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Abstract

We generalize the standard time independent perturbation theory by constructing
time dependent families of orthogonal projections associated with isolated parts o,
of the spectrum of the unperturbed hamiltonian. The full evolution between
times t, and t intertwines approximately these projections up to an error of order
AN+1]t-t, |, where A is the coupling constant and N + 1 is the lowest order at which
0o becomes resonant with the rest of the spectrum. This provides a rigorous basis
for deriving effective hamiltonians for time dependent perturbations.
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L INTRODUCTION

For a long time the Dirac's variation of constant method has provided the
basis for perturbative solutions of the time dependent Schrédinger equation

d
i UG to) = (Ho +A V) Ult, to), Ulto, to) =1 (1.1)

The most common examples of (1.1) are atoms or molecules subjected to external
electromagnetic fields or spin systems in time variable magnetic fields. When,
with the advent of intense laser fields, it was necessary to push the perturbation
theory to orders higher than the first non vanishing one the method has been
confronted with the problem of so called "secular divergences". It has been early
realised that some of these divergences (i.e. terms containing factors of the form
At) are spurious in the sense that they origin in the expansion of an overall phase
which does not affect the physical measurable quantities. So the natural idea was
first to factorise out the phase factor and only after that to perform the perturbative
expansion. For the case when one starts with a non-degenerate eigenvector of H,
and the Fourier transform of V(t) vanishes outside a small neighborhood of the
origin (i.e. there are no resonant transitions in the low orders of the perturbation
expansion) a factorisation procedure has been (at a formal level) worked out in [1]
(this paper contains a thorough discussion of the early developments). Our results
below can be viewed as the extension at a rigorous level and by a different method
of the factorisation in [1] for the cases when the perturbation couples resonantly
some of the eigenstates of Hy. Of course what is factored out is an unitary
evolution in the "resonant" subspace.

One way to cope with the perturbation theory for (1.1) is to translate it in
the time independent formalism using the Howland method [2]. Unfortunately,
the time independent perturbation problem that one obtains in this way is in
general also a complicated one. However, there is a particular case for which this
method works nicely : the one frequency case i.e.

V() = V cos ot (1.2)

In this case the Howland scheme coincides basically with the so called Floquet
(quasi-energy) formalism which has been much used in the atomic physics [3, 4]
and references therein]. In particular, combining the Floquet theory with dilation
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analiticity (complex scaling) [5, 6] it was possible to develop a fairly detailed
rigorous theory of the a.c. Stark effect in atoms (see e.g. [7-11] and references
therein). Let us note, however, that the techniques are quite elaborated and not
easy to extend; the existence of the Rabi oscillations have been rigorously proved
only for the two-body case [10]. Our aim is to obtain (somewhat less detailled)
results in less stringent conditions (e.g. for non rectangular laser pulses [12] which
amounts to relax the one frequency requirement).

The starting point is the well known fact of the existence of different time
scales in the problem : different processes become significant at different time
scales and consequently have to be treated by different means; for example in the
case of the one or two-photon Rabi oscillations (see e.g. [13]) the radiative damping
(ionisation probability) is weak at the appropriate time scale and should be treated
perturbatively while the resonant transitions leading to the Rabi oscillations are to
be treated nonperturbatively. One can try first to neglect completely the non-
resonant transitions and to solve the problem in the "resonant subspace" (the bare
N level atom problem) and then to add the influence of the non-resonant
transition by perturbation theory, but this approach is not free of difficulties. The
alternative is to "decouple" first by perturbation theory the evolution in the
resonant subspace from that involving the remainder of the Hilbert space, i.e. to
block-diagonalise (up to some order) the time evolution and then solve
nonperturbatively the dynamics within the decoupled resonant subspace (the
"dressed" N level atom problem). The corresponding hamiltonian in the resonant
subspace is usually called "effective hamiltonian". Note that this is the analog of
the well known "reduction scheme" of the time independent perturbation theory
[14].

