastic reactions such as pp = pp, or np = np, or the formalism of
inelastic reactions referred to e.g. X~ p = An, independently of the validity of time
reversal invariance (TRI). .

The above articles presented a scattering formalism with 5, 6 and 8 amplitudes,
respectively. Lorentz (or Galilei) invariance was always imposed, as was parity
conservation and the Pauli principle for identical particles. TRI was imposed in the
first two. These articles will be referred to as I, II and III, respectively.

*) Unité de Recherche des Universités Paris 11 et Paris 6 associée au CNRS.
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The purpose of the present article is to complete the series by adapting the
formalism to the case of antinucleon-nucleon scattering. Our task is simplified by
the great similarity between the pp = pp and ap = Ap formalism on the one hand
and the pp = pp and np = np one on the other hand. Throughout the article we
use the similarities but stress the differences. Special attention is devoted to the
discrete C, P and T symmetries and in particular to a discussion of possible direct
tests of the fundamental CPT invariance. The role of G-parity is discussed.

Our aim is to provide a detailed formalism of antinucleon-nucleon scattering
in a convenient form for experimentalists. One of our motivation is related with
improvements of the LEAR facility at CERN [4, 5] and the KAON factory
project at TRIUMF. The beam intensity increases and antiprotons are regularly
delivered at LEAR making a new generation of precise experiments possible. The
fact that polarization experiments have already been performed at LEAR raises
similar questions of amplitude reconstruction, phase shift analysis, etc. as in
nucleon-nucleon scattering. In the pp elastic scattering case for instance, several
collaborations like the PS173 experiment [6], PS172 [7], PS198 [8] and PS199
(elastic scattering and charge-exchange) are using a polarized target for their
measurements while a project for the future intends to produce an accelerated
polarized antiproton beam [9]. This would allow in principle a complete study of
the spin dependence of the NN elastic scattering matrix.

Experiments done at LEAR have been stimulating theoretical investigations
and provided new insights into many physical problems, such as the existence or
nonexistence of baryonium states (antidiquark-diquark states) [10, 11], other
mesonic resonances (quasinuclear bound states of a nucleon and an antinucleon)
[12, 13] such as the AX(1565) [14] or atomic bound states from bag models [15].
The measured polarization observables help to discriminate between the various
optical and phenomenological potential models [16—20]. Detailed information on
the antinucleon-nucleon scattering amplitudes would also contribute, via analytic-
ity and crossing symmetry, to our knowledge of the nucleon-nucleon interaction.

In Section 2 we discuss the very general form of the scattering matrix (16
amplitudes) and crossing relations expressed in the invariant basis. All experimen-
tal quantities with at most 2-spin indices are expressed in the center-of-mass
system (CM) in terms of the amplitudes in Section 3. Section 4 is devoted to all
possible direct tests of CPT invariance in a single reaction, namely pp elastic, both
in the CM and in the laboratory system (ls). The electromagnetic corrections
present in the NN system are calculated in Section 5 and the one-pion exchange
(OPE) amplitudes in this context are given in Section 6. The formalism and
guidelines for a NN phase shift analysis using the results of the two preceding
sections are discussed in Section 7. Conclusions are drawn in Section 8.

2. The scattering matrix and crossing relations

Let us first consider a general binary reaction (1.1) involving four massive
particles of spin 1/2. We assume that the scattering matrix M is invariant under
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Lorentz or Galilei transformations (and hence under rotations in the CM). If no
discrete symmetries are assumed (parity, time reversal invariance (TRI) or charge
conjugation invariance (CC)), the scattering matrix will involve 16 independent
amplitudes that are functions of energy and scattering angle.

We shall first write this matrix in the CM system, introducing 16 invariant
amplitudes. We have

M(k’, k) =3{(a + b) + (a — b)0,,62, + (¢ + d)0 1,0 + (¢ — d)01,05
+ e(01, + 02,) + A(01,62 — 0102) +q(01 +02) + 1O\ — O2mn)
+ 5(01102, + 61,02) + (01,1020 — G1,02,,)
+ Fi(01, — 02,) + F5(01n + 02) + F3(01, — 02)
+ G1(01,02, + 01,,02;) + G2(61,,02, + 0,,,62,,)
+ G3(01,02 — 61,02,) } (2.1)
where

A=k xk’))

kxk|, T=@E+k/k+Ek, m=0F-k/k -k (22)

¢, and G, are the Pauli 2 x 2 matrices and kK and K’ are unit vectors in the
direction of the incident and scattered particles in the CM, respectively.

Let us now restrict to the special case of antinucleon-nucleon scattering, i.e.
to the reactions

a) pp=pp, b) Ain=nn, c) ap = 7p, 23)
d) pn = pn, e) nn = pp, f) pp = 7An. .

Assuming that isospin is conserved in the NN interaction we can express the
scattering matrices for all reactions in (2.3) as

pp|M|pp)y = (Ain|M|An) = 3(My + M),
{pp|M|finy = {in|M|pp) = 3(M, — M,) (2.4)
pn|M|pn> = {aAp|M|ap> = M,

where M, and M, are the isospin 7 =0 and I =1 sets of amplitudes, respectively.

Reactions (2.3a,b) are self-conjugate under CPT and also under charge
conjugation, (2.3a, b, c,d) are self conjugate under time reversal (being elastic).
All these reactions are self conjugate under G-parity [21].

In Table 1 we list the properties of the amplitudes in (2.1) with respect to
parity P, particle-antiparticle conjugation (or C-parity) and time reversal 7.

The scattering formalism with five amplitudes a, b, ¢, d, e was developed in I,
the amplitude f=F, was included in II (for np = np scattering). Eight ampli-
tudes were allowed in III, namely a, b, ¢, d, e, f=F,, g =G, and h. In pro-
ton-proton scattering f and h violate the Pauli principle, g and h violate TRI.
In neutron-proton scattering f and 4 violate the generalized Pauli principle, i.e.
isospin invariance.
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Table 1

Invariance properties of the invariant amplitudes in equation (2.1)
with respect to parity P, charge conjugation C, time reversal T and
their product CPT. (““ + ” = invariant, “ —” = changes sign under
the transformation).

Amplitude P C T CPT
a + + + -+
b + -+ + +
¢ =+ + + =+
d =+ + + +
e + + + +
h + —~ ~ +
q = = + +
r - + — +
N - — + +
t = + = +
Fl + - + -
F, — - o -
F3 = + + =
G; + + - -
G, — — — —
G3 = + + =

For antinucleon-nucleon scattering C-conjugation plays the role of the Pauli
principle in nucleon-nucleon scattering. Thus, if P, T and C are conserved sepa-
rately, only the five amplitudes a,...,e contribute to pp = pp and fAn = nn
scattering. The reactions (2.3c) and (2.3d) are not self-conjugate under CC,
hence the amplitude F, is also allowed to be present (as it is in
np = np scattering), but it violates G-parity and is consequently expected to be
small. Reactions (2.3e) and (2.3f) on the other hand, are not elastic, hence
T-reversal in itself poses no restrictions and the amplitude G, is allowed.
Again, it violates G-parity and is hence expected to be small (as compared to
a,...,e).

The spin structure in the elastic reaction pp = pp provides a unique possibil-
ity to test CPT invariance directly [22—-26]. A glance at Table 1 shows that while
11 amplitudes violate one or more of the symmetries C, P and 7, only 6 of
them, namely F; and G; (i =1, 2, 3) violate CPT invariance.

Finally let us add a few words on analyticity and crossing symmetry. The
elements of the scattering matrix are assumed to be analytic functions of the
kinematic variables. Furthermore the same matrix considered in different kine-
matic regions describes the different channels NN = NN and NN = NN. The
crossing matrices for helicity amplitudes can be found e.g. in Refs [21, 27-29].
Here we present it for the invariant amplitudes 4 =(a, b, ¢, d, €) assuming that
the five amplitude formalism applies. We have

A=M.A4 (2.5)
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where
r cos2(y +6) isin2(y +6)
A 0 0 0 A
| 0 0 0 1 0
M. = 0 0 -1 0 0 | (2.6)
: 0 1 0 0 0
isin2(y +0) cos 2(xy + &)
A 0O 0 O A
- >,
and

cos y =[st/(s —dm?)(t —4m?]'?,  sin y = 2mu/(s — d4m?)(t —4m?)]'/?
cos 0 =(t —u)/(s —4m?),  sin @ =2,/ut/(s — 4m?) (2.7)
A=cos4(y+0) and i=./—1.

