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Heisenberg Antiferromagnet on Triangulated Trees

F. Monti and A. Siité *
Institut de Physique Théorique, Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

(19. IX. 1991)

Abstract. We study the spin-1/2 antiferromagnetic Heisenberg Hamiltonian with nearest-
neighbour pair interaction on some graphs with an odd number of vertices, called triangu-
lated trees. The model has valence bond ground states in which there is a localized spinon
(1/2 spin) on some site. The space of ground states for a tree of L triangles is 2(L 4 1)
dimensional. In the limit of infinite volume we find an infinity of pure ground states. To
any (infinite) branch of the tree there belongs a spin-Peierls ground state without spinon.
There is an infinite family of equivalent pure ground states differing only locally, in the
position of the spinon. In any finite-volume ground state the pair correlations decay expo-
nentially. For the chain of triangles we show the existence of a gap in the energy spectrum
above the ground state.
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1. Int;'oduction

In this paper we study the antiferromagnetic fully anisotropic Heisenberg Hamiltonian for
1/2 spins with purely nearest neighbour pair interactions on triangulated trees. These
are graphs such that the only cycles are triangles and every bond belongs to a unique
triangle (Fig. 2.1.a). Our aim is to provide a “soluble” model in which spinons (spin-
1/2 excitations) appear separately and their role in the ground state properties is easy to
demonstrate. '

Spin systems with antiferromagnetic interactions exhibit a large variety of ground states.
This holds already for Ising models which offer three typical examples: (i) On a bipartite
lattice the nearest-neighbour antiferromagnetic Hamiltonian has two antiferromagnetically
ordered ground states (Néel states). (ii) Defining the same Hamiltonian on the triangular
lattice one finds that every triangle is frustrated in the sense that it is impossible to mini-
mize simultaneously the energy of all the three interactions. This leads to a large ground
state degerancy: the number of ground state configurations grows exponentially with the
number of sites [Wa]. Six of these configurations (those with alternating up and down
spins in the three principal lattice directions) are isolated, i.e., any local transformation
increases their energy, the others can be modified locally without any energy cost. One can
introduce an equivalence relation between ground state configurations by defining them
equivalent if they differ only locally. Configurations in the same class form a ground phase.
Thus, in six of these phases there is a unique configuration and long-range order. In the
other phases the pair correlations fall off as (Si S;) ~ |k — {|=1/2 [St]. These phases are
analogs of what is called a spin liquid in quantum systems, although this term is sometimes
reserved for “incompressible” spin liquids: unique massive ground states with exponen-
tially decaying correlations [La). (iii) The nearest-neighbour antiferromagnetic Ising model
on the Kagomé lattice is superfrustrated [Sii81]: apart from a trivial essential singularity,
the free energy can be continued analytically to T = 0 and |{(Sk ;)| < 4(3/4)"*~!| indepen-
dently of the temperature. The number of ground state configurations grows exponentially
with the volume and none of them is isolated (this can be seen easily on the contour repre-
sentation, a point which was overlooked in [Sii81b]). According to the former terminology,
any ground phase can be considered as a spin liquid phase. In the Ising limit, the models
we are going to study in this paper are also superfrustrated [Sii81b], so the above said are
valid for them as well.

For quantum antiferromagnets the analogs of the above examples exist and the variety
of possibilities is further increased by quantum effects but much less is known for sure.
In n-sublattice structures the ground states may be n-sublattice Néel states if 2S5, the
coordination number times the length of the individual spins is large enough. The spin 1/2
isotropic Heisenberg antiferromagnet on the square lattice still probably has Néel order in
the ground state. By a Goldstone theorem this would imply that there is no gap in the
spectrum above the ground state energy [Wr]. In fact, finite size scaling predicts no gap
to the multiplet excitations but a gap to singlet excitations [SiiFa).
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In one dimension quantum fluctuations seem to destroy the antiferromagnetic order in
the ground state, let the spin be however large. According to Haldane [Ha], for integer
spins the isotropic Heisenberg antiferromagnets should have a unique ground state with
exponentially decaying correlations and a gap in the spectrum above the ground state. A
rigorous example with S = 1 is given by Affleck et al [AKLT]. The spin 1/2 chain can be
solved with Bethe Ansatz [Be|. There is no gap to the excitations [Be],[Hu],[dCP] and the
pair correlations fall off according to a power law [Fo]. The ground state in infinite volume
is generally believed to be unique but Faddeev and Takhtajan [FaTa] claim that the two
limits obtained via sequences of chains with, respectively, an even or odd number of sites
are different.

On the triangular lattice the quantum antiferromagnetic Heisenberg-Ising model for S > 1
spins probably has three-sublattice Néel ground states. For spin 1/2, Anderson [AnT73]
suggested that the ground state should be unique, not breaking thereby the translational
and, in the isotropic case, the rotational symmetry of the Hamiltonian. That such a state is
favorable in comparison with the Néel state was shown later by a perturbational calculation
for the anisotropic Hamiltonian around the Ising limit [FaAn]. In the subsequent literature
the ground state of the isotropic model was often called a spin liquid although its uniqueness
was not proved, finite size scaling showed the absence of a gap to the excitations [SiiFa],
and one could suspect that the correlations follow a power law decay as in the Ising limit.
In fact, more recent works performed with different techniques provide arguments that the
ground state is Néel ordered with three sublattices, as for S > 1 ([HuEl], [JIG], [DEMW],
[YoMi]), and the same conclusion seems to hold for the anisotropic model with one easy
axis (the perturbed XY model) [KMFF]. When next-nearest-neighbour antiferromagnetic
pair interactions are added to the isotropic nearest neighbour Hamiltonian, an approximate
calculation [Ba] shows a phase transition at positive temperatures with two chirally ordered
translationally invariant low temperature phases, which implies also the existence of two
ground states with similar properties.

In chiral spin states the expectation values of the operators S; (Sx A S;) are non-vanishing
for a macroscopic set of triangles (jkl). Non-vanishing homogeneous ground state chiral-
ity is thought to be possible for Heisenberg antiferromagnets and consistent (apart from
uniqueness) with spin liquid properties. Spin liquids in general ([An87],[La]) and chiral
spin liquids in particular [WWZ] play an important role in the fascinating theory of high-
temperature superconductivity (see [CaJo] and [BEMS] for recent reviews). However, in
the only soluble model [WWZ] with chiral ground states known for us, the Hamiltonian
is not translationally invariant and neither are so the chiral ground states which therefore
cannot be spin liquids.

Notions like Néel state or spin liquid refer to infinite systems. In finite volumes it is
more appropriate to use different terms. For an even number N of 1/2 spins the ground
state of isotropic antiferromagnets is usually nondegenerated and thus a singlet state (this
may be true even for anisotropic Hamiltonians, as in the model discussed in this paper).
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Any N-spin singlet can be expanded in the nonorthogonal basis of the so-called valence
bond (VB) states which are tensor products of N/2 two-spin singlets (dimers). If there
is an exponentially large (in N) number of linearly independent terms with roughly equal
weights, one speaks about a resonating valence bond (RVB) state. It is conjectured [Ta]
that RVB states on bipartite lattices with nearest neighbour dimers may produce long-
range antiferromagnetic correlations if both the dimension and the coordination number
are sufficiently large. However, in Heisenberg antiferromagnets which have Néel order in
infinite volume the ground state in finite volume must be some particular RVB state with
dimers bridging over the whole system. The limit of such states is probably the uniform
mixture of pure (Néel) states with all possible orientations of the sublattice-magnetization.
Spin liquids, on the other hand, may be limits of RVB states with short dimers. The
distinction in finite volume is not perfectly clear-cut. Short dimers rarely mean dimers
of bounded length, certainly not in the triangular or Kagomé lattice antiferromagnets.
Instead, the coefficients of VB states with increasing dimer length may show some specific,
so far unknown, decay properties.

Valence bond states themselves can be ground states of some antiferromagnetic Hamiltoni-
ans. The infinite volume limit is a state with a localized array of singlet pairs; if it breaks
the translational symmetry, it is called a spin-Peierls state. Examples of Hamiltonians
can be found with purely pair interactions ([MaGh],[ShSu] and the present work) or with
interactions involving more than two spins ([K1],[CCK]). The example of [CCK] is partic-
ularly interesting because the number of valence bond ground states grows exponentially
with the size of the system. In the infinite volume limit the resulting ground states which
differ only locally form an equivalence class which may carry the properties of a spin liquid
phase, similarly to the ground phases of superfrustrated Ising Hamiltonians.