A remark is in order here. In the case of nonsingular time independent
perturbations, beside the Kato-Rellich analytic perturbation theory [14, 15], there
exist alternative methods for deriving effective hamiltonians; the most popular
are the Feschbach projection method and the method of canonical transformations
(see e.g. [16], [3]). Moreover, at the heuristic level, the projection method has been
extended to the "resonant" case (leading to a nonselfadjoint effective hamiltonian)
as well as to the time dependent perturbations [16], [3]. It would be interesting to
put these formal manipulations on a firm mathematical basis. Let us mention
finally that since the effective hamiltonians are unique only up to a unitary
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transformation in the "resonant" subspace, care must be taken when comparing
the effective hamiltonians given by various methods.

The problems to be solved in this approach are as follows :

i) Develop a perturbation scheme for the (approximate) block diagonalisation of
the evolution; since in general the perturbation theory may not converge one
has to stop at some finite order and to obtain estimations on the remainder.

ii) Give the algorithm for the computation of the effective hamiltonian.

iii) Solve the evolution given by the effective hamiltonian (this is trivial in the
non-resonant case i.e. when the effective hamiltonian acts in a one
dimensional subspace).

In the present paper we shall solve, under appropriate conditions, the steps i) and
ii). Our method is to generalise the time independent reduction scheme : first find
perturbatively approximate "invariant subspaces" for the whole evolution and
then to block diagonalise it using the transformation functions formalism [14, 15].

The content of the paper is at follows. Section II contains the general
setting. The main technical results are contained in Section III, where the step i)
above is solved. Section IV concerns the step ii). For the readers not interested in
the mathematical details we give in Section V a short summary of the results and
comment on some simple examples.

IL GENERAL SETTING
We consider a time dependent hamiltonian of the form
H(t) = Hp + AV(1) (2.1)

where the unperturbed hamiltonian H, is self-adjoint with domain D(H,) in the
Hilbert space # of quantum states, and V(t) in a time dependent perturbation with
coupling constant A.

We assume that V(t) can be represented by the Fourier integral
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V(t) = Jdm{\f((o) e-iot (2.2)
Q

A
where Q is a set'in|lR and V(w) is a measurable a.e. bounded operator valued
function satisfying

A N
Vi{w) = V(- o) (2.3)

N
Jdm lolkll V(o) I <o, k=0,1 (2.4)
Q

All the results below hold true also for V(t) of the form

V(i) = f(H)V (2.5)

with V a fixed bounded self-adjoint operator. The real valued function f(t) is the
Fourier transform of a measure du(w)

(1) = J‘du(co) e-iot (2.6)
Q
satisfying
Jdlu(m)llmlk <o,  k=0,1 (2.7)
Q

which can have pure point contributions at some specific frequencies. It follows
from these assumptions that V(t) is uniformly bounded and norm differentiable.
Although the proofs below make explicit use of the boundedness of V(t) (e.g. in
writing down a Dyson expansion for the evolution operator) it is possible, at the
expense of more technicalities, to extend the results of the present paper to some
classes of unbounded time dependent perturbations.

Since V(t) is bounded and norm differentiable, H(t) is self-adjoint on D(H,)
and the evolution equation

d
iaU(t, to) = H(®) UG, to), Ulto, to) = 1 (2.8)
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has a unique unitary solution [15]. We shall use the interaction picture

UIlt, to) = e'ot U(t, t,) e7Hot (2.9)
with the equation of motion

d
i 7 UIt to) =AHi(®) Urt, to),  Utlto, to) =1 (2.10)

H(t) = elHot y() e1Hot (2.11)

As well known the solution of (2.10) can be represented, at any fixed time, by the
norm convergent Dyson series