The Mandelstam variables s, ¢t and u (not to be confused with the ampli-
tudes s and ¢ of eq. (2.1)), in terms of the particle four-momenta p; are

s=(p1+p)% t=(p,—p;)* and u=(p, —py)>

This crossing relation is valid for the strong and the electromagnetic interactions.
However, in the latter case, it must be remembered that charge conjugation
changes the sign of the charges involved.

3. Experimental quantities

If all the fundamental discrete symmetries are assumed to be valid, then the
scattering formalism for NN = NN scattering coincides with that of NN = NN
scattering. Thus the formulas for all CM and Is experimental quantities in terms
of the scattering amplitudes can be taken from I for reactions (2.3a) and (2.3b);
from II for (2.3c) and (2.3d) with F, =/, and from III for (2.3e) and (2.3f) with
G, =g. All amplitudes in equation (2.1) except a, b, ¢, d, e and respectively f for
reactions (2.3c), (2.3d) or g for (2.3e), (2.3f), should be set equal to zero.

In view of the fundamental importance of the CPT theorem it is worthwhile
to discuss possible tests in detail. To do this we develop the 16 amplitude
formalism of equation (2.1) at least for polarization tensors involving two or less
spin labels. The resulting formulas are used in tests of CPT invariance in
pp = pp scattering. The formalism of course applies to arbitrary reactions of the
type (1.1).

We first introduce an abbreviated notation for the scattering matrix M,
putting

M=3{My+ M,,0,, + M,,0,, + M_,,0,,02 } (3.1)
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where summation from 1 to 3 over repeated labels is understood. Comparing
equations (3.1) and (2.1) we have

My=a+b, M, =q+ F;, M,,=r+F,, M, =e+F,

M, =q—F,, M,, = —r+F,, M, =e—F,

M,=c—d, M, =—-h+G,, M,=s5+G,, (3.2)
M, =h+G,, M,..=c+d, M, =—t+G,,

M, =s— G, M,,=t+G,, M, =a—b.

Using the same notations as in earlier articles I, II, . III, we write a general
observable as
60X, =1 Tra,,0,, Mo, 6, M1 (3.3)

pai

where ¢ is the unpolarized differential cross section and the labels from left to right
correspond to the spin of the scattered, recoil, beam and target particle respectively.
In the CM the labels take the values 0, /, m, n (where 0 means “unpolarized” for the
beam or target, or “non measured” for the scattered or recoil particle). In the Is we
use the usual sets of orthonormal vectors

(i, k5 =[x KD,  (AK,§ =[xk, (k"3 =[xk (3.4)

where k, kK’ and k" are unit vectors in the direction of the initial, scattered and recoil
particle Is momenta, respectively.
In terms of the amplitudes (3.1) we calculate the CM observables as

0 =3{|Mo|* + M, M}, + M, M%, + M, M} (3.5)
04,00 =3{2 Re (MoM¥% + M M%) + ¢, Im (M, M% + M, M%)} (3.6a)
OP,yoo =5{2 Re (M M3, + M\ M%) — &, ITm (Mo, M3, + M, M},)}  (3.6b)
0Agoio = 512 Re (MM ¥, + My, M}) + &5, Im (M, M}, + M, M%)} (3.6¢)
0Ppp0o =3{2 Re (MoM?}, + My M},) — &, Im (M MY, + M, M%)} (3.6d)
A, = %{5:; Re M, MY, + M M} + M, M}, — MM}, —M,M3,

— M, M%)+ Re MM} + M\;M3% + (M, + M,,, + M,,, )M}

- MM} — M, M3, — M;, M}]

+ &y Im M| MY + £, Im M M3, (3.7)
=3{0,, Re (M, M}, + M, M} + M, ,M}, — MM}, — M,M},

-M,, M)+ Re MM} + M, M3, + M, + M,,, + M, )M,

-M M} —-M, M}, —M, M]

ocC

pgqoo

— Epp Im M| M}, — €, Im My, MY} (3.8)
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(3.9)

+2 Re (Mo M%, + M, M%) — 26, Tm (MyM%, + M, M%)} (3.10)

+M,, M¥)+ Re (MOM + M M35, +M MY — M MF
+ &iap Im MlaMggq - gqab Im M2aM;|z7}

+MmmM:n) +Re (MOM +M1pM2k+MapM:a _MkpM:a
- apab Im MlaMz‘k + Ekab Im M2aM;rkb}

{6 RC( MlmM MlnMnl anM:‘m +M11Mr=':1m +MIIM:n

(3.11)
2{5pk Re ( MlmM MInMrzl anM:m + MIIM:‘:zm T MIerTn

(3.12)

The expressions for the above observables in terms of the invariant amplitudes
of equation (2.1) are given in Table 2.

Table 2

CM observables with at most two spin indices expressed in terms of the 16 scattering amplitudes (2.1).

20 =

204

oonn

20C

nnoo

26D

nonoe

20D

onon

20K

onne

20K

noon

204

ocoon

20P, nooo =

20Aoono =

@ + (B + [e[* +[a]* + le[* + |4 + g + |r[* + |sI?
P+ E P+ B+ P 4G + |G + (G5

=laf* = 6] = [c[* + |dP + |ef — |B]* — |Fi [ + |G,

+2Im (—s*F, 4+ t*F; — ¢*G, — r*G;)

= |aP = [P = le[* + 4P + |e[’ = [4F — |, + Gy

_2Im(_S*F2+[*F3_q*G2_"r*G3)

=laf +[6] = | = |dI* + |ef — 2" + |, [* - |G, ?

—2Re (Fr*F, + g*F; + 1*G, — s*Gs)

=laf* +[b]* = [el* = |d[* + |el* — |n[* + |Fi[* — |G,

+2Re (r*F, + q*F; + t*G, — s*G5)

= a6 + e ~ |dP +[e + 4 — |Fi [ — |G,

—21Im (9* — r*s + FXG, + F%G,)

= af? — B + e ~ [aF+ e + P — |F P~ |G, P

+21Im (g*t — r*s + F4G, + F*G,)

=Re (2a*e + q*s + r*t — 2b*F, + 1*F, + s*F, + r*G, — ¢*G, + F£G, — F*G,)
+1Im (—2c*h + q*r + 5*t + 2d*G, — q*F, + r*F; — s*G, — t*G; — FA F; + G3G;)
Re (2a*e + g*s + r*t + 2b*F, — t*F, — s*F, — r*G, + q*G; + F¥G, — F¥G;)
+1Im (—2c*h+q*r +s*t —2d*G, + q*F, — r*F, + s*G, + t*G, — F3F, + G3G,)
Re (2a*e + q*s + r*t + 2b*F, — t*F, — s*F, — r*G, + ¢*G, + F*G, — F*G,)

—Im (—2c*h + g*r + 5*1 — 2d*G, + q*F, — r*F; + s*G, + t*G, — F*F, + G%G,)
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Table 2. Contd

26P0n00 =
204

oool =

20P

looo

26A

oole —

20-F’oloo =

204 =

ooom

20P

mooo

20P

omoo

204

oomo ~

zaAooIl =

204

oomm

Re (2a*e + g*s + r*t — 2b*F, + 1*F, + s*F; + }*GZ —q*Gy+ F¥G,— F¥G,)
—Im (—2¢*h + q*r + s*t + 2d*G, — q*F, + r*F; — s*G, — t*G; — FAF; + G3G,)
Re[(@* + b* + c* —d¥)g — (a* + b* — c* + d¥)F;
+e*(s+G;) —h*(r+ F,) +r*G,+ s*F, + FG; + FXG,]
+Im[(—a*+b*—c*—d*)t +(a*—b*—c*—d*)G,
+e*(—r+F)+h*(—s+G,) —r*F, +5*G, — FtF, + G1G;]
Re [(a* + b* + c* —d*)g + (a* + b* — c* — d*)F,
+eXs—G;) —h*(r—F,) —r*G,—s*F, + F¥G, + F3G|]
+Im[(—a*+b*—c*—d*)t —(a* —b* —c* — d*)G,