In the models we investigate in the present work something like this occurs due to a spinon,
an unpaired spin, in the ground state.

After the identification of triplet ([Hu],[dCP]) and singlet ([Ov],[FaSii]) excitation branches
in the isotropic Heisenberg chain of even length, it was recognised [FaTa] that these and
other multiplet excitations can be decomposed in an even number of elementary excitations:
quasiparticles with spin 1/2 and given momentum and energy. Later and in the context of
itinerant electron systems neutral objects with spin 1 /2 which can somehow be indentified
as entities in infinite-volume equilibrium states were called “spinons” (by Anderson, [Lal).
The above-mentioned quasiparticles, bound in the excited states of the Heisenberg chain,
are considered as an example. Free spinons most often are visualized as real-space spin
1/2-particles which remain unpaired due to a dimerization defect [KRS]. Such a defect can
be provoked at least in two different ways: by choosing, in finite volume, the number of spin
1/2-particles to be odd or, by exciting a singlet pair into a triplet state and carrying “half
of the excitation” to the sample boundary [La]. Making evident the existence of spinons
in equilibrium states is an exciting challenge: In two dimensions these are particles which
obey fractional statistics [KaLa] and, according to a scenario advanced by Laughlin, they
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are the key objects of the “anyon superconductivity” ([La],[CaJo],[BEMS]).

According to what we know about its Ising limit, the best candidate for a model possessing
a genuine spin-liquid ground state is the spin-1/2 isotropic Heisenberg antiferromagnet on
the Kagomé lattice. Unfortunately, we were unable to treat this model rigorously. The
best we could do is to study the model on triangulated trees. Let us summarize our
principal findings. Triangulated trees contain an odd number of sites. Completing with
an additional site on a “dangling bond” or removing a site of a triangle (Fig. 2.1.d),
the system has a unique valence bond ground state which corresponds to the unique
dimerization of the graph with nearest-neighbour dimers (Proposition 3.4). On a tree of L
triangles the subspace of ground states is 2(L + 1)-dimensional. There is a basis of VB
ground states with nearest-neighbour dimerization and a localized spinon (also called free
spin) on a site (Theorem 3.3). In any ground state the pair correlations decay exponentially
(Theorem 6.3). For a chain of L triangles we show, by adapting Affleck et al’s proof [AKLT],
the existence of an L-independent gap in the spectrum above the ground state energy
(Theorem 7.1). The pure ground states in the infinite volume — or at least some of them
— can also be given. For the infinite chain of triangles there exists a countable number of
pure spin-Peierls ground states (Proposition 8.2). With the exception of two of them, they
contain a localized free spin at some site. These states are equivalent in the sense that the
corresponding GNS representations of the algebra of quasi-local observables are unitarily
equivalent (Theorem 8.3). The Hilbert spaces supporting the different representations
can be considered coinciding. This single Hilbert space contains then countably many
ground state vectors, any one of which can be transformed into any other one by a finite
displacement of the ground state spinon. The whole family forms a ground phase which is
translationally invariant and does not break parity (reflexion with respect to axes in the
plane of the triangles and perpendicular to the chain) either. Moreover, there is a gap
above the energy of the ground state (Theorem 8.5). Therefore this ground phase can
be considered as a curious realization of a spin liquid. The remaining two ground states
are isolated: not equivalent with any other ground state. They correspond to the spinon
being at + or —oo, respectively. They are invariant under translation (this can, in fact
be seen as an “accident” due to the peculiar geometry of the chain of triangles) and are
transformed into each other by reflexion. The existence of a gap (Theorem 8.4) can be
proved by using the results obtained for finite chains of triangles and shows that these two
states are isolated. The clustering of the correlations follows from the product structure
of the ground states.

Similar results are obtained for infinite trees of triangles (Section 8.2). There exists an
isolated spin-Peierls state, with spinon at infinity, for each branch of triangles, and an
equivalence class of only locally different ground states with a single spinon at some site.
This latter, again, realizes something like a spin liquid phase, but we cannot prove the
existence of a gap, in spite of the exponential decrease of pair correlations.

A short version of the present paper has recently been published [MoSii].
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2. Notion of A Tree and the Model

A triangulated tree or A tree (delta tree) is a connected graph such that any bond belongs
to a unique triangle and the only cycles are triangles. A special case is the A chain which
is a chain of triangles.

A At tree is either two A trees connected by an extra bond or a A tree with an additional
site connected to it by a single bond.

In a Atree any two triangles are connected via a unique A chain. See Figure 2.1.
Definition. A triangle will be called a boundary triangle of a Atree A, if it is connected

to the rest of A through a unique site. A boundary site of A is a site of a boundary triangle
which is not shared with other triangles.

\/}@\/ /\

Fig. 2.1. a. A Atree. The circles indicate a possible choice for the construction of a basis in the space
of ground states. b. The A chain. c. A graph which is not a A tree (some bonds belong to more than
one triangle). d. The two kinds of At trees.

The model considered in this work is a system of 1/2 quantum spins on a Atree A with
the anisotropic Heisenberg Hamiltonian HA

HA =Y H, (2.1a)
a
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With the exception of the last section, we deal with finite sets. The index a labels the
triangles of A and the one-triangle Hamiltonian H, is given by

Hy=Xatvatpat Y, {Aa0z(a,k)0z(a,m)+vaoy(a,k) oy(a,m)+pta 0:(a, k) 02(a,m) }

k,me{1,2,3
Ll (2.1b)

Here {1, 2,3} number the sites on the ath triangle, and o, (p) represents the action of the
Pauli matrix o4, @ in {z,y, 2z}, on the pth site and the unit matrix on any other site.

The parameters A,, v, and u, are chosen to satisfy
0<Ag+vg+pe<oo and 0 < Ag¥g+ Valig + Hare < 00 for all a. (2.1c)

Hence the interaction is purely or dominantly antiferromagnetic.

To simplify the notations, we will consider the homogeneous case, i.e., \; = A, v, = v and
ta = p for all a, but the results are valid for the inhomogeneous Hamiltonian.

In the sequel S, will denote the z component of the total spin, i.e.,

1
S, = 5 Zaz(p)

PEA

The operators above act on the Hilbert space $* spanned by the vectors y1 @y, ® - - ®@)a

where
v = ({l))sf or ((1))51.

We will omit the sign ® if there is no place for confusion.
If p and q are two sites then the unique singlet state formed by the corresponding spins is

[pla] = {1(p) Ua) — Up) Na)}/V2

If p and ¢ are nearest neighbours, this state is called a dimer. In figures, it will be
represented by ,——4 or, if the sign is not interesting, by p===, or ,—.
We will denote the usual graph distance between the sites p and ¢ by d(p, q).

3. Valence Bond States as Ground States

On any Atree A, there are states obtained by taking the tensor product of dimers and a
single one-site T or | state, such that each triangle carries a dimer on one of its bonds.
These states are called the valence bond (VB) states. Thus, a VB state has the form
[p1lp2] . .. [pn—2lpN-1] Y(pN) Where N = |A|, p2n—1 and pe, are nearest neighbours and
v = T or |. The unique site of A which does not belong to any dimer is referred to as a free
site and the spin on it as the free spin. Any point of A can be a free site. If the free site
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and S, are fixed then the associated VB state is completely determined: On each triangle
the dimer is carried by those two sites at an equal distance to the free site. It follows also
that two VB states differ only on the A chain which connects their free sites (Fig. 3.1).
As any Atree of L triangles has 2L + 1 sites, there are exactly 2(2L + 1) different VB
states, the factor 2 coming from the two possible orientations of the free spin. Each such
VB state is an eigenvector of S, with eigenvalue £1/2 depending on the orientation of the
free spin.

IASARA g K AR

N
A " AN

Fig. 3.1. Two valence bond states on a A tree. Notice that they differ only on the A chain connecting

their respective free sites.

Proposition 3.1. The valence bond states on any A tree A are ground states of H® with
ground state energy 0.