Urlt, to) =1+ ). AU nft, to) (2:12)
n=1
with
t | n-1
U, nt, to) = (= " do™ Jd51 deZ J‘dsn
ol to to to
n A A
exp [— i Z 0 SjJ Vi(my, s1) ... Vi(en, sp) (2.13)
j=1
where
do®™ = dwq ... do,
A X N .
Vi, t) = ettlot y(@) eHot (2.14)
and
1 A n
1 Ut to) | sm{ J do V(e | } bt I 215)
Q

Introducing the adiabatic switching on of the interaction, i.e. replacing V(t)

in (2.1) and (2.11) by e®t V(t), one can push the initial time at infinity, to = — . The
evolution is again given by a norm convergent series
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Uft,—ee) =T+ 3 A" Uf (t,— ) (2.16)
n=1
t Sn-1 n
n I'I A
U&@—@=«ﬂﬂjmwﬂjayiﬁm@¢612 mﬁmm}ﬂ\mwﬁ)
n —o0 —o0 ] =
Q
(2.17)
‘ 1 eEt A n
znmgvmmsHTf;jmﬂvme 2,18
Q

Note that , while norm convergent for € > 0, the terms of the series (2.16) can blow
up as € — 0, so (2.16) has no meaning in the limit € — 0. Alternatively each term
in (2.12) is, in general, of order A" (t - t5)", so in the limit t - to — e, not only the
series become divergent but each term becomes infinite.

The main point of this paper in that (under appropriate circumstances) the
situation is better when one considers the evolution of orthogonal projections (i.e.
subspaces). Let P(t,) be the orthogonal projection on some subspace of initial states
in #{; then its time evolution is given by

Pt} =TIt ) Ples) TR, 1) (2.19)

In the interaction picture, one has

Pi(t)

Ui(t, to) Pito) Uk, to) (2.20)
where

Pi(t) = elHotp(y) e1Hot (2.21)

Due to (2.12), Pi(t) has a perturbation expansion

Pi(t) = Pi(to) + D, A" Prat) (2.22)
n=1
Pia® = Y, ULkl to) Pilte) Uy 1, to) (2.23)

k=0
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The fact that Pi(t) is a projection implies that

n
Pia® = Y P Ppa(® (2.24)
K=0

In the adiabatic switching on scheme the formulae (2.22)-(2.24) have the form

PX(t) = Py + ) A" an(t) (2.25)
n=1

where P, stands for Pj(— o),

n
Pra® = ¥ Uflt, —e) Po UjSly(t, — ) (2.26)
k=0

PL® = ¥ PEOP L ® 25
K=0

The estimations (2.15) and (2.18) give the obvious estimations for Py (t) and Plﬁn(t)

1 N
IP® I <=7 (216! Jdm I Vi |

Q
(2.28)

1 2e€t A
IPE® 1 <5y = Jdm I Viw |
Q
which again blow up when |t-ty] - core— 0.
ML UNIFORM ESTIMATES IN TIME

In this section, we show that provided the initial condition Pj(t,) is suitable
chosen and n is not too large, Py n(t) are uniformly bounded in time.

We assume that the spectrum o(H,) of the unperturbed hamiltonian has a
bounded isolated part 6o, with P, the corresponding spectral projection



536 Martin and Nenciu H.P.A.

B~ —21-; 3@ dzR(), Riz) = (Bg= 21 3.1)
r

where I' is a contour in the complex z-plane enclosing 6,, but none of the points of
the complement 61 of 6, in 6(H,). Let

d = dist(cy, 61) > 0

and for any complex number u, denote by
Gj(u)={E+u|Eecj}, j=0,1

the translates of the sets 0, and o1 by u. For o™ = {0y, ..., ®n} € QM and € > 0, define
the sets

n n
2 j (), g) = mtil Gj(-l(;m ok-in-m+1) e]U cj, j=0,1 (3.2)
Note that
dist ( D, @™ e) Y (e, e)) > min (g, d) (3.3)

Let I' (@M, g) be a contour which encloses Z o (oM, g), but contains no points of

Z 1 (m(n)’ £).