—e*(r+ F,) —h*(s + G,) + r*F, —s*G, — FtF, + G{G,]

Re [(a* + b* + c¢* —d*)g + (a* + b* — c* — d¥)F,

+e*(s —Gy) —h*(r—F) —r*G,—s*F, + F1G; + F%G|]
—Im[(—a*+b*—c* —d*)t —(a* —b* — c* —d*G,

—e¥*(r + F,) —h*(s + G3) + r*F, —s*G, — F}F, + G{G,]
Re[(a* + b* + c* —d¥)g — (a* + b* —c* + d*)F,

+e*s +G,y) —h*(r+ F,) +r*G,+ s*F, + F¥G; + FXG|]
—Im[(—a*+b*—c*—d*)t + (a* —b* — c* — d¥)G,
+e*(—r+F)+h*(—s+G;) —r*F, +5*G, — F{F, + G¥G,]
Re[(—a* —b*+c*+d*)r + (a* + b* +c* + d*)F,
+e*(—t+G,)+h*(g+ F3) +9*G, — t*F, + F}G,+ F1G|]
+Im[(—a*+b*+c*—d*)s+(—a*+b*—c*+d*)G,
+e*(—q + Fy) —h*(t + G,) —q*F, —t*G, — F{F; + G¥G,]

=Re[(a*+b*—c*—d*)r +(@*+b*+c*+d*F,

+e*(t +G,) +h*(—q + F3) + 9*G, — t*F, — F{G, — F1G,]
+Im[(@* —b* —c*+d¥)s + (—a* + b* — c* +d*)G,
+e*g+ F)+h*(t —G,) —q*F, —t*G,+ FtF, — G}G,]
Re[(—a* —b*+c*+d*)r + (a* + b* + c* + d*)F,
+eX(—1+Gy) +h*(g + F3) + ¢*G, — 1*F, + F1 G, + F3G|]
—Im[(—a*+b*+c*—d*)s+(—a*+b*—c*+d%G,
+e*(—q + F;) —h*(t + G,) —q*F, —1*G, — F1 F; + G1G,]
Re [(a* + b* —c* —d*)r + (a* + b* + c* + d¥)F,

+e*(t +G,) +h*(—q + F3) +q*G, — t*F, — F{ G, — F3G)]
—Im [(a* — b* — c* + d*)s + (—a* + b* — c* + d*)G,
+e*(g+ F) +h*(t = Gy) —q*F, —1*G, + F1 F; - G} G,]
2Re (b*c —a*d) +2Im (h*F, + e*G, + s*F, — r*G,)

+laf’ — |t = |55 +|Gaf?

=2 Re (b*c + a*d) + 2 Im (h*F, — e*G, + t*F; + q*G,)

= |rP+ s + |F2f* — G5
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20-Aooml =

204

oolm
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204
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CI‘S()O =
2¢D lolo =

2¢D momo =

2¢D lomo =

molo —

26D lono =

Re (2a*G, —2b*h + r*q + s*t + q*F, — r*F; — s*G, — t*G, — F3 F; + G3G3)
+1Im (—2d*e + 2c*F, + q*s + r*t + t*F, — s*F; + r*G, + q*G, — F3G, + FG;)
Re (2a*G, + 2b*h —r*q —s*t + q*F, — r*F; — s*G, — t*G3 + F3 F; — G3G3)
+Im (—2d*e —2c*F, + q*s + r*t — t*F, + s*F; — r*G, — q*G, — F5G, + F3G;)
Re[(a*+b*+ c*+d*)s +(—a* —b* + c*+d*)G,

+e*g+ F)+h*(—t+G,) —q*F, +t*G, — F¥F;, — G¥G,]

+Im [(a* — b* + c* —d¥)r + (a* —b* — c* + d¥)F,

+e*(t+G,) +h*(g—F;) —t*F, —q*G,+ FfG, + FG|]

Re [(a* + b* + c* +d*)s + (a* + b* — c* —d*)G;

+e*qg—F,) —h*(t +G,) + q*F, — 1*G, — F}F; — G} G,]
+Im[(—a*+b* —c* +d¥)r + (a* — b* — c* + d*)F,

+e*(—t +G,) —h*(g + F3) —t*F, — q*G, — F1 G, — F1G,]

Rel(@*+ b* —c*+d*)t + (a* + b* + c* — d*)G,

+e*(r+F,) —h*s+G;)—r*F, —s*G,— F{F, — G{G;]
+Im[(—a*+b*+c*+d*)g + (—a*+b*—c*—d*)F,;

+e*(—s+G;y) +h*(—r + F,) +s*F, —r*G, + FfG; + F3G,]

Re[(—a* —b*+c* —d*)t + (a* + b* + c* — d*)G,

+e*(—r+ F)+h*(s —G,y) —r*F, —s*G, + FtF, + G} G;]
+Im[(—a*+b*+c*+d*)qg + (@*—b* +c* +d¥F;

—e*(s +G;y) —h*(r+ F,) —s*F, + r*G, + FtG; + F3G\]

A,,,. where one replaces Re[ ] => Re[ Jand Im[ ] = —Im][ ]

2Re(a*h —c*d — e*F| + h*G|, — r*F, — s*G;)

=[P +la* + |F5f - |Gof?

2 Re (a*bh + c*d — e*F, — h*G, — g*F, + t*G,)

P+ B PG

Re [2¢*G| + 2d*h + s*t +r*q + g*F,

+r*Fy + 5*G, — 1*G, + F4F, — GG,

+1Im [2b*e + 2a*F, 4 g*s +r*t + t*F,

+s*F, —r*G, + q*G; + F5G, — F¥G;]

Re [2¢*G, + 2d*h + s*t +r*q + q*F,

+ r*Fy + 5*G5 — %G, + FAF, — G4 G,]

—Im [2b*e + 2a*F, + g*s + r*t + t*F,

+5*F; —r*G, + q*G, + F3G, — F%G,]
Re[(@*—b*+c*—d¥*)s+(—a*+b*+c* —d*)G,

+e*(qg+ F;) + h*(—t + G,) + g*F, —t*G, + F} F; + GY G;]
+Im[—(a*+b*+ c*+d*)r +(—a*—b*+ c*+d*)F,

—e*(t+G,) —h*q—F;) —t*F, —q*G,+ F{G,+ F%G|]
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ZUDHOlGZRe [(a*_b*+6*_d*)s+(_a*+b*+C*—'d*)GB

20D

monoe —

+e*g+ F)+h*"(—t+G,) +q*F, —1*G, + F{F; + G G,]
—Im[—(a*+b*+c*+d*)r +(—a*—b*+ c* + d¥)F,
—e*(t+G,) —h*(g — F;) —t*F, — q*G, + F¥G, + F¥*G|]
Re [(a* — b* — c* — d*) + (a* — b* + c* — d¥)G,

+'e*(r + F,) —h*(s + G,) + r*F, + s*G, + F*F, + G¥G,]
+1Im[(a* + b* — c* + d*)g + (a* + b* + c* — d¥)F,

+e*(s —G;) +h*(r — F,) + s*F, — r*G, + F3G, — F{G,]

26D,,,m, = Re [(a* — b* — c* —d*)t + (a* — b* + c* — d¥)G,

+e*(r + F,) —h*(s + G,) + r*F, + s*G, + F*F, + G*G,]
—1Im [(a* + b* — c* + d*)q + (a* + b* + c* — d*)F,
+e*(s —G3) + h*r — F,) + s*F, —r*G, + F3G, — F{G,]

20D,,,=2Re (a*b — c*d + e*F, — h*G, + r*F, + s*G,)

20D

2¢D

26D

omom

olom

omol —

=t +laf? + |5 - G2

=2 Re (a*b + c*d + e*F, + h*G, + ¢*F, — 1*G,)

= s + Ir + |2 — |G

=Re [2¢*G| — 2d*h — s*t — r*q + q*F,

+r¥F, +5*G, — t*Gy — F3F, + G3 G,
+1Im [2b*e — 2a*F, + q*s + r*t — t*F,
—5*F; —r*G, — q*G; + FXG, + F¥G,]
Re [2¢*G| — 2d*h — s*1 —r*q + q*F,

+r*¥Fy +5*G, — t*Gy; — F3F; + G3G;)
—Im[2b*e —2a*F, + g*s + r*t — t*F,
—s*F; —r*G, — q*G, + FXG, + F¥G,)