Proof. If A has more than one triangle, the restriction of a VB state to any triangle a is a
VB state or the linear combination of two VB states on a. So it suffices to show that the
VB states on a are ground states of H, and their energy is 0. Now

Hol®l®l=RA+r+4p) ]|+ A-1) {1810 /+1R.®T+.®1&1}
HaT®T®l=HET®l®T2H¢:l®T®T=

=A+) {1010 +10(®1T+1®1T81}+(A-»)]|®|®] 1
Similar equations are valid with all spins reversed. From these equalities one finds that
the VB states v(p) [p'|p"”] are eigenstates of H, with eigenvalue 0 which has multiplicity 4.
_The other eigenvalues are 2(2 + VX2 — 32) with multiplicity 2, where ¥ = A+v + y, and
= = Av+vu+ p). It is easy to check that the VB states are (the only) ground states of
H, if and only if ¥ > 0 and E > 0.

Lemma 3.2. Let A be a A tree, and p a site in A. A state ¢ = ¢'v(p) withy=1T,| and
¢ in H2MP} is a ground state of HA if and only if ¢ is the valence bond state with free
spin vy on site p, i.e., ¢' is the tensor product of dimers on A\{p}.
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Proof. The part “if” was shown in Proposition 3.1. By this proposition any ground state ¢
has to minimize H, for all a (because the VB states do so). Then, in particular, ¢ has to
minimize each Hp where b is a triangle containing the site p. The spin (p) being fixed, ¢
must contain a dimer on the remaining two sites of b. By developing this dimer, we get two
mutually orthogonal states, so the above argument can be repeated. See Figure 3.2.

Fig. 3.2. The inductive construction of the unique ground state on a A tree with a fixed spin value on

site p.

Theorem 3.3. Let A be a A tree with L triangles. There are L + 1 valence bond states
which form a basis for the space of ground states with given S, (= 1/2 or —1/2).

This basis can be choosen in the following way: Fiz a set of L + 1 sites of A such that it
contains ezactly one boundary site of any boundary triangle and one or two sites of any
triangle (Fig. 2.1a). Then choose the L + 1 valence bond states with the free sites taken
from this set and with suitable spin on the free site.

Fig. 3.3. The triangle added for the induction step in the proof of Theorem 3.3.

Proof. i) Each ground state is a linear combination of VB states.

This holds for a single triangle. The general case is proved by induction in the number
of triangles. Suppose that for any A tree Ap of L triangles each ground state is a linear
combination of VB states. Fix Ay, and consider Ay, obtained by completing a site p
in Az into a new triangle. Let p’ and p” be the two added sites. (The new triangle is
necessarily a boundary triangle. See Figure 3.3.) We have HAt+1 = HAL + Hp 4.

Let ¢ be a ground state of HA4+1, Then HA: ¢ = Hy 1 ¢ =0, i.e., ¢ is a ground state for
HAt and Hpy,. Expand ¢ as

p=¢1m+ T +doTo+ PaTa=¢ + daTa (3-2)
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where ¢, (s = 1,1,0 or d) is in H3 and 74 = 1()1("), 7, = LE)E"), 10 =
{t1@") ") + L(®)1(®")}/V2 and 74 = [p'|p"]. Due to the orthogonality of the states
Ts, each nonvanishing ¢, must be a ground state for HA%. Hence by the induction hypoth-
esis each ¢, is a linear combination of VB states in f_‘)AL Moreover, ¢4 [p’|p”] is a linear
combination of VB states in $HAL+1 and is therefore by Proposition 3.1 a ground state
of HAL+1, Then ¢’ is also a ground state. By expanding ¢, for s = 0,7,/ in the basis

{1(9), 1(p)} we obtain
¢ = (P10) +XP10) 7+ (X216) + X010)) 7o+ (2 10) +x010) 1 (33)

Using Eq. (3.1),
0=Hp.1¢' =
= (A +rv+ad? + 0 -0 +v2x) 111 3.7, 9")
+ (=2 + A+ )P + V2 (T T L+ T LT+ 111 .72
+ (=P + A+ )07 + VX)) AT UL+ LT L+ LT 0P p)
+ ((A +v+4ux{” + (- + \/éx?”)) {L11} (P, p")

The states on {p, p’, p"} are orthogonal, therefore we have to solve for A and B the following
system of equations:

{(A+u+4p)A+(A—u)B=0
A=v)A+(A+v)B=0

Since the determinant of the system is 42 > 0, there is only a trivial solution, A = B = 0.
This means

| 1 1
iV =x0 =0 P =xP=g® and )= ox7 =40
Applying these equalities in Eq. (3.3) we find

¢ = V2™ lp) 11 — (6 1(0) + ¢ L@)} 10 + V247 1) 7,

= ¢ [p"p] 1(0') + ¢ [P'lp] 1") + 6 olp] L") + ¢ folp"] L)
Comparison with Eq. (3.2) sliows that .
+) —- ‘ (=) B T
¢ L(p) = 7 b1 and ¢~ 1(p) 7 ;.

These are therefore ground states (if # 0) of HA*. By Lemma 3.2, #) and ¢(~) are some
multiples of the product of dimers in $42\MP}, So ¢’ is a linear combination of VB states.

i1) For fixed S, there are at most L + 1 linearly independent VB states.

Let, e.g., S, = +1/2. The proof is done by induction in the number of triangles. For L = 1
the claim holds true (c.f. Fig. 3.4). Suppose that for any Atree Ay made of L triangles
there are at most L + 1 linearly independent VB states in A%,
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JARTASTAGE

Fig. 3.4. Linear dependence of the valence bond states on a triangle. The free spin is fixed.

Let 9¥X(q) be the VB state in AL with free spin 1 on site ¢ and Fp = {d)L(q)}quL,
with Iy € Ap and |Ir| = L + 1, a maximal set of linearly independent VB states. Here
Iy, is chosen as described in the Theorem. Consider the Atree Ap4; obtained from A
by completing a site p in Ay into a new triangle with boundary sites p’ and p”. Let
PEt1(g) = ¥ (q) [P'Ip"] if ¢ is in It and YL+ (p') = ¢* [p"|p] 1(») (where 4" is the product
of dimers on Ap\{p}). Choose I 4; = I U{p'} and set Fp,1 = {¢L+1(q)}q€IL+1.

If ¢’ belongs to Az then ¥I+1(q’) = £y (¢') [p'|p"] is by the induction hypothesis a linear
combination of {¥"(q) [p'p"]} c;, C Fr+1- Also, L1 (p") = ¢% [plp'] 1(p") is  linear
combination of ¥L*+1(p) and ¥L+1(p') (see Fig. 3.4) and hence of the elements of Fr1.

It remains to prove that Fr4; is linearly independent. Consider

0= Z Cq¢L+1(Q)

g€l

— , AL [n!! _C"_q_ L " } AN { __C_'i L " } /
{cv o b1+ 32 v 1611160 - { T v @160 o)
The two sums being orthogonal on p’, we get 3_ 5 Cq ¥%(q) = 0 and by the induction

hypothesis C, = 0 for all g in Ir,. The first term reduces to Cp X+ (p') = 0 hence Cpy =0
as well. This finishes the proof.

In the case of the AT tree there is a unique VB state which, with suitably chosen numbering,
has the form [1|2] [3]4]...[N — 1|N].

Proposition 3.4. Let A be a At tree. Then H® has a unique ground state which is the
valence bond state on A.

Proof. The Hamiltonian H? can be written as HA = H+ + H* where H" is the term for
the extra bond:

H* = X(0:(p)o. () +1) +v (oy(P)ay (") + 1) + p(o:(p)o.(p") +1)
The VB state 9 on A is the product of dimers with a dimer [p|p’] on the extra bond. Hence

1) minimizes each term of HA.

If ¢ is any ground state of HA then it has to minimize H+ and so ¢ = ¢’ [p|p/]. By
Lemma 3.2, ¢’ is the product of dimers on A\{p, p'}, therefore ¢ is the VB state on A.
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4. Some Excited States

In the case when A = v, on a A tree A, some excited states of H can easily be constructed.

If ¢ is a triangle of A, let (c,1), (c,2) and (c,3) denote the three sites on it. If Ag is a
A tree within A, then A\Ay is the union of At trees. Let ¢(A\Ag) denote the unique VB
state on A\Ao.