Proposition 1

Let Pl'an(t) be given by (2.26) with P, given by (3.1). Then
. n
PI,en(t) = (- )" eiHot J do® exp (~ it 2 (05 +1 E)J
o =
: n

s dz{ IT R[z+2 mj+i(n-m+l)e}\,}(mm)}R(Z) o-iHot
=1

=

(3.4)
Proof :

m
After the change of variables s; =) t, m =1, .., n, (2.17) becomes
=
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t 0 0 (o]
U (- o0) = ()" jdm(n) Jdtl Jdtp_... Jdtn_l Jdtn
on — o0 — oo — oo — o0

n
IT exp
m=1

We now consider the kth term of the sum (2.26), k = 0, 1, ..., n, and label the n-k

integration variables occuring in U, ?:-k(t' - ) as Mn, On-1,...,0k 41 and tp, tn-1, ..., tk+1-
Hence '

n A n
itm| Ho- Y, (0j+i e)ﬂ \ (mm)} exp { iHp Y tj} (3.5)

Fm j=1

t o] 0 t

UGt - 00) Po UpZr (¢, - o) = i DX Jdm(“) J dty Jdtz... J dtn jdtn
fln — o0 — 00 — oo — oo

A k n
= j=kt1

{ ﬁ {\’*(mm) exp |:- it [Ho - z (coi -i e)ﬂ } 3.6)

m=k+1 j=k+1

.

Fm

k k
{ IT exp [itm [Ho —2 (j +1 E)J
m=1

The spectral theorem for H, allows to write the second bracket in (3.6) as the
spectral integral

k n
JdP(E) exp { iE LZ t- > tjﬂ (3.7)

1 jekel
Go

where P(E) is the spectral measure of Hy. Introducing (3.7) in (3.6) and permuting
the spectral with the time integrals (Fubini's theorem), one can perform the time
integrations with the help of the Laplace transform

t

stexp[is(Ho-m-ie)]=-iR(m+ie) exp[it(Ho-co-ie)], e>0 (3.8)

=]

This leads to
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g £*
UI,k (tl - oo) PO ULn k (t.r - OO) =

k n
= (- 1) ¢iHot J‘ do(® J‘ exp {- it (Jz (@j+ie) - D (wy-i e)ﬂ
=1

j=k+1
on By

k k
{I‘[R[E+ Y (oj+i(k-m+1)8] {\f(u)m)} dP (E)

m=1 j=m

n A m ;
{ N V' (om) R* [E+ z j + i (m-k) ej} elHot (3.9)

m=k+1 j=k +1

In order to establish the validity of (3.4), we note that, for a fixed ®(), the
integrand in (3.4) is holomorphic except on the n + 1 disjoint sets 6, and

n

Col- Z wj-iln-m+1)e|, m = 1,., n. Thus we can deform the contour
Fm

I (0™, g) (see formula (3.4)) into n + 1 subcontours I'nx, k =0, ..., n, with T'n_g

n
enclosing 00(- 2 mj—i(n-k)eJ ,k=0,1,..n-1, and I'y enclosing c,. In
j=k+1

particular, all resolvents occuring in (3.4) are holomorphic in I'n.x except for

n
R[z+ Z u)j—i(n—k)e]= JdP(E) = I (3.10)
j=k+1 i E- Y oj-i(n-k)ez
j=k+1

Therefore the contribution of I'n.k to the contour integral is of the form
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. n
51;- %dzA(z)R(z-k 2 (oj-i(n~1<)8JB(Z)

j=k+1

n

E- 2 (uj-i(n-k)e-z
I'nk j=k+1

jg A(z) dP(E) B(z)
dz

I
R~
R

= JAE-Z wj-i(n-k)e |dP(E)B|E- ), oj-i(n-k)e (3.11)
j=k+1 j=k+1
GO

where A(z) and B(z) are holomorphic in I'n.k. In the proof of (3.11), the contour
and spectral integrals have been permuted. The spectral integral can be restricted to
O, since in I'nk, the integrand of the r.h.s. of (3.11) is holomorphic when E does not
belong to 6. Using this result 1n (3.4), changmg the signs of the dummy variables

®j, j=k + 1, ..., n, recalling that V (@) = V (-) and R*(z) = R(z"), one sees that the
contribution of I'nk , k=0,1, .., n, to (3.4) is just (3.9). Summing up these
contributions leads to the formula (3.4).