26D0[m1 =Re [(ﬂ* _b* + C*‘d*)S +(a*'—b* '—'C* +d*)63

+e*(g — Fy) —h*(t + G,) — g*F, + t*G, + F*F, — G*G,]
+1Im [(a* + b* + c* + d*)r + (—a* — b* + c* + d¥)F,
+e*(t — G,) + h*(q + F;) — g*G, — t*F, — F*G, — F*G,]

26D0n01= Re [(a* —b* + C*_d*)s +(a*—b* —c*+ d*)G_,,

2¢D

omon

+e*(q — F;) —h*(t + Gy) —q*F, + 1*G, + F{ F; — G} G;]
—Im[(@*+b*+c*+d*)r +(—a*—b* +c*+d*)F,
+e*(t —Gy) +h*(q + F;) — q*G, — t*F, — F{G, — F%G,]

=Re[(—a*+b*+c*+d*)t + (a* — b* + c* + d*)G,

+e*(—r+ F) +h*(s —G3) + r*F, + s*G, — FtF, — G*G,]
+1Im [(a* + b* — c* + d¥)g + (—a* — b* — c* + d¥)F,
+e*(s + G;y) + h*(r + F,) + r*G, — s*F, + F¥G, + F*G,]

20Dppom =Re [(—a* +b* + c* +d*)t + (a* — b* + c* + d¥)G,

+e*(—r +F,) + h*(s — G3) + r*F, + s*G, — F¥F, — G}G;]
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Table 2. Contd.

2O-K0I.'o =

20K —

ommao

20K

olmo

20K

omlo

26K

onlo —

20K

olno

26K

onmao

20K

omnao

K =

ioog

—Im[(@*+b* —c*+d*)g + (—a*—b*—c*+d¥)F,
+e*(s+G;) +h*(r+ F,) +r*G,—s*F, + FtG; + F1G|]
2Re(a*c —b*d)+2Im(—e*h + F¥G,+r*s — FXG,)
+i? + gl - R - |G,

2Re(a*c+b*d) +2Im (—e*h — FTG, — g*t + F*G,)
—IsP =P +1Ff + G5

=Re (—2a*h + 2b*G, + r*q — s*t + q*F,

—!’*F3+S*GZ+I*G3—F2*F3—G§G3)
+1Im (2c*e — 2d*F, — s*q + t*r — t*F,
—$*F, —r*G, + q*G, + FXG, + FXG,)

=Re (2a*h +2b*G, — r*q + s*t + q*F,

—r*Fy +5*G, + t*G; + F3F; + G%G,)

+Im(—2c*e —2d*F, + s*q — t*r — t*F,

— $*Fy — r*G, + q*G, — F*G, — F*G,)

Re[(a* + b* — c* —d*)s — (a* + b* + ¢* + d*)G,
+e*(g+ F) +h*(t — G,) —q*F,—1*G, — FtF; + G{G,]
+1Im [(a* — b* —c* +d*)r + (@* —b* + c* — d¥)F,
+e*(t + Gy) —h*(g — Fy) — 1*F, + ¢*G + F1G, — F1G|]

=Re [(a* + b* — c* — d*)s + (a* + b* + c* + d*)G,

+eXg—F) +h*(t + G,) + q*F, + t*G, - F¥F, + G} G,
+1Im[(a*—b*—c*+d*)r —(a* —b*+ c* — d*)F,
+e*(t —G,) —h*(g + F3) + t*F, —q*G, — F3G, + F{G,]

= Re [(a* + b* + c* —d*)t + (a* + b* — c* + d%)G,

+e*(r + F,) + h*(s + Gy) — r*F, + s*G, — F*F, + G*G,]
+Im [(—a* + b* —c* —d*)g — (a* — b* — c* — d*)F,
+e*(—5 + Gy) + h*(r — F,) + s*F, + r*G, + F*G, — FXG,]

=Re[(—a*—b*—c*+d*) + (a*+b*—c*+d%G,

+€*(—r +F2) —h*(s _G3) _r*Fl +S*G, +F?F2—G?G3]
+Im[(@*—b*+c*+d*)g+(—a*+b*+c*+d*)F;
+e*(s +G;) —h*(r + F,) + s*F, + r*G, — F¥G; + F1G,]

K., where one replaces Re[ ] = Re[ Jand Im[ ] = —Im[ ]

4. Experimental tests of the CPT theorem in elastic antiproton-proton scattering

Using Table 2 we shall now extract the simplest experimental quantities that
provide tests of the CPT theorem. In the expressions in terms of invariant
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amplitudes we shall keep only the leading terms. These correspond to the interfer-
ence (if any) between the CPT violating amplitudes F; and G; and the “large”
amplitudes a, b, ¢, d and e.

In the CM we have, in this approximation,
0(Apoon — Prooo) = —2 Re b*F; + 2 Im d*G,
0(Apono — Ponoo) =2 Re b*F, + 2 Im d*G,
0(Apoor — Provo) = Re[(—a* —b* + c* — d*)F; + e*G,]
+ Im [(a* — b* — c* — d*)G, + e*F,]
0(Aooto = Potoo) = Re [(a* + b* — c* + d*)F; — e*G,]
+Im [(a* — b* — c* — d*)G, + e*F,]
0(Asoom + Prooo) = Re [(@* + b* + c* + d*)F, + e*G,)
+Im[(—a*+b* —c* + d*)G; + e*F;]
(Aoomo + Pomoo) = Re [(@a* + b* + c* + d*)F, 4+ e*G,]
+ Im [(a* — b* + c* — d*)G; — e*F;]
0(Aoorr — Ciioo) =2 Im e*G,
(A pomm — Crmoo) = —2 Im e*G,
0(Apomi — Cimoo) = 2 Re a*G, + 2 Im c*F,
0(A,pm + Critoo) =2 Re a*G, — 2 Im c*F,
0(Aooin — Crioo) = Re[(—a* — b* + c* + d*)G; + e*F;]
+Im[(a* - b* —c* + d*)F, + e*G,]
0(Ayont — Cruoo) = Re [(@* + b* — c* — d*)G; — e*F3]
+Im[(@* — b* — c* + d*)F, + e*G,]
0(Apomn + Comoo) = Re [(a* + b* + c* — d*)G, + e*F,]
+Im[(—a*+b*—c* —d*)F;+ e*G;]
0(Aoonm + Comnoo) = Re [(a* + b* + c* — d*)G, + e*F,]
+Im [(@a* — b* + c* + d*¥)F; — e*G;]
0(Dypso — Do) = —2 Re e*F,
(D ,omo — Domom) = —2 Re e*F,
(Do + Domor) = 2 Re ¢*Gy + 2 Im a*F,
(D ot + Dotom) = 2 Re ¢*G, — 2 Im a*F,

(4.1a)
(4.1b)

(4.2a)

(4.2b)

(4.2¢)

(4.2d)
(4.3a)
(4.3b)
(4.3¢)
(4.3d)

(4.3¢)

(4.3f)

(4.3g)

(4.3h)
(4.4a)
(4.4b)
(4.4c)
(4.4d)
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O-(Dlana _Donal) = Re [(_'a* +b* +C* _d*)G3+e*F3]

+Im[(—a* —b*+c*+ d*)F,—e*G,] (4.4¢)
0(Dyoto — Dotor) = Re [(—a* + b* + ¢* — d*)G; + e*F;]
+Im [(a* + b* — c* — d*)F, + e*G,] (4.4f)
6(Dono + Dypom) = Re [(@* — b* + c* + d*)G, + e*F,]
+1Im[(a* + b* + c* — d*)F; — e*G;] (4.4g)
6(Dyomo + Domon) = Re[(a* —b* + c* + d*)G, + e*F,]
+Im[(—a*—b*—c*+ d*)F; 4+ e*Gs] (4.4h)
0(Kojmo + Komio) = 2 Re b*Gy — 2 Im d*F, (4.5a)
0(Kioom + Kmoot) = 2 Re b*G, + 2 Im d*F, (4.5b)
0(Konto — Koimo) = Re [ — (a* + b* + ¢* + d*)G3 + e*F;]
+Im [(a* — b* + c¢* — d¥)F, + e*G,] - (4.5¢)
0(Kioon — Kioot) = Re [ —(a* + b* + ¢* + d*)G; + e*F;]
+Im[(—a*+b*—c*+d*)F, — e*G,] (4.5d)
0(Kopmo + Kopmo) = Re [(a* + b* — ¢* + d*)G, + e*F,]
+Im[(—a*+b*+ c*+ d*)F;+ e*Gs) (4.5¢)
0(Kpoon + Kioom) = Re [(a* + b* — c* + d*)G, + e*F,]
+ Im [(a* — b* — c* — d*)F; — e*G;] (4.59)