Fig. 4.1. Example of excited states on a A tree. A and & are the states described in Equation (4.1).

Proposition 4.1. Let A be any A tree and H* the Heisenberg Hamiltonian (2.1) on it.
Suppose in addition that A = v. Then

1. For any triangle c of A, the states
$(A\e) {1(c, 1) 1(c, 2) e, 3) + e, 1) Ue, 2) e, 3) + e, 1) e, 2) e, 3)}/V3
#(A\e) {Ue, 1) e, 2) We, 3) + Ue, 1) Ne, 2) We, 3) + Ne, 1) Ue, 2) Ue, 3)}/\/5

are excited states of H® with energy 6 ).

2. Let Ao be a (connected) A tree contained in A, then

$(A\Ao) ) 1(p) and $(A\Ao) X L(p)

PEAp pEAg

are excited states of H® with energy 2Mg (2u+ ), where My is the number of triangles
n Ag i
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Proof. Setting A = v in Eq. (3.1), we find for a single triangle
H,,A = (4u+2)\)&
HA =ex (4.1)
HA =0

wherey=Tor |, A =y8787, A ={18181+18181+181@1}/V3, or the
state with all spins reversed, and YA\ represents any VB state i.e. y(p) [p'|p"] if p,p’ and
p” are the sites of the triangle.

The result is a simple consequence of Lemma 3.2 and of Equation (4.1) after a suitable
decomposition of HA.

5. Overlap Between Valence Bond States. Orthonormal Basis for Ground
States

To compute the overlap between VB states on a Atree or to construct an orthonormal
basis, one may fix the value of S, = +1/2. Obviously, two VB states with different
orientation of the free spins are orthogonal. We first consider a A chain of L triangles which
we denote by Ay. The triangles will be numbered from left to right. For 1 <a < L -1,
a4+ = a+1_ label the common site of the triangles a and a+1, 1_ and L, are the left- and
rightmost sites, respectively, and for 1 < a < L, ag denotes the third site of a, different
from a4. As a basis for the space of ground states of H L — gAL we use

¥ (ac,) = [1-1o].. [a — 1_]a — Lolv(a-) [aola].. . [LolLs],
fora=1,...,Land y=1, |, and (5.1a)
(Lt ) = [1-[1o] ... [L—|Lolv(L+)
There are L other VB states given by
¥ (a0,7) = [1-[1o]...[a — 1_|a — 1] [a+[a_]y(ao) [a + Lola + 14]...[Lo|L+]

5.1b
=~ (ay,7) — ¥ (o, ) (5.10)

Fig. 5.1. The numbering of the sites on the A chain and the valence bond states of Eq. (5.1).
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In this way, ¥"%(q,7) is defined for any q in A;. A graphic representation of these
states is given in Fig. 5.1. We will denote by Ap . the A chain formed by the triangles
b,b+1,...,c. The VB state 9*(a,,y) where s = 0, %+ is defined as the shift of the state
Pplhe—btlq —p 4+ 1,, 7). Below we use the simplified notations

¥(g) =9 (g, 1),  ¥**(a) =v**(a,1). (5.2)

Lemma 5.1. For a A chain we have
(v(0) | ¥(g)) = (-2)~4@D)

Proof. Recall that two VB states differ only on the A chain connecting their free sites
(see Figure 5.2a or Equation 5.1) hence the part outside this A chain contributes a fac-
tor 1 to the overlap. Therefore (¥(a—)|¥(b+)) = (¥*b(a-)|¥*>b(bs)). We first prove
(v(1-) |¥(b4)) = (=2)~® by induction. It holds for b= 0 (04 = 1_). If it holds up to
b then by expanding the dimers on the triangle b + 1 and using the orthogonality of VB
states with different free spin, we get

()| 9O+ 14)) = = (V) [$64)) ([b+1olb+ 1] |16+ 10)16-+14)
= =5 (W) |9161)) = -3 (<97 = (-~

The other cases are obtained by using the relation (5.1b).

Fig. 5.2. a. Overlap between two valence bond states on the A chain. b. These diagrams contribute a

factor one to the overlap. c. The diagram which gives the (—2)~%?:9) contribution.

In the sequel, for a Atree A and g in A, 1 (g) denotes the VB state with free site ¢ and
spin +1/2. For A chains the sign of 1(g) is fixed in such way that we get (5.2).
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Lemma 5.2. Let p and q be two sites of a A tree. Then

|(¥(p) |¥(q))| = 249

Proof. Again, two VB states are identical (up to dimer orientations) outside the A chain
connecting their respective free sites (see Figure 3.1). Therefore the preceeding Lemma

applies.

We are now able to introduce an orthonormal basis for the space of ground states on
Atrees. As before, we will first consider the case of a A chain.

Proposition 5.3. Let AL be a A chain with L triangles and q any site in Ap. Let b in
{1,...,L+1} be determined by the equality g = b_ or bg. Then the following set of vectors
is an orthonormal basis for the ground states of HL (y=1,]):

027 (0,7) = ¥ (g,7)

(25 (¥ @) +267 @) 1<a<d
02 (a,7) = 4 —;—5 {v"*(a,7) + 29" (a+, )} if a=b
t % {¥"L(a=,v) + 29" (as,7)} if b<a<L.

By analogy, we can also define on A, 4 the states ga;"‘(a, ) for any site g in A, 4.
The freedom in choosing the distinguished site ¢ arbitrarily will be exploited later in the
computation of the correlation functions.

Proof. Fix S; = +1/2 and write ¢_(a) for p2*(a,1) a=0,...L. For1 <a <band pin
Ad+1,Ls

(e (a)|¥(p)) = f(¢(a+)+2¢(a ) |v(p)) = f( 2)- d(a+m)+\/_( L Gy

because d(a+,p) = d(a—,p) — 1 for such p. Hence (¢ (a)|p,(c)) =0if 1 <a <band
c= 0 or ¢ > a. The same kind of argument gives (<pq(a)|tpq(c)) =0ifa>bandc=0
orc > a.

It remains to show that the states ¢ (a) are normalized. This is the case for ¢ (0) = ¥ (q)
If ¢ (a) = 7 {1/)(19) + Zw(p')} notice that d(p,p’) = 1; hence (cp (a)[go (a))

- {1+2(——)+2(—-)+4} =1
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a A} A
WA AJH A D) A
WA AR LA AYA

Fig. 5.3. a. Elements of the orthonormal basis for ground states on the A chain. b. The state gc:q(b)

when q = by. ¢. Meaning of the symbol A ;

Proposition 5.4. Let A be a Atree and g a site in A. Let Vo be the set of triangles
containing the site q. A basis {{)(p)} of valence bond states on A can be chosen so that an
orthonormal basis for the ground states of H in the subspace S, = +1/2 is given by

¢, (0) = (q)
04() =7z (9(a) + 2 (ca)} if ¢ is in Vo

where ¢4 is a suitably chosen site on the triangle ¢ different from q, and
i __ :
¢, (c) =$ {(ce) + 29(cs)} if ¢ is not in Vg

where ¢, and c; are suitably chosen sites on the triangle ¢ such that d(c,,q) = d(ct,q) + 1.

Proof. Recall that for any p in A there is a VB state 1 (p) which is unique up to a sign. First
choose the sign of 1(q) arbitrarily by fixing the orientation of its dimers. Let ¢_(0) = v(q).

For any site p in A\{q} the sign of ¢(p) is fixed in the following way. Outside the A chain
connecting p and g the dimers are oriented as in ¥ (g). Let b = {p1,p2,p3} be a triangle
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on the A chain connecting p and q and ¥(q) = [p1|p2]¢. If in ¥ (p), p1 and p3 form a dimer
then choose [p3|p1]; if p2 and p3 form a dimer then choose [pa|ps).

For a triangle b, we denote by p the site in b such that d(b,q) = d(p,q) and by p’ and
p" the two other sites of b such that the dimer of ¢(g) on b is [p/|p”]. Then ¢ (b) =

{v(® +2¢(")}/V3.

The set of states {¢_(b)} obtained by the previous construction has the following properties:
1) The two VB states entering the construction of qoq(b) are equal on A\b. The restriction
of o, (b) to b is one of the states defined in Figure 5.3c.