The result in proposition 1 is general, in particular it does not depend on
any assumption on the nature of the frequency spectrum of the time dependent
perturbation V(t). Note that in view of (3.3) it is possible to choose a contour
(@™, £) which is at least at distance min {%. ;—} from z o (@M, ¢) and 2 1 (), g).
Hence all resolvents in (3.4) are bounded by 2/e (for € small), which gives an
estimate of the form (2.28), useless in the limit € — 0.

The proposition 2 below shows, however, that as long as ¢, is not resonant
(through the frequency spectrum of V(t) and its harmonics) with ¢1, the projection
PIEn (t) have limits as € — 0 which are uniformly bounded in t. For this we set do =
d and

ol ¢ Qn

dy = inf dist ( Z , (@@) z i (m(n))] ,n=1,2,.. (3.12)
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with 2 o) =% (@™, e=0), r=1,2 Observe that dns1 <dn.

Proposition 2

Let N be the smallest positive integer such that dns+1 = 0 and for
oM e Qn ,n <N, let I'(w{®) be a contour enclosing 2 » (@®) but no points of

Y { @®™). Then for 1 <n <N

P n () =norm- lim PIEn (t) (3.13)

e—> 0 '

exist and

n
Pi,n () = (- " eltot jdm(“) exp (— ity o)l}

j=1

Qn

i n n A y

s j> dz{ I R(z+ z @) V (om) R (2) e iHot (3.14)

2n m=1 j=m

(M)
n
Pia® =Y, Pri(®) Ppax() , 1<n<N 3.15)
k=0

.d

i 3 PLa® = [ Hit) | Pl,n-l(t)] ., 1<n<N (3.16)
with

PI,O (t) = Po (317)

2 1
P I £Cy (—a—)m .l (3.18)
n
where
A
v = J 1+ o) IV | do
Q

Proof :

Notice that the definition of the sets (3.2) together with (3.12) imply that
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inf

oM ¢ on dist [ Z o (m(n)‘e) ‘ 2 1 (m(n)'e)]z dn 2 dN (3.19)

for all € > 0 and n < N. Thus it is possible to find a contour I'(w™) independent of
e e [0, gol, which encloses the sets . _ (@™ g) but no points of the sets Y ; (@™ g),
such that (see Fig. 1 for an illustrative simple case)

dist ( Co®) > (o™eU Y (m(n)'e)} > d?n (3.20)
and
n n
length I'(e®) < 2(C+2 Imkl]SZ(l+C) M (1+ laxl) (3.21)
k=1 k=1

with C =n gy + 2 dp + diam o,

We use I'(w(M) in (3.4) and let € — 0. The resolvents converge in norm to their
corresponding limits, and so does P° (t). This proves (3.14). The relation (3.15)
follows immediately from the correspondmg relation (2.27).

From (2.26) it follows that an (t) is differentiable and

d
igP <t>=e€t[Hm> Plnlm}, n=12,..

whereof (3.16) follows. Taking into account (3.2), the norms of all the resolvents
appearing in (3.14) are less than 2/dy <2/ dn which together with (3.21) gives (3.18)
withC1 =(1 +C)/xn.
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_2€.