Notice that the normal components of the two index polarization tensors do
not provide sensitive tests of CPT invariance. Indeed, from Table 2 we see that the
differences

O-(Aoann - CH”OO)’ O-(D}TOHO - Donon)

depend on the interference between the CPT violating amplitudes F,, F3, G,, G5
and the small parity violating amplitudes s, ¢, ¢ and r. The differences

O-(I<omw - Knoon)s G(Kollo - K!aol) s G(Kommo - Kmoam)

on the other hand, do not vanish when we set F, =G, =0 (i =1, 2, 3).
Finally, let us transform the CM relations (4.1) to (4.5) into the Is. Using Fig.
1 of Ref. I we see that we must perform the rotations

[= }Q Cos o — §, sina = —E};zcosﬁ+§}’;281nﬁ =k cosf/2+5sinf/2 (46)
=k, sina + 3§k cosa = —kp_ sinf — 3§y cos f = —Fk sin 0/2 + 5 cos 02
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Figure 1
Annihilation and creation of a NN pair via a virtual photon 7.

where 6 is the CM scattering angle and « and f are related to the relativistic spin
rotation for the scattered and recoil particles, respectively:

a=10-0,, p=10+0, (4.7)

where 6, and 6, are the Is scattering and recoil angles, respectively.
Relations (4.1) are also valid as the are in the Is. For all other quantities we
shall express the left hand sides of (4.2) to (4.5) in term of Is quantities:

(Aooal - Plooo) = Aoook Cos 9/2 o+ Aooos Sin 9/2

— Propoo COS & + Py, SIN & (4.8a)
(Aovom + Prmooo) = — Agoor SN O/2 + A ypp, €08 0/2
+ Prooo SIN 0 + P, COS & (4.8b)
(Aooto = Potoo) = Aooko €08 0/2 + A4, sin /2
+ Piroo €OS f — P,y Sin B (4.8¢)
(Aoomo + Pomoo) = — Aooio SN O/2 4 Ay, cOs 02
— Pojroo 8N f — Py, COS (4.8d)

(Aot = Citoo) = Apoick €05 0/2 + 3(Apors + Apost) in 0
+ A, Sin% 0/2 + Cpprp, €08 & €08 B — Cprgrp €OS 0 8N f
— Cyproo SINa cos ff + Cyyrp, SiN o SIN (4.9a)
(Avomm = Cramoo) = Avork SIN* 0/2 — 5(Ayos + Agosi) sin 0
+ A, c08% 0/2 4+ Cpprpo Sin & sin B + Cyprpp SN & cOS f
+ Cyproo cOs a sin f§ + Cyyp, COS a COS f§ (4.9b)
bl et — L) = _%Aookk sin 0 — A, sin® /2
+ Apos CO8> 0/2+14,,,, sin O
+ Crrroo COS a sin f + Cyyrp, COS 0 COS f8
— Cyprpo Sina sin f — Cyyp, Sin o cos f (4.9c)
(Aooim + Cintoo) = =3 Avork SiN 0 + Aypy, cOS* 02
— Apos SIN2 0/2 + 14, sin 0
— Crkroo SN & €08 f + Cp gy, Sin & sin f

— Cyrroo €OS 00 €OS i + Cypp, OS & sin f (4.9d)
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(Aoom — Cutoo) = Aooicn €08 8/2 + A, sin /2
+ Cokroo €08 f — Cpr4p sin f
(Aoomn + Camoo) = — Avoten 8 8/2 + A5, c0s 6/2
— Coroo SN — Cpgp, COS
(Aoont = Cinoo) = Aoonk €08 0/2 + Ay sin 6/2
’ — Cirnoo €OS ¢ + Cyppp SIN
(Auonm + Counos) = — Agonie S0 0/2 + Ay, €05 02
+ Cirnoo SIn ¢ + Cpp, COS O
(Dioto — Doior) = Dy, COs o cos 8/2 + Dy, cos a sin 6/2
— Do Sinaxcos 8/2 — D, sin « sin 6/2
+ D, op cOs pcos 0/2 + D, cOs B sin 02
— D, yo sin f cos8/2— D, sin f sin 6/2
(Dromo — Domom) = —Dyoro Sin a sin 8/2 + Dy, sin & cos 6/2
— Do cos o sinf/2 4+ D, cos a cos 0/2
— D oo 510 B 5in 6/2 4+ D4, sin B cos /2
— D g0 cos B sin /2 + D, , cos f cos 82
(Diomo + Domot) = —Dyoppep, €0OS & 8in 6/2 + Dy, €OS 0. cOs 0/2
+ Dy, sina sin 0/2 — D, sin a cos 0/2
— Do Sin B cos 8/2 — D, sin f sin /2
— D,y cos fcosf/2—D,,.,, cos f sin 0/2
(Drioto + Dotom) = Dyopio Sin a cos 8/2 + Dy, sin o sin 6/2
+ D, cOs @ cos 8/2 + Dy, cos a sin /2
+ D, i cOs fsin /2 — D,,.,. cos B cos 6/2
— D, sin Bsin@/2+ D, sin B cos /2
(Diono = Donot) = Diono €08 & — Dy, Sin 1
— Dy c0s8/2—D,,.. sin 0/2
(Drono + Donom) = Dyrong 8t & + Diyop, €OS 0
— Do 8in8/2+ D, . cos0/2
(Droto = Doton) = Diporo €08 /2 + D, sin 0/2
+ Dyiron €08 f — D,y SIN

625

(4.9¢)

(4.99)

(4.9g)

(4.9h)

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10€)

(4.10f)

(4.10g)
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(Dnoma + Domon) = _Dnoko sin 6/2 +Dnoso Cos 9/2

— D onsin p— D, cOs f (4.10h)
(Kotmo + Komto) = (Koyrso — Korreo) $in 0,
— (Koprso + Kogrio) €08 0, (4.11a)
(Kioom + Konoor) = (Kyro0s = Kivaor) sin 0y |
+ (Kioos + Kyoox) €OS 0, : (4.11b)
(Konto — Komo) = Konko €08 0/2 + K, sin 6/2
+ K rpo €OS B — K, SID f (4.11¢)
(Konmo + Komno) = — Konko SN 0/2 + K,pg, €08 6/2
— K o Sinf — K, ., COS B (4.11d)
(Kioon — Knoot) = Kivaon €08 o — Ky, SID
— K, ,ox cO0s8/2—K,,,, sin 0/2 (4.11e)

(Kmoon + Knoom) = Kk’oon Sil’l o+ Ks’oon Cos a
— K, SiIN0/2+ K, cos 0/2. (4.11f)

Among the CPT tests listed above the most realistic ones are probably (4.1a)
and (4.1b). They are sensitive to the amplitude F, that violates C invariance, while
satisfying P and T invariance, and the amplitude G,, violating T invariance, but
satisfying P and C (see Table 1). A further interesting possibility are the tests
(4.11a, b), sensitive to the same CPT violating amplitudes. Indeed, we have

G[(Ks’oos - Kk’oak) Sin 9] + (Ks’ook + Kk’oos) Cos 61]
=2 Re (b*G, + d*F,)

(4.12)
6[(Kos"sa - Kok”ko) sin 62 - (Kok"so + Kos”ko) COos 92]

- 2 Re (b*G1 el d*Fl).

Interestingly, each of the relations (4.12) for the polarization transfer tensors
for a polarized beam or a polarized target can be tested while performing only two
scattering experiments rather than four. The corresponding experimental setup is
identical to the one discussed for the same quantities in Ref. III in the context of
possible tests of TRI violations in proton-proton scattering.

The other experiments sensitive to the parity conserving, CPT violating ampli-
tudes F, and G, are more complicated.