2) A VB state 9¥(p) and a state ¢, (b) (resp. two states ¢ (b) and ¢ (c)) are indentical
outside the A chain connecting the site p and the triangle b (resp. the triangles b and c).

Fig. 5.4. A state ®, (c) on a A tree. Any valence bond state having its free site on the shaded triangles
is orthogonal to <pq(c).

Take any state goq(c) with ¢ 5 0, and consider the largest connected A tree A, in A which
contains g and is neighboring with the triangle c. (See Figure 5.4 where A, is ~¥na.rl«:ed by
dots). Then ¢ (c) is orthogonal to any VB state 4(g") with free site ¢’ in A.. To see

this, notice that when computing (;b(q’ ) | 7 q(c)) we are brought back to the case of the
A chain connecting ¢’ and c¢. We can then use Proposition 5.3 and Figure 5.3c. (Notice

that if _(c) = {(p) + 26 (#)}/V3, then d(p',¢) = d(p,¢’) + ).

The orthogonality of ¢, (b) and ¢ (c) for b # c follows from the fact that either b is in A.

or ¢ is in Ap. 0
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6. Exponential Decay of the Two Point Correlation Functions in the Ground
States

We begin by proving two lemmas for Ar, the A chain with L triangles. Let v (q,~y) denote
the valence bond state on Ay, with free spin vy = 1 or | on site g. The dimers are oriented
as in Eq. (5.1). Let A?P denote the A chain connecting the sites g and p (i.e. A?P is the
minimal connected A chain which contains g and p).

Lemma 6.1. Let q and p be two sites of the A chain Ar, such that d(g,p) > 2. Then

(¥(rm) | oa(@)ap@)¥(s,7)) = Ky (=2)74") |(n]| 0500 )]
if p and q belong to A®>7, and

(¥ () | 7a(9)oa(P)¥(s,7)) =0

in all the other cases. Here k., is a complex unit, independent of s and r.

1 a—1 a c

Fig. 6.1. Diagrams for the off-diagonal correlation functions appearing in Lemma 6.1. a. A vanishing
correlation. b. A nonzero one point off-diagonal correlation. c. A nonzero two point off-diagonal

correlation.

Proof. Suppose that s <r.

(i) Recall that o,(p) [p|q] is a triplet state and thus it is orthogonal to [p|q] (0 (p) is a Pauli
matrix). Let C,(7) denote the complex number with modulus 1 given by g47v = Ca(y) Y’
(v,7' =1 or ).
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(i) Compute J(g) = (¢ (r,n) | 0alg) ¥(s,7)) for g in A", see figure 6.1b. If ¢ = s then

J(@) = ($(r,n) | $(5,0a7)) = Calr) 2747 (1| 50 7)|

using Lemma 5.1. If ¢ # s we may suppose that ¢ = ¢y or ¢;. Expanding the dimers of
¥(r,n) and 9 (s,) which contain ¢y and using Lemma 5.1 we get

~T(e) = Tex) = =5 (P71 em ) [ 997 (0,)) (915 () |95 E e 00 1)

— 5 (e, ) [ 5,m)) (5 () [ 95 (e, 0w 1))

= Ca(7) (=2)7%" |(n| 00 7)|
Hence J(gq) = (=) Ca(7) (—2)~%®") |(n|0ay)|- The minus sign is present only if ¢ = co.

(i4i) Let J(p,q) = (¥(r,7n) | oa(g)as(p)¥(s,7)). If g is outside A™*, the A chain between
r and s, then g belongs to the same dimer in ¥ (r,7) and v¥(s,v). Hence J(g,p) = 0 due
to (i). If both p and ¢ are in A™® then suppose ¢ < p = b; with ¢t = 0 or +. Notice that
because of d(g,p) > 2, g4(q) and o5(p) do not act on the same dimer. Expanding the
dimers of 1 (r,n) and (s, ) which contain by and using (i) we get

J(g,b0) = J(q,b4)
=~ (#7160, 1) | oala)¥™ 7 s,m) (#HE ) |94 (s, 05 1))

= 5 (P06, 1) 0a(@¥ 7 (5,m) (S5 () [ 94415 (b, 05 1))
= (=) Ca(7) Ca(0a7) (1| o007 )| (—2)~4*")
The minus sign appears only if ¢ = cp.

In summary,

J(g,p) = Ky (=2)7 |(n| 7500 7))
where Kk, = (—) Ca(y) Cs(047) is independent of r and s, |k,| = 1 (the minus sign appears
ifg=coand p=1b; orif ¢g=c_ and p=bo).

In order to compute the correlations in any ground state between the sites ¢ and p of a
A chain, we use the orthonormal basis with distinguished site g constructed in Proposi-
tion 5.3.

Lemma 6.2. Let q and p be two sites of the A chain Ay, such that d(q,p) > 2. Then,
2 _
| (0, (6,m) | 7al@)ra (@) py(a )| < 227409 | (1] ouog)

ifa =0 and b labels the boundary triangle of ATP containing p, or if a, b label the two
boundary triangles of ATP, and

(24 (b,n) | ga(@)os(p) v, (a,7) ) ‘ =0

in all the other cases.
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/cr,,(c-)

--------------------------------------------

Fig. 6.2. One of the nonzero off-diagonal correlation functions in Lemma 6.2.

Proof. Let I{a,b) = (cpq(b, ) | 0ala) os(p) ¢,(a,7) ). If p or g is outside the A chain which
connects a_ to by then I(a,b) = 0 by Lemma 6.1. We may suppose that ¢ = ¢y or c_ and
p=doordy withe<d Ifl<a<ec<d<b< L then with the notations of Lemma 6.1,

I(a,b) = = (¢(b-,m) + 2¢(b4,m) | 0a(@)os(p) W (as,7) + 2¢(a_,7)])

_ %n,,{(-z)-“%h) +2(=2)4= 51 (n] 7a0s7)|
% %M{(_Z)—d(%m +2(—2)~4e- .b+)}|(,7 EX720]

This holds because d(a—,b_) = d(ay,b-) + 1 and d(a—,b;) = d(ay,by)+1. fa=0or
a = c then by definition (,oq(a,fy) = C%(g,7) + C*t¢¥(cq,7) with C? = 1 or 1/+/3 and
C* = 0 or 2//3 respectively. In both cases, since g is not in A°+*- we get by Lemma 6.1

I(a,b) = C? (¢, (b,n) | 0a(9)os(P) ¥(2:7))

o=

o .
@ iy 2(<2)908) |(n|0aogy)l i P =bo,by

V3

Now d(g,b;) = d(g, bp), therefore in the second case we get
2
I(a,b)| < == 2~d(a.P) 0aogy ).
| ( )I—\/g |(77| e’ ﬂ’)’)l O

Theorem 6.3. Let A be any A tree (containing more than one triangle), let ¢ and p be
two sites of A such that their distance d(q,p) > 2. Then for any normalized ground state
U of HA, .

(¥ |oa(g)on)¥)] < =z 274e»
~ V3

Proof. Let ¥ = Z W,y ¢,(a,7), then
a,Y

(] 0a()os(®) ¥)| < Y (@, (b,1) | 0a(@)os(P) y(a7))|-
a,b

’
REL
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By Lemma 6.2 there are only four couples (a,b) for which we have a nonvanishing term.
Moreover, for any a,, |(n|oaoay)| =1 for two different (7,7). Therefore

(¥ | 0a(a)oa(p) ¥)| < %2-d<q,p>_ &

The correlation functions in the case of a At tree are trivial. If the spin operators do not
act on the same dimer then the correlation function is 0 in the ground state.

7. Energy Gap in the A Chain

By energy gap we understand the separation between the lowest eigenvalue of HA and the
rest of its spectrum. The main result of this section is that for finite A chains the gaps
for H- have an L-independent positive lower bound.

Theorem 7.1. Consider the anisotropic Heisenberg Hamiltonian HL on the A chain Ap.
There exists a positive constant €, independent of L, such that

(@|HE®) > (2| @) (7.1)
for any vector & orthogonal to the space of ground states of HL.

Following Section 2.3 of Affleck et al [AKLT), for n < L, let H" denote the Hamiltonian
for the triangles 1,...,n, Q™ the orthogonal projection in $A¢ = $HL onto the space of
ground states of H™, and P* = 1— Q™. If H®+ = 0 then H"" 14 = 0. It follows that
Q™! > Q" and so P*~! < P". In fact, Q"~! — Q™ is a projection.