Figure 1

0o = {Eo} and o1 = (E1) consist of the two isolated points E; and E1 with d = E1-Eg > 0.
The perturbation has a continuous range of frequencies with support Q = [- wo, 0ol
One has dj = d-nwe, and in the case of the figure, N = integer part of d/wo = 2. The
solide horizontal lines represent the sets of translates {E; + nw-ing, o € [- 0o, o]} of
Oo. With the choice @™ = {- 0y, - 0o, ..., - Wo), the black points Eg-kwo-ike (resp
white points Ej-kag-ike), k =0, 1, ..., n, belong to Y o (@M g) (resp. Y (@ g)). The
contour I'(w®),e) occurs in the expression (3.4) of P5%(t) (proposition 1). The
contour I'(w(?), which is used in the definition (3.14) of Py ,(t) (proposition 2), can
be fixed independently of e as € — 0.

Remarks

i) By inspection one can see that there is an alternative formula for dn

m
dn=inf{]Ei—Ef-z W ||lEj-Ef|}
=1
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where the infimum is taken over all E; € 6,, Efe o1, wje Qand 1<m<n
This is nothing but the usual "nonresonance" condition of the usual per-
turbation theory. In general, N is some finite positive integer. For instance if
Q = [- 0y, 0] with 0 < wy < d, then d, =d - n wy, so N is the largest integer such
that N < d/ .

Consider now the situation when V(t) = V cos wpt. In this case it may happen
that dn > dw > 0 and then the series for P((t) converge for A small enough (the
simplest example in that of a two level atom with energies E,, E1 such that
|E1-Eol #kwg forallk =0, 1, ...). A more interesting case is a two level atom

P
with V(t) = 3" Vj cos jt. In this case one may still have dp, > 0 for all n 2 0. In

=1

this case th:e convergence of the series for P((t) is a more delicate matter and
we will consider it in a future work.

Convergence is always achieved in the static case which corresponds to set
®o = 0 in the situation described above. In this case (going back to the
Schrodinger picture) (3.14) reduces to

Pp=(-D" "2'1'1-; jg dz (R(z)V)" R(z) (3.22)
r

which is nothing but the usual time independent perturbation formula [14].
Notice that for given n the formula (3.14) goes smoothly to (3.22) as
wo — 0. Let us point out finally that the method of computing Py n(t) in
propositions 1 and 2 is the generalisation to the time dependent case of the
proof in [16] of the Gell-Mann-Low formula. One can also prove proposition 2
by checking directly that the expressions (3.14) for the Pyn(t) fullfil the
recursion relations (3.15) and (3.16).

The limit of PIfn(t) as € = 0 can exist even if n > N, but it will no more be
given by the formula (3.14). This may arise, for instance, for transitions from
bound to ionized states when o7 is absolutely continuous. The limit may also
exists when the frequency distribution f (w) is sufficiently smooth. An
elementary example of the latter case is given in Section V. We shall come
back to these more general situations in future work.
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The above results show that, provided proper initial conditions at tp = - e
are chosen, the Gell-Mann-Low switching procedure leads to expansions in the
coupling constant whose coefficients are uniformly bounded in t up to some order.
The next step is to obtain similar results for finite time initial conditions. The need
for that is obvious from the physical point of view; for example it will not be
possible to describe the Rabi oscillations [13] in the Gell-Mann-Low formalism:
during the infinite interval of time from - e to 0 the radiative damping, albeit
small, will decay completely the bound states.

The problem is how to chose Pj(ty), in order to ensure that its evolution
given by (2.20) has an expansion in A up to order N with uniformly bounded
coefficients and a small reminder. Notice that one cannot follow simply the naive
extension of the Gell-Mann-Low theorem

Pi(to) = lim Pi(to) (3.23)
e— 0

since, at the present stage, we have proved that the limit exists only for the first N
coefficients; in particular the limit in (3.23) may not exists. Also one cannot take
(see proposition 2)

N
Pilto) = ), NPy jlto) (3.24)
j=0
since the truncated series in the r.h.s. of (3.24) does not represent a projection. So
the natural thing to do is to seek the following form for Py(t,)

N

Pi(to) = Pilte) =¥ M Ppi(to) + AN*1 Ry(to, ) (3.25)
j=0

and to provide suitable estimates on the remainder Ri(to, A). We shall use the
following simple perturbation lemma.