It should be noted that in the considered approximation we have

O-[Aookk + Aooss + (Ck’k”oa + Cs’s”oo) COS (8] + BZ) )
- (Ck’s”oo - Cs’k”oo) sin (91 + 82)] =0 (4133)



Vol. 65, 1992 LaFrance et al. 627

O-[(Dk’oko - Ds’asa) COos Bl + (Dk’aso + Ds’oko) Sin Bl
+ (Dok”ak - Dos”as) COos 02 - (Dok"os % Dos”ok) sin 62] =0 (413b)

(since these quantities depend on the interference between the F,, G; and the other

small amplitudes 4, ¢, r, s and ). On the other hand, from equations (4.9a) and
(4.10a) we have

0[(Aporr — Aooss) €08 0 + (Ayors + Agosic) Sin 0
+ (Cerroo — Cysa0) €08 (8 — 0, + 6,)
—(Crryoo + Corroo) SN (0 — 0, + 0,)] =4 Im e*G, (4.14a)
0[(Droko + Dyoso) €08 (0 — 01) + (Dioso — Dyoro) sin (8 — 6,)
+ (Dorrok + Dipgros) €08 (6 + 0,) + (Dogros — Dogor) sin (6 + 6,)]
= —4 Re e*F,. (4.14b)

The simplest test of CPT violation due to the amplitudes F,, G,, that violate
all three symmetries C, P and T, and F;, G, that violate only parity P, are clearly
the polarization-asymmetry experiments (4.8), with spin components in the scatter-
ing plane. The experiments (4.9¢, f, g, h), (4.10e, f, g, h) and (4.11c, d, e, f) are also
sensitive to the amplitudes F,, G, and F;, G;.

5. Electromagnetic corrections

The one-photon exchange in the antinucleon-nucleon channel gives rise to the
contribution of two processes. The first-one is the direct exchange diagram with
scattering matrix M (s, ¢) (the Coulomb term) and the second one is the annihila-
tion and creation of a NN pair via a virtual photon and described by the scattering
matrix M (s, u) obtained from M, after interchanging the final states, for identical
particles. These matrices can be obtained from their equivalent ones defined in the
nucleon-nucleon sector. Indeed, by using hermiticity of the scattering matrix one
can show that, for instance in the pp elastic case in the direct process, the current
at the pyp vertex is equal to that at the pyp vertex so that M, (s, 1) = —Mp(s, 1)
because the charge of the antiproton is —e. On the other hand, we know from
Section 2 on crossing that M (s, u) for the crossed channel can be obtained from
M (s, t) by applying the crossing matrix M. (2.6). Nevertheless a straightforward
calculation of the annihilation and creation diagram shown in Fig. 1 helps to fix the
conventions of the formalism.

For the pp or nn elastic scattering we write the contribution of the Fig. 1
diagram to the scattering matrix as: '

M, = N(S){ﬁ( —p)F;y* — iF2O-#'BQA,B]u(p1)}
x {a(pF1y, + iF20,,9 §10(—p3)} (5.1)
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where the primes in the rightmost current refer to the vertex V' in the figure

and N(s) is a normalization factor to be specified below. The physical states and
momenta are defined as:

p=(E,p), p,=—p,=(E, —p)...initial states,
pi=(E p’), py=—py=(E, —p’)...final states,
qa=pr+P2=p1—p,=(2E, 0) =g},

t,=q% =4E?=5s,>0...timelike region,

sp being the total energy in the direct channel and ¢, the “momentum transfer” of
the virtual photon in the crossed channel. The Dirac spinors are normalized to +1
(—1) for the particles (antiparticles) and are taken to be:

1
E+m| sz .5
u(p,) = " 5m ;‘ Py,
+m
(5.2)
_Uz'l}’
s g e E+m E+m
P2) = 2m 1 x>

with Pauli spinors ¥ and y. The nucleon form factors F, and F, (not to be confused
with the amplitudes of the same name in eq. (2.1)) in the timelike region
t4 > 0 are derived from a generalized vector-meson-dominance model with an ansatz
given in Ref. [30], and satisfy the usual assumptions like asymptotic behaviour,
normalization, vector coupling of the photon, etc. We choose their representation:

p 1 1 1 1 :
F"I(S) =2 [(1 _ qz/mi) (1 — qz/mgu,) + (1 — qum‘z,) (l - qz/mf}'):l
p 1 L 1
P9 =, | 9999 (=g ) (=) (=)
1 1 1
103 (1 = qz/mz) (1 = qz/m%') (1 - qz/mﬁuﬂ e

m,=0.77 GeV, m, =126 GeV, m, = 1.61 GeV

m,=0.78GeV, m,=127GeV, m, =1.62GeV

66 _ 9%

where the superscripts “p” and “n” stand for proton and neutron, respectively (the
+ sign has to be taken with the superscript p and the — sign with the superscript
n), w and p are the vector mesons and w’, ", p’, p” their corresponding Regge
recurrencies. The anomalous magnetic moment of the proton is k, = 1.7928456.
Note that contrary to their representation in the spacelike region where
tp = —q? <0, the nucleon form factors here do not have any angular dependence
as they are functions of s only.
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The calculation of the exact annihilation and creation amplitudes from equa-
tion (5.1), after a Fierz transformation and the reduction to the two-component
form, gives the following results:

dy = [—oc/(Zmzs\/;(\/; + 2m)?)){[ut — ﬁ(\/.; + 2m)?(s + 4m?))(dm>F? + sF3)

+ [ut(s 4+ 4m?) — (/s + 2m)2(ut + 4sm?)F, F, } (5.42)
b= ¢, =[2/2./5](F, + F,)> (5.4b)
dy=[—a/(8m3s/s))(t — u)(4m>F2 — sF2) (5.4¢)
&4 = [ —in/(4m>s(\/s + 2m)D)](/ut [s)(t — u)(2mF, — \/sF,)? (5.4d)

where o = e?/4r is the fine structure constant, s + ¢ + u =4m? and i =,/ —1. The
amplitudes are normalized in such a way that the differential cross section

do [dQ =3{|af* + [b]* + [c* + |d] + |e[*}

is in millibarns.

In order to estimate the relative importance of this ‘““annihilation-and-creation”
diagram, we compare quantitatively these amplitudes with the exact direct Cou-
lomb ones in the NN sector for all angles and several laboratory kinetic energies
T}:n,- The direct amplitudes for all particles with equal mass can be derived from
Ref. [31] and are given by:

ap = [o/(4m?t/s(/s + 2m)){[ut — (/s +2m)*(s + 2t — w)(4m>F?} + tF3)

— 8mt[(s + O)/s + m(2s + t —w)|F, F,} (5.5a)
by =[—a/(8m?t/s)|(s — u)(4m*F2 — tF2) (5.5b)
ép = —dp =[—0/2{/s|(F, + F,)? (5.5¢)

&p = [—in/(4m>/s(\/s + 2m)))(\/u] 1) {(4mF3 + (F3)
x (35 + 2t + u + 6m./s) + 4m[(2s + 3t + u)/s + 4m(s + )]F, F,}
(5.5d)

with CM particle momentum
k?=3(s —4m?) = 3MT .

We remind the reader that 4, = M-A, with A, = —A,. The corresponding
curves for both set of amplitudes (5.4) and (5.5) in the pp = pp case are shown in
Fig. 2 for T};, = 500 MeV. One can see that because of the t-pole term in M, this
process remains several orders of magnitude bigger than M, even at large angles.
The kinematical dependence is such that the “annihilation” contribution is always
negligible, except in the region T}, = 500 MeV for backward angles @ = 150°, where
the value of only one “annihilation” amplitude a , is greater than the direct one-photon
exchange one @,,. Such specific kinematical domains should be explored when searching
explicitly for one-virtual-photon annihilation effects in the NN polarization observ-
ables. The 7in = fin one-virtual-photon annihilation amplitudes at T}, = 500 MeV
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are displayed in Fig. 3. Finally, the corresponding values for the charge-exchange
process pp = fin are of the same order of magnitude and remain small compared to
the coulombian values (they are not shown here).