Let N, be the dimension of the range of Q"' — Q™ when restricted to H™and {3} .ca.
an orthonormal basis in $™ for the range of this projection. Here A, is an index set of N,
elements, to be specified below. Hence each ¢7 is a ground state of H*~! and is orthogonal
to the ground states of H™. Notice that N, =4:-2n —2(n+ 1) = 6n — 2.

For 0 < I < n, denote by H® 4" the Hamiltonian for the union of triangles n —1,...,n,

and Q™" the orthogonal projection in H™ onto the space of the ground states of H™ '™,
Define

C:" _ { Qn—l,n E: / ”Qn—l,n §:M if Qn—l,n 6: __'£ 0

0 otherwise
and

e(l) = sup sup ||@Q*~h" f:”z
n>l a

Finally let P({™') be the orthogonal projection in $H” onto the subspace (™! @ AL \An if
¢t £ 0, and P((?) = 0if (™! = 0, and let P(¢™*) denote the smallest orthogonal projec-
tion in ¥ which is greater than or equal to P(¢?") for all a: P({™') = sup,ea, P(CT).
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The proof of Theorem 7.1 relies on several lemmas. Denote the triplet states on the sites
ng and ny by

7y =7(mo)y(ny)  y=T1.1

75 = {lno) i{ny) + i(no) Hny)}/V2
and introduce the multiindices a = (a,vy|s) where 0 < e <n,y=1tor |and s=1,] or 0.
Excluding (0, 1|]) and (0, ||T), these latter form the set A,. We have

Lemma 7.2. An orthonormal basis for the range of Q™! — Q™ restricted to H™ is

o) = ¥n_(0,7) 7 fora=1,...,n—-1ands=1,1,,0
E?O:"fl'f) =Pn_ (03 'T) T-;. for = T, l

and

oo = 75 { V2 O +00 0,177}

1
5?{'),“0) = E {\/5 Pn_ (0& l) Tg + @n_ (0, T) TIL}

Here {¢,, (a,7)} is the orthonormal basis for the ground states of H™ ', defined in Propo-
sitton 5.3.

1 a n—1 n
A\ AVANER
1 n—1 n

AN AV N

Fig. 7.1. The states in Lemma 7.2 for an orthonormal basis of the range of Q" ~1 — Q" restricted to ™.

The wavy line marks a triplet state.

Proof. The states £} given in the Lemma are by construction mutually orthogonal ground
states of H® ! and their number is 6n — 2.

It remains to show that they are orthogonal to the ground states of H™. First notice
that the states 5&”] o when considered on the last triangle are orthogonal to the VB
states on that triangle. So take £f, ., with a # 0. If 1(g,7) is a VB state in " with

q # ng,ny then 1(q,7) has a dimer between the sites ng and ny, and ([ng|ny] |77) =0

for any s. If ¢ = ng,ny then ¥(q,7) = ¢, (0,1) ® k(no,n4) +¢,,_(0, ) ® ¢(ng, n4) which
is orthogonal to the states 5{‘ ) with a # 0.

a,v|s

Using the basis defined in Lemma 7.2 one can prove the following.
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Lemma 7.3. For a=(a,y|s) in AR, and 0 <1l < n,
i) Qntne¢r =0ifn—1l<a<mnora=0, hence P((™) =0
i) For each l, s(l) <9+,

iii) If a # b then (. (a,—yla) lc(b,nlt)) =0. As a consequence Y ca_ P((3) < 6 P((™).

Proof. To prove 1) and ) we compute the overlaps between ¢” and x ® ¥ ~""(q,7n) where
X is a normalized state in ™'~ and ¥"~4"(q,n) is a VB state (cf. Eq. 5.2).

i) This result is obtained in the same way as Lemma 7.2.

i) For a = (a,7|s) with 1 <a <n—1[—1, we can write

£ = {0a1 @Y " n—1_,1) + 66,y @Y "~ 1, )} 7
where 6, 1 and 6, ; are states in H™'~1, see Figure 7.2, with |8, 1]|, 104,11 < V2 obtained
by the expansion of the dimer [n — I — 1g|n — I_].

Following the proof of Lemma 7.2, we have (x ® Y™ ~""(g,n) |£2) = 0if g # no,n4. Ifg=
Tig OT 114, W€ write ,(pn =4 n(Q: ) 1/,11 —hin— 1(”—’ T)@H(ﬂo,n+) 1)[)" —hn= l(n—7 l)®<(n0,n+)

Here k(ng,ny) = £L(p)n(e)/VZ and s(no,ns) = £1(p)n(0)/VZ for {p,q} = {no,ns}.
Using the overlap formula of Lemma 5.1,
[(x®@ 9" ""(a,m) | &)l <
[(x 16,11 (K(no, g} [ 72) ("~ Hne, 1) [ 4770 (e — 1, 1) )
+(x|8a,0 ) 1(s(no,ny) | 7)) (™0 Mo, ) [ = 12, 1))
<yt o) [ - 1) ) =27

supp Q"""

Fig. 7.2. A state £ where a = (a,~|s) with1 < a < n— 1 — 1 and the support of Q"~"", C:’I # 0 In

this case.

i1i) The orthogonality of C( a8} and C(b 1) for 1 < a,b < n—1—1 (when these states

are nonvanishing) and a # b follows from the orthogonality of £ and &7, because Q™ hn
acts like the identity in $Arm-t-1Mn—1-1+} The case 1 <a < b=n—1—1 is treated by
expanding the states £ and £ on site n — [ — 1. and using the argument above.

Thus, for a given a = (a,%|s), 1 < a <n — 1~ 1 there are at most 6 different b = (a, n|t)
such that (¢! |C{;") #0. O

The following two lemmas do not refer to a special choice of the basis £}.
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Lemma 7.4. If [n —m| > 1 +2, for each a,b the projections P(¢3') and P(¢I"') are
orthogonal, i.e., P((;‘*‘)P(({)"") =0.

Proof. One can follow the proof of Lemma 2.3 of [AKLT]. The bound ! + 1 therein is
replaced by ! + 2. This is due to the fact that in the present model the ground states
minimize the Hamiltonian by triangles; two adjacent triangles having a common site, the
associated projections will not commute, in general.

Corollary. If|n—m|> 1+ 2 then P(¢(™!) P(¢™!) = 0.

Lemma 7.5. Foralln and0 <l <n,

Qn«-l Qﬂ < 26(!) 2 P(cnl) B s Hn—l,n

acA, €i+1

where e;41 18 the smallest nonzero eigenvalue of H*~'™,

Proof. This is identical to that of Lemma 2.2 in [AKLT]. The sum }__ 5  replaces Z?=1
therein.

Proof of Theorem 7.1. The proof follows closely that of Theorem 2.1 in [AKLT] and is
given here for the reader’s convenience. Recall that PL is the orthogonal projection onto
the complement of the space of grounds states of HL.

Write PL as a sum of mutually orthogonal projections,

Z (Pn P™ 1 Pl-l-l Z (Q‘n—- Qn)+Pl+1

n=I0+2 n=I0+2
The integer | < L will be chosen later. By the Lemmas 7.5 and 7.3 we have
Z Q1 - Q™) <12¢(l) E PRI R — Z Hmbn (7.2)
n=1+42 n=I1+2 1 on=ty2

The second term in (7.2) can be bounded by using

L
> HWr<(1+1)HE (7.3)

n=Il+2
By using the Corollary of Lemma 7.4, the first term in (7.2) can be estimated as

L

. PEM<(+2)1 (7.4)

n=Il+2
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Inserting (7.3) and (7.4) into (7.2),

L
> @ -@Y <120 +2)e@1+ 2D e

n=I[+2 i+1
. 41 pitl « L g1 o1 op
Moreover, from the spectral decomposition of H***, P < — H'"" < —— H*” thus
€i+1 €141

Pl<12(1+2)e()1+ 2043 po
€l+1

If ® is a vector orthogonal to the ground states of HZ then PL ® = &. Hence the above
equation can be written as

2143

(1—-12(1+2)e®) (& @) < €41

(e|HE®).