Lemma 1.

Let 0 <6 <3/16 and T be a bounded self-adjoint operator satisfying
IT2-T Il £3. Then

i) o(T) ¢ [-25, 28] U [1-28, 1 + 28]

ii) the spectral projection of T corresponding to [1-28, 1+ 28], i.e.
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P =-2i; dz (T-z)!, satisfies IT-P I < 23.
lz-11=1/2
Proof
i) From the functional calculus
sup A2-Xl = IT2-Tl <&
Ae o

Hence o(T) € {A; [A2-A] <3J).

ii) Write T=PTP + (1 -P) T (1 -P) (recall that [P, T] = 0),
sothat T-P =P(T-1)P+(1-P)T(-P)and then

IT-PIl < max{ IPCT-1)PIl, I(1-P)T(1-P) :}

Now use the fact that o(P(T - 1)P) ¢ [-25, 28], o((1 - P) T (1 - P)) ¢ [-25, 28] and again
the function calculus.

Consider, forte IR
N .
Tn(t) =Po + 2 NPy ]'(t) (3.26)
j=1
Since P, j(t) obey the relations (3.15) one has

2N
TZO-Tn® = Y Ak > Pp, 1(t) P1, m(t) (3.27)
k=N+1  0<1 ,m<N

l+m=k

whereof, by (3.18), for every A1 > 0 there exists A < o= (A independent of t), such
that

ITZ® - TN® | SAN+1 A, 0<A <)y (3.28)

For sufficiently small A one can apply the lemma 1 and define
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271
1z-11=1/2

P = — 3§ dz (TN -2)1 (3.29)

We conclude from the lemma 1 and the fact that the estimate (3.28) is uniform in t

that I;I(t) is indeed of the form (3.25) with lIRi(A, t) | < C where C is independent of
t and A. We will simply write the expansion

22 N
Pi(t) =Y MNP + O(AN+1) (3.30)
j=0

where O(AN+1) means an operator whose norm is bounded by const. AN+1

uniformly in time.

The result below shows in particular that P(ty) has all the properties we
required for a "good" initial condition.

Proposition 3

i% EI(t) = l[HI(t), I;I(t)] + AN+1G(t, Q) (3.31)
where
S(t,A) = 21_1t j(; dz (TN -2)™! [Hi), P, n(®)] (TN - z)’! (3.32)
1z-11=1/2
t
I P10 - ULt to) Pilto) UL, ko) | < AN+ J du I1S(u, 1) | (3.33)
to

Proof

From (3.29), (3.26) and (3.16)
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; 4 = i 1, d .
iz PO =- - jg dz (TN(t) - Z) (1 ETN(’C)) (TN(t) - z) =
|z-11=1/2
= 21—1t dz (TN(t) - Z)“1 {l[ Hi(t), TN(®) - z] -
lz-11=1/2

- AN+ | Hy(o), PI.N(t)]} (Tn® -2) "
whereof (3.31) and (3.32) follow. Denoting
AP() = Py(t) - Ur(t to) Pilto) Uy (& to)
one has
d
i3p AP(t) = A [Hi(t), AP(®)] + AN+1 S (¢, A)

whereof

d /. )

which gives (3.33).

The remainder S(t, X) in (3.31) is also uniformly bounded in time since all
operators occuring in (3.32) have this property. Thus proposition 3 implies

Pi(Y) = U (&, to) Pi(ty) ULt to) + O(AN+L[t-to1) (3.34)

IV, REDUCTION THEORY AND THE EFFECTIVE HAMILTONIAN

In this section, using the results of the previous one, we shall perform the
reduction scheme generalizing the time independent procedure. As in the time
independent case we use the transformation function method ([14], Chap. II, § 4).