6. One-pion exchange amplitudes

As in the NN scattering case the longest range or the most peripheral
interaction in NN scattering is given by the one pion exchange (OPE). It was
realized long ago [32a] that the OPE amplitudes in the two processes are related by
G parity [32b], the NN potential having the opposite sign of the NN potential. The
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expressions of the NN OPE amplitudes can be found e.g. in Ref. [33] and, taking
into account the mass differences for np scattering, in II. However in view of their
importance in phase shift analyses and for completeness we shall derive here the NN
OPE amplitudes. For all NN reactions (2.3), the OPE amplitudes for pseudoscalar
coupling is

s #)

Reducing (6.1) to its two component form in the CM for the processes (2.3a),
(2.3b), (2.3c) and (2.3d), where only neutral pion exchange is allowed, we obtain

1
Mopg = E182 3 pi )y Dul p )i —pr )y @o( —ph). (6.1)
871'\/_(1—

dope = bopr = €ope = fore = gope = fop =0 (6.2)
818 t
= .
s = om = g TS — e
with
t = —2k*(1 —cos 0) (6.3)

and pu,o 1s the neutral pion mass (we use the representation of Ref. III).
For the reaction (2.3a), pp = pp, one has

81 = 8ppn0s &2 = &ppno- (6.4)
For the reaction (2.3b), an = 7n,

£1= 80> 82= Zunno- (6.5)
For the reaction (2.3c), fip = nip,

81 =8ppr0s 82 = amno- (6.6)
For the reaction (2.3d), pn = pn,

£1=8win0s &2 = &ppno- (6.7)

For the inelastic reactions (2.3f), pp = fin and (2.3¢), in = pp, where there is
either ™ or n~ exchange, one has

dope = bope = €opg = fore = hope = 0

£18> !
e = (6.8)
O 8 st —p3)
dopp = £182 — {t + (1 +cos O)[k \/k2+m m3)?}
S (t —Hz +)

fige 7

gOPE_8 \/(I—

with

= —(2k> +m? — m2) + 2k /k> + m2 — m? cos 0 (6.9)
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&1 =gpmt+5 g2=gﬁﬁu+ (6-10)

and p, . is the charged pion mass.

A non-zero value of the amplitude g(s, f) results from the fact that these
reactions (2.3e) and (2.3f), with m, # m,, are inelastic. If isospin invariance is
assumed, we have

1
gppn0= — &nnn0 = “:/_Egnpz'r‘+ =% (6'11)
and
1
8ppn0 = _gﬁﬁxﬁ‘_‘Tgﬁﬁn+ = 8o (6.12)
2

with p0=p,+ and m, =m,. In NN scattering the value from Ref. [34], usually
used, is

g2ldn = 14.4. (6.13)

The knowledge of the OPE partial wave amplitudes is very useful for phase
shift analysis. From formulae (6.2), (6.8) and equations (2.9) of Ref. III one can
obtain the OPE singlet-triplet amplitudes and then perform an inversion of the
partial-wave expansions (see following Section equations (7.1)), to find:

j : 1+ 42
RJO,JO(OPE) = —2Fyik | 6,5+ T —2z ) 0,(2)

RY,(OPE) = R! ;(OPE) =0

Rn(OPB) = 26k | ~1 55 0,00) + 577 00110 + 57y 0113 |
R u(OPB) =3 220, 0~ 0,6) (6.14)
R n(OP) =320 0,6) =55 0,010

R u(OPE) =26k 020120, — 10,11 =3 01 6)

B s ulOPE) =26k 02D 20,0 0,1 = 40,-16)

The Q, are the Legendre functions of the second kind. For the reactions (2.3a)
to (2.3d) one has (see also equations (6.2) to (6.7)):

2

81 /s’ 2%

FN=

(6.15)
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In this case Rj_,;,,,;(OPE) =R’ ,_,,(OPE). For the reactions (2.3¢)
and (2.3f) one has (see equations (6.8) to (6.10)):

F, =& t8pm+ A=JI2+m2 —milk, z={k(1+21%+pu2.}/24k>
872\/;

(6.16)

7. Phase shift analysis

The partial wave expansion of the NN amplitudes is similar to that of NN
amplitudes. The scattering matrix can be written in terms of different sets of
amplitudes such as e.g. the invariant amplitudes a, b, ¢, d, e . . . in equation (2.1),
the singlet-triplet M, . [35] or the helicity ®; [36], representations. All the
relevant formulae for the NN case can be found in I, I1, III and Refs. [37, 38].

In contrast with the NN reactions the Pauli principle does not constrain the
NN amplitudes. Consequently for a given NN isospin, there is no restriction on the
parity of the partial waves, they all contribute. We consider, as in III, eight
amplitudes and give, in their notation, the partial wave expansion of the singlet-
triplet amplitudes. Starting from equation (2.12) of Ref. III, for a given isospin, one
obtains:

1
Mg = Z (2J + I)RJO 0 P;(cos 0)
ZkJ

1
My, = ik Z J+ DRy 11,11 Py i(cos @) +JRS ;-1 P;_ (cos B)
J=

+ I+ DIRY 4 11— 11 Pry1(cos 0) + R _ 1y 411 Py (cos 0)]

4kJZ] (27 + DRy, nP,(cos 0) +JR7 1 J+uPyi(cos )

+(J+l)R"A“,_“PJ_l(COSH)
~ af bl + )[RJ+1[J-—IIPJ+1(COSB)+Rj711,J+11PJ—l(COS 0]
] = 1
M =—
-t 4ik,§‘1J(J+1)
+ I+ I)RJAUJ*]]P%—](COS 6)

— J(J+ 1) [RJ+IIJ— 11P3+1(C03 0) +R5-11,.1+11P3— 1(cos 9)]}

MH

{=(2J+ 1R, 5y P7(cos 0) + JR7, 11 ;4 11 P7 . 1(cos 0)

M= — RJ P!, (cos®) +R% ,,, 11 PL_(cosB)
10 2flkj " J+11,JJ+11 J+l( ) J—11,0—11 J l(
J J+1
- J+1 RJ+11J——11PJ+1(COS ) + 7 RJ—11J+11PJ—1(COS 0)

(7.1)
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1 = 1
3

NG =)

[(2J+1)RJ, ;1 Pi(cos 6) + TR 11 7411 Pyy1(cos )

01

J
-+ l)sz—ll,J-— nPjy_(cos 0)] — ‘—'R5+11,1711P}+1(COS 6)

J+1
J+1
+\/TR5—11,J+11P5_1(COS 0)

1 o 2J+1

Mo =
0 ik J; JIT + 1)
1  2J+1

M= —
22k PN /I + 1)

Here R? j; _;;=R%;;;,=0.

In the equations (7.1) the P, are the Legendre polynomials and the P7,

m =1, 2, the associated Legendre functions of the first kind.

The eight corresponding invariant amplitudes in equation (2.1) are related to
the previous singlet-triplet amplitudes by (see equation (2.9) of Ref. III):

a=5Myp+ M, —M,_))
b=5(Mgs+ M, + M, _,)
C=?]2'(_Mss+M11+M1—1)

Rfo,n Pj(cos 0)

RY, o Pj(cos 0).

cos 6 sin 0
dzT(MOO—M“+M171) ——2(M10+M01)

V2 (7.2)

i
6’=—2(M10—Mm)

NG
i
f=““\/‘§(M51“Mls)

sin 6 cos 6
(MOO—MII+MI—1)+—(M10+M01)

NG

For the singlet and uncoupled triplet states one defines [3]

B _( 0 R, ) (1.3)
R{,S R;]Fl,.ll -
whereas for the coupled triplet states:
R=(Rf—ll,.l—ll Rfkll,Jqul). (74)
RJ+11,J—1| RJ+1],J+]1

The matrix of partial wave amplitudes R is related to the S matrix by
R=S—1. The R’/ are complex numbers and the parametrization of the 2 x 2
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matrices (7.3) and (7.4) is somewhat arbitrary. It could be chosen such that, when
the annihilation is set equal to zero, it reduces to the nuclear bar phase shift
parametrization [35]. One possible choice is similar to that of III:

Ry j0 =cos 2y, e — 1

R7, ;1 =cos 2y, e*w — 1

Ry =isin 2yJ e’ 01 +01+os51) (7.5)
Rz 50 =cos2e; e 71s — 1

Rﬁi Lz x =1 5 2e P WA VS Wi FESWS) )

The presence of the annihilation channels makes the 6 complex with Imé >0
and introduces the real parameters ¢ and #. This parametrization then satisfies the
unitarity conditions.