The theorem is proven if we can choose an ! such that 1 — 12(! + 2) g(l) is positive. But
this is the case for any I > 7 because by Lemma 7.3, e(I) < 2~. 0

Remark. If the Hamiltonian HZ is inhomogeneous with parameters A, v, and p,, The-
orem 7.1 remains true if
er+1 = inf e41(n) > 0

where ej4+1(n) is the lowest nonzero eigenvalue of H*~"". This is always the case if there
exists a constant € > 0, such that A\, + v, + pe > € and A\gvg + Vafta + fara = € .

Proposition 7.6. Let AI be the At chain with L triangles. The gap €1 of H AL s sepa-
rated from zero as L — oo, i.e., liminfer > 0.

This follows from the proof given in [AKLT] and the one above, noticing that
N,, = dim Ran(Q™1 - Q") =3
when restricted to $x .

8. The Infinite Volume Limit

In this section we consider the infinite A chain and the infinite A Cayley tree.

For the infinite volume systems we use the following

Definitions. i) A local observable is any polynomial of the Pauli matrices o,(p). An
observable is any element in the norm closure 2 of the algebra of local observables.

it) The support supp A of a (local) observable A is the set of triangles on which the
observable does not act as the identity operator 1.
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i) A state g is a positive linear normalized functional on the algebra of observables %,
ie, o(1) =1, o(a A+ 8 B) = a p(A4) + Po(B) and g(A*A) > 0 for all A,B in A and o,
in C, where A* denotes the adjoint of A. A state g is pure if it cannot be decomposed in
a convex combination of two other states, i.e., g = agy + (1 — a@)p2 for 0 < o < 1 implies
=01 = Q2.

iv)As in the paper of Affleck et al [AKLT] the most natural way to define a ground state

w for this model is to ask that the ground states minimize the energy of each triangle,
i.e. w(H,) = 0 for each triangle a.

8.1. The Infinite A Chain

Let IL denote the doubly infinite A chain. In this subsection we study some proprieties in
the limit when a sequence of finite A chains tends to L.

Lemma 8.1. For a given q in IL, let A, be the smallest A chain containing 0 and q. Take
any A chain A D A, and consider v (q,~y), the valence bond state in A with free spin 7y
on q (c¢f. Eq. 5.1). There exzists a unitary operator 997, independent of A, with support in
Aq such that

Y(g,7) =97 9(0-, 1)

Remark. This result remains true for any A tree.

Proof. Notice first that o.(q)¥(g,|) = ¥(q,0:1) = ¥(q,1), and that o,(q) is a unitary
operator. It is sufficient to prove that for any ¢ in IL, there exists a unitary operator 7
such that 994 (0, |) = 9¥(q, |). Then 99! = 97 and 921 = 5,(g) ¥?. Consider the operator

1
Veper =Fe_ie, = —5{14— Z aa(c_)aa(q)} fort=0,+,

a=zT,y,z
and let 9._ .. = 1. Then, 92, . =9, o, 9 . =1and J,c_P(c-, ) =P(e, L)

C¢y C—

Now if g = ag or a_, define

ﬂq,a_ 1.9‘1_,“_’_ .--19._.1_,._14_ ifa < 0
99 = 19,1'0_ ifa=0
'19,1'“_ 0a—l+,a—1_ % s 190_'_'0_ ifa>0

Then (87)* 9% = 1 and (g, 1) = 999(0, ).
For the integers a < b, let
> = [a_|ao] [a + 1_|a + 1o] ... [b_]|bo]
$3° = [aolas][a + lola + 14] ... [bolb4]

Recall that for a < band @ < ¢ < b+ 1, 9¥*b(c_,v) denotes the VB state on A,p, the
A chain of the triangles a,a +1,...,b, with free spin v on the site c_ (cf. Eq. 5.1).
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Proposition 8.2. Let A be any local observable and q any site, then for all a < b such
that g and the support of A is contained in the triangles a,a+1,...,b and fory =1, |,
the limits below exist and define pure ground states of IL (see Fig. 8.1):

wi(d) = lim (Y55 (=L,7) |AY~E (=L, 7)) = (45" 46%°)
w-(4) = lim (p75E(L4,7) | Ayp~EE(Ly, 7)) = (627 A42°)

wey(4) = lim (™5 (g, ) [ Ay~55(g,7)) = (¥**(0,7) | A9™*(0:7))-

A DA DA A
.Y Y N

Fig. 8.1. The finite volume valence bond states used to construct the ground states in Proposition 8.2
for wy, wyy and w_, respectively. S 4 denotes the maximal set of sites on which a local observable A with

support in {a,...,b} is not equal to one.

Proof. 1f L is large enough, we can write

YL y) = T EAT (Lo, ) 650 6
hence if supp A C {a,...,b},
wiA) = hm (=B (=L_,y) | =522 (=L_,7)) (¢a+b|A¢1b) (¢b+1L|¢b+1 L
= (¢+b | A¢+
In particular, for any triangle c,
wy(H,) = c—1c|H¢c lc)_

So that wy is a ground state. It remains to show that it is a pure state. To see this notice
that we can consider I as the disjoint union of finite sets A;, L = | |; A;. To each Aj,
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associate the full algebra 2y, of 214! x 214;] matrices acting on $%. Then A = @, U,
and the local observables can be written as polynomials in the elements of the 2, ;.

Choosing the partition IL = | |, A, where A, = {ag, a4}, w, is seen to be a product state
in the sense of Proposition A.1: if A = @, Aa, a finite product with A, in 2, ,, then

wi(4) =[] (63" | 40 63"

a

By Proposition A.1, w, is a pure state because all the (¢%* |- ¢5®) are pure states of
2AA,. The proof for w_ and wgy can be done in the same way. 0]

If B is any (local) observable, the state defined by

_ w(B*AB)

wB(A) - LJ(B*B) (81)

for all observables A is called a (local) perturbation of the state w. In particular, if
w = wp) = wp and B is an observable with support in A_ x such that ¢ = By~ 5K (0_, |)
is a ground state of HA-X.%  the corresponding perturbed state will be called a local ground
pertubation of wy. Thus, wg, are local ground perturbations of wg (in this case B is the
operator 9?7 defined in Lemma 8.1). Also, choosing any linear combination of VB states
with free spin in A_g kg (for K < L), and defining the corresponding limit state, gives
a local ground perturbation of wg. Obviously, the local ground perturbations are pure
ground states of the infinite A chain, being product of pure states with a suitable choice
of partition. We believe that these are all the pure ground states in the sense w(H,) =0
but we cannot prove this.

Next we are interested in the GNS representations associated with ground states of the

model, and more precisely with their unitary equivalence.

Definition. Let g and 7 be two states. If the GNS representations of 2 associated with
¢ and T are unitarily equivalent, the states g and 7 are said to be equivalent states. This
leads to an equivalence relation between states.

Theorem 8.3. For the infinite A chain,

1. Any local ground perturbation of wg is equivalent to wy.

2. The states wy, w_ and wy are nonequivalent.

Proof. (i) If wg is a local ground perturbation of wp with supp B C A, and 23 , denotes
the set of observables commuting with any local observable with support in A, p, then

(wo — wpg)|A , = 0. Applying the first result of Proposition A.2, as wg and wp are pure
states, they are equivalent.
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(#1) We can also use Proposition A.2 to prove that the states wp and w, are nonequivalent.
For any L, the unitary local observable A, (b) = o,(bo) 0.(b;) belongs to A° ; ; if b < —L,
and wo(A4(b)) = 0 while w4 (A4+(b)) = —1 (this follows from the different orientation of
the dimers in the definition of these states if b < 0, see Figure 8.1). Then,

|wo(A+(b)) —wi(A+(0)) =1 = [|A4(B)]]

ie. |[(wo — w4 )| || does not tend to 0 when L tends to co. Hence wp and w,. are not
equivalent by the second result of Proposition A.2. The same kind of arguments show that
the state w_ is not equivalent to wp and wy. '

This theorem shows the existence of three different equivalence classes of ground states.
These can be interpreted as different ground phases of the infinite A chain. This situation
is similar to that encountered in the one dimensional ferromagnetic Ising chain in the
absence of an external magnetic field (see [BrRo] or [ArMal]). The above ground phases
have the full translational symmetry of IL, while w; break a discrete symetry (reflexion)
which is not broken by the phase of wg. The class of wg is, hence, invariant under the
space group of IL and also under rotations in spin space: For every local observable A,
A D supp A and a in {z,y, 2},

{w(T2 ATIA) | w in the class of wo} = {w(A) | w in the class of wy}

where T2 = ®,ca 0a(p). Therefore this class is a particular kind of spin liquid phase
with a zero energy spinon mode.