Another choice has been advocated in Refs. [39, 40] and reads

S = exp (i9) exp (ieo, )V exp (ico,) exp (id). A (7.6)

Here 6 1s a real diagonal matrix with elements o,

01
%=\1 0

is a Pauli matrix and V is a real 2 x 2 matrix. The departure of V from the unit
matrix is a consequence of absorption. When S is symmetric, V is also symmetric -
and can be parametrized by a diagonal matrix via a rotation [40]:

cos 2(I' +T7) 0

V =exp (—iwa)) ( 0 cos 2 — I)

) exp (iwa,) (7.7)

where

0 —i
%=\ o

is another Pauli matrix. Such a parametrization (equations (7.6) and (7.7)) can be
used for both of the cases corresponding to equations (7.3) and (7.4).

For a given energy and isospin channel, the number of free parameters to
determine is four times larger than in the NN case when below the pion production
threshold (above it this ratio drops to two). If one restricts the analysis to a
maximum J = 6, there are, assuming CPT invariance, 64 free fitting parameters.
However the non absorptive peripheral (J large) part of the NN interaction is
constrained by the OPE amplitudes which were given in the previous section.
Furthermore if the strong annihilation is of short range the number of free
parameters will be also decreased. Once these parameters are determined the
physical scattering amplitudes are given by equations (7.1) and (7.2).

A phase shift analysis using the basis of invariant amplitudes (7.2) has already
been done for the NN channel [41]. The question of removing discrete ambiguities
in the NN phase shift analysis [42] also arises in the NN one [43].
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8. Conclusions

During the past years we have learned much from antimatter physics with the
better quality p beams at the AGS, KEK, BNL and LEAR facilities. Thanks to the
LEAR experiments we now know that the pp total cross section does not exhibit
any evidence for baryonium [44]. The low energ}} antinucleon-nucleon scattering
experiments have shown that while the pp elastic (equation (2.3a)) and charge
exchange (equation (2.3f)) differential cross sections agree with most potential
model predictions, the agreement for the analyzing power 4,,,, is rather poor (see
Refs [45, 46] for pp elastic scattering and [47] for charge exchange). The energy
behaviour of the forward slope of do/dt for these two reactions is given to within
10% by the one-pion exchange described in Section 6 [48].

As in the NN sector, spin correlations are required to disentangle the NN
interaction and to discriminate between phenomenological potential models. An
alternative proposal to Ref. [9] to polarize the p beam is suggested by the FILTEX
collaboration [49]. A measurement of A4,,,,, 4,.., (€quation (4.1)), 4,,., and A4,
(equations (4.9a) to (4.9d)) above 250 MeV/c would then be immediate. A test of
CP invariance in the pp elastic channel is the equality 4,,,, = 4,,,,» Which could also
be readily tested. In working with potential models, the more spin-dependent
observables we have, the more difficult it is to reproduce all of them by adjusting
only the existing short-distance core parameters, so that in principle more informa-
tion on heavier-meson exchanges and/or quark-antiquark dynamics can be obtained.
On the other hand from a model-independent point of view, the final goal of the
experimental efforts is to achieve a unique direct statistical reconstruction of the NN
elastic scattering matrix in terms of complete sets of observables, measured at several
angles and energies, as has been performed for pp scattering (see e.g. Ref. [50]).

Although the existing NN data don’t yet allow an unambiguous determination
of the annihilation range in potential analyses [51], it does allow a reasonable
determination of the effective-range expansion parameters at low energy [52]. The
latter leads to the Argand diagrams for S- and P-waves (L =0 and 1 in Section 7),
but so far spin effects are neglected because of the lack of polarization data at low
momenta. The pp data also indicate the need for a coupled-channel approach to
several reactions [53]. The spin dependence of the transition operators and the
coupled-channel effects should bring a better description of the laboratory spin-
dependent observables (4.1) and (4.8) to (4.11).

The treatment of the exact Coulomb distortions in an amplitude analysis, as
introduced in Section 5, cannot be underestimated. Even in the simplest case of spin
averaged pp data, an unexpected rise in energy of the real-to-imaginary ratio of the
forward amplitude (p parameter) remains unexplained. A careful comparison
between the treatments of the Coulomb-nuclear interference done respectively by
experimentalists and theorists had to be made before ruling out this Coulomb effect
as the cause of the discrepancy between the data and the model predictions [54, 55).
In general, the long-range Coulomb contributions (equations 5.5) are needed for
the electro-hadronic separation at very small angles, that is to say, for the
determination of the real part of the forward NN nuclear scattering amplitude.
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The shortest-range contributions of the electromagnetic corrections given by
equations (5.4) are shown here to be small (Figs. 2 and 3). In order to calculate them,
we have used a representation of the electromagnetic form factors of the nucleon in
the region of timelike momentum transfers given by the generalized vector-domi-
nance model [56]. The behaviour of these form factors close to the threshold is
determined to some extent by the nuclear NN interaction in the initial state [57]. New
precise measurements of the proton form factor in the timelike region (PS170 at
LEAR) are available [58a] while the neutron form factor could be measured by the
PS201 or the FENICE [58D] collaborations. These new data will constrain the model
parameters in equation (5.3) and thus the outcome of the amplitudes A4, shown in
Figs 2 and 3 (elastic scattering due to virtual annihilation into a photon).

The usual partial-wave expansion of the singlet-triplet amplitudes is general-
ized from a set of 5 amplitudes (pp case) to a set of 8 amplitudes (NN sector with
no / or T invariance) in Section 7. So far the phase shift analyses have been
restricted to low energies (7%, ~ 20 MeV) and dealt with S- and P-waves only.
Considering the spin dependence of the scattering matrix one then has the following
states in both isospin 0 and 1: 'S,, 3S,, 'P,, *P,, *P,, *P,. It is found [59] that there
1s a large admixture of P-waves down to the lowest momenta measured for pp
scattering. Even in the simplest case (low-energy elastic scattering) a “‘complete” set
of observables has yet to be obtained before determining the preceding 6 complex
phase shifts [60]. Once a phase shift analysis including higher-order partial waves is
successfully performed, it will be possible to decide whether mesons with specific
quantum numbers and mass, observed or anticipated in the NN system, correspond
to resonant partial waves in the NN system [61].

Direct experimental tests of CPT invariance in the elastic pp system are
described in Section 4. The simplest spin-dependent observables necessary to do a
test are the asymmetry experiments (equations (4.1) and (4.8)). It should be
emphasized that this fundamental invariance property, presumably valid for all
types of interactions, has a large variety of experimental consequences. Some of
them are purely static properties, such as the equality of the proton and antiproton
inertial masses. These can be, and indeed have been (PS189 and PS196 at LEAR),
tested with great precision (Refs. [62,63] for the pp mass difference). Other
consequences of CPT invariance are dynamical ones, such as the absence of CPT
violating amplitudes in elastic NN scattering, as discussed in Section 4. The
interference phenomena that would lead to a violation of the CPT predictions,
would not confribute here to a gp mass difference. Hence a direct verification of the
CPT predictions in spin-dependent experiments would be of great value, even at
lower precision than is achieved in the comparison of particle and antiparticle static
properties. The advantage of such a verification is that it is model independent.

The present experimental status of the available NN data will be treated in a
separate paper. Angular distributions of representative measured experimental
quantities show that even though some observables are well known over a large
energy domain, the existing data set is still far from sufficient for a model-indepen-
dent description of the NN interaction or for a full phase shift analysis. Even at low
momenta, the theoretical predictions cannot reproduce all the features of those
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observables (strong anisotropy due to an intense P-wave, the unexpected behaviour
of the p parameter, large polarization very close to threshold in some channels,
angular dependence of A4,,,,, etc.). This can be perceived as a lesson in prudence
even for the simplest cases.

Challenges for theorists are expected to grow as the p beam energy and
intensity increase. Indeed, projects already exist for high momenta and luminosity
machines such as SUPERLEAR, the KAON facility, the European Hadron Fac-
tory and proposals at FERMILAB and JINR-Dubna. These facilities will bring
very high fluxes of antiprotons and thus increase the precision of the spin-depen-
dent observables. Such upgrades would make direct tests of discrete symmetries
more reliable.
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