In what follows, we turn our attention to the states wy and wy.

Notice at first that by the product structure of these states, if A and B are two local
observables with disjoint supports then

ws(AB) = wy(A) w,(B) for s=—,0,+.

Hence all the local correlation functions are asymptotically clustering.

Now we study the gap proprieties of the above states.

Definition. Let w be a ground state. We say that w has a gap £ > 0, if for any local
observable A such that w(A) =0,

w(A*[H, A]) = lim w(4® [H=LL, A]) > ew(A*A)
The above limit exists because if supp A is on the triangles a,a + 1,...,b, then
[H, A] = [H™"F, A] = [H*®, A]

for any L > max{|al, b}.
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Theorem 8.4. The ground states w, and w_ have a gap.

Proof. The proof for w, differing only in notations, we treat the case of w,. Let A be a
local observable such that supp A is on the triangles a,a+1,...,b and wy(A) = 0. Choose
L > max{|a|,b}. If ¢ < a we get

(w5 emsm) | AY™5E(=Lo 7)) = (75 (emym) |72 (=L, 7)) (457 | 465°)
=0
Ifc>a,

|($~ 5 (e ym) | ApBE(=L_,9))| < % Al (v~ ey m) [~ 27 (=L, )

”A“ —|L+
< —2 a| — 0 L — oo

By Theorem 7.1, HA-%.2 has a gap € independent of L, so that

wy(A°[H, A]) = (A~ DY (—L_,y) | [H™F, Ay~ "5 (-L-,7))
= (Ay~PE(=L_,7) |H PP Ay~ (-L_,7))
> (e—s) (A~ BL(—L_,y) | Ayp~DE(-L_,v))
= (e - ‘TL)W+(A*A),

where ¢;, — 0 as L tends to infinity. Therefore w, (A*[H, A]) > e w(A*A), which proves
the theorem.

The state wy has no gap in the above sense, due to the existence of local ground pertur-
bations. For example, taking A = ¢,(0_), we have wp(A) = 0 but wo(A*[H, A]) = 0 also,
because w, is a local ground perturbation. Nevertheless, wy is separated by a gap from
the local perturbations which are “orthogonal” to the whole phase associated with wy:

Theorem 8.5. The ground state wy has a gap in the following weak sense:
For any local observable A such that wo((997)* A) =0 forn=|,1 and all g in IL,

wo(A*[H, A]) > ewp(A*A)
with some € > 0. Here 9?7 is the operator introduced in Lemma 8.1.
Proof. Notice that
(955 (qm) | Ay2E(0_, 1)) = (9914~ EE(0_, 1) | Ag~5E(0-, 1)) = wo((997)* 4) = 0

if supp A and A; € A_L ;. Therefore the proof in Theorem 8.4 applies without the ¢
term. u
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8.2. The Infinite A Cayley Tree

The infinite A Cayley tree is the infinite limit of a sequence of finite A Cayley trees I},
such that the Lth level I}, is obtained from I} _, by completing each boundary site of I} _;
into a triangle. (Fig. 8.2.) Any boundary triangle is connected to the first level triangle

%X

\/ \/
1 X %
\/ >< >< \/
N < VDV

Fig. 8.2. The fourth level Iy in the construction of the infinite A Cayley tree.

There is a continuous set of pure ground states obtained by “sending” the free spin to
infinity. More precisely:

Proposition 8.6. Let {I}}92; be the sequence of finite A trees tending to the infinite

A Cayley tree I'. Choose a sequence Q = {q,}7%, of sites in I' such that q;, is a boundary .
site of Iy and d(qy,q;_1) = 1. LetL(qy,|) be the valence bond state on I, with free spin |

on site q;,. Then the limit

wq(4) = Jim (¥*(az, )] A% (e, 1)

exists for any local observable A and defines a pure ground state.
Similarly, let O label a site of ;. The limit

wo(4) = lim ($4(0,1) | A¥*(0, 1))
exists for all local element A in A and defines a pure ground state. (Figure 8.3.)

Proof. The proof is the same as in Proposition 8.2 by noticing that if supp A C I, then

wq(A) = (vM(gn, 1) | A (aar, 1))

and
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a~ AA A

S AVAND S AN

Fig. 8.3. a. and b. show the valence bond states on I'y used to construct the ground states of Proposi-

tion 8.6 for wy and two states wg and wgs, respectively. The arrows indicate the sites of Q and Q’.
M M
wo(4) = (¥™(0,1) | A¢pM(0,1)). o

Notice that wg and wg: differ only on the infinite A chain containing the symmetric differ-
ence of the sets @ and @’ (a property which is inherited from the finite A trees). One could
also define the state wg by choosing a branch in I': There is a one to one correspondence
between Q and the branch to which the sites of @ belong.

Again, there exist local ground perturbations of wg which can be obtained as weak limits
of linear combinations of a finite number of VB states, the positions of the free sites being
fixed during the limit. We believe that these are all the pure ground states. The same
argument as in the case of the infinite A chain leads to

Theorem 8.7. Consider the infinite A Cayley tree and the ground states {wq}, wo on it.
1. Any local ground perturbation of wy is a pure ground state equivalent to wy.

2. Any state wg is not equivalent to wp.

3. Any two states wg and wq: are noneguivalent.

Again, the class of wy corresponds to the notion of a spin liquid phase.

As in the case of the infinite A chain, if A and B are local observables with disjoint supports
then w(AB) = w(A)w(B). Here w = wy or wq for any sequence Q. This follows again
from the product structure of these states (Proposition A.1).

Although there are many similarities between finite A chains and finite A Cayley trees, the
proof of the existence of an L-independent gap for the A chains Ay, cannot be transfered
to the A Cayley trees I}. The reason is the exponential increase with L of the number
of sites in the latter case. This may cause the vanishing of the gap in the infinite volume
limit.
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The structure of the space of ground states of an infinite A Cayley tree is typical of any
infinite Atree with branches obtained as the limit of an increasing sequence of finite
Atrees {I} such that the boundary triangles of I} are linked to the first level I} by a
A chain of L triangles. To each infinite branch there corresponds a pure ground state
with “free site at the infinity” on that branch. There is also a phase of equivalent pure
ground states. These are local ground perturbations of a state obtained as the limit of
finite volume valence bond states with a fixed free spin on the first level.
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A. Appendix. Some Theorems for the Infinite Volume Limit.

Proposition A.1. Let {2, }qcn, be a family of C*-algebras, and A = @, .5 Y-
If, for each a in R, g, is a state of A,, then the associated product state g of A is (uniquely)
defined by

Q(Al Az... An) = Qa, (Al) Lay (A2) «e-Oa, (An)

whenever ay,...,a, are distinct elements of A and A; is in 2,,. (Here A; is canonically
identified with an element of A.)
Moreover the state p of A is pure if and only if each g, is a pure state of U,.

Proof. The proof is given in [KaRi]. (See Propositions 11.4.6 and 11.4.7 therein.) Notice
that a state g, of A, is naturally associated with a state g, of the canonical image of 2,
in 2 and reciprocally.

Let {2;} be a sequence of C*-algebras such that,

— 9, is *isomorphic to the algebra of n; x n; complex matrices, and

— lemlgng...gmng...

Then the norm closure 2 of | J2; is referred to as a uniformly matricial C*-algebra or
uniformly hyperfinite (UHF) algebra with generating nest {2;}.

Proposition A.2. Let 2 be a uniformly matricial C*-algebra with generating nest {2,}.

Denote by A the subset of A commuting with all the elements of 2,,.

If o1 and o3 are pure states of A, then their respective GNS representations are equivalent
if there is some n such that || (o1 — g2)|2S || < 2 and only if || (o1 — o2)|2S || tends to O
when n — oo.

Proof. This follows from Proposition 12.4.3 in [KaRi|. Notice that pure states are primary

states in the sense of [KaRi], and that for pure states quasi-equivalence implies equivalence
[KaRi].
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