Consider the pair of orthogonal projections Py, El(t) where El(t) is defined
in (3.29). By (3.30), one can find A, (independent of t) such that
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IPy-Pi) I <1 NEIN 4.1)

Therefore Py and Pi(t) are unitarily equivalent for all times, i.e., there exists a
unitary operator Mj(t) (the transformation function) such that

Pi(t) = Mi(® Po M), M@ = M) (4.2)

The transformation function is clearly not unique. If K(t) is any unitary
transformation such that [K(t), Py] = 0, then the product My(t) K(t) also satisfies
4.1).

As explained in the introduction, we want to factorize in the total
evolution phase factors having an unbounded growth in time from a part which
remains bounded in time when expanded in powers of A. We require that the
transformation function M;j(t) has the latter property : Mj(t) should have an
expansion in A up to order N with coefficients bounded in time. Moreover, Mj(t)
should reduce to the identity when A — 0. The transformation function defined by
Sz.-Nagy

-1/2

M) = (1 - (I;I(t) - Po)z) [I;I(t) Po+(I- El(t) (I-Po))] 4.3)

is a convenient choice for two reasons. Since it is an algebraic expression in Py(t), it
can easily be expanded; moreover the coefficients will have the requested
boundness property (see (4.8) below).

Then one can define the "rotated" evolution
Wit to) = M) Urlt, to) Mi(to) 4.4)

The equation of motion for Wy (t, t;) follows from (4.4) and (2.10)

. d ef

i Wi, to) = Hy (D) Wi, to) (4.5)
where the effective hamiltonian (in the interaction picture) is given by

. . d
HE(H) = AM(®) Hi®) My(®) - i Mj(t) g Mi(®) (4.6)
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We now come to the perturbation expansions for My(t) and HeIf(t). When

~ -1/2
(4.1) holds, (I - (P1(®) - Po)z) is represented for all times by the convergent series

o= -1/2 = (2§ DN ~ ;
(I-(PI(t)-Po)z) =1+ Y (j'JZj) (Pi(t) - Po) (4.7)

Using (4.7) in (4.3) together with the expansion (3.30) of Pi(t) leads to the expansion
of My(t)

N
M) = I+ MM jt) + O(AN*1) (4.8)
j=1

Since the M, j(t) are expressed by the Pyk(t), k = 1,..., j, they are uniformly bounded
in t. (see formula (4.19) below for the first terms). As in (3.30), O(?\.N+1) represents

an operator with norm bounded by const. AN*! uniformly in time. It follows from
the proposition 3, (3.30) and (3.16) that

gd= . j d N+1
EPI('() = 2 N ‘a“EPL ](t) + O(?\, ) (4.9)

=1
where O(AN*1) is again uniform in t. This implies with (4.3) and (4.7) that

dMi N . d
df:() =Y Mg Mo +o(AN+1) (4.10)

F1

d
where 5= M, j(t) are uniformly bounded.

With this we can state the properties of the expansion of H‘}f(t) :

Proposition 4

The effective hamiltonian (4.6) has an expansion up to order N

N
He (1) =; VEE©® + o) (4.11)
]:

with the following properties
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i) the operators H‘ffj(t), j=1,.., N, as well as the remainder O(AN*1) are

uniformly bounded in t.

ii) H‘ff].(t) are reduced by the subspace Py, i.e.

[Hef(t) Po] 0 j= , 1,..,N

Proof :

The existence of the expansion (4.11) and of i) follow immediately from
(4.6), (4.8) and (4.10). To show ii), we first differentiate (4.2) with respect to t

d Pyt dMy(t dM NG,
i% = i( di() M;(t) + Po Mi(t) ] =
dM * ~
=[i di(t) M; (D), PI(t)] 4.12)

d *
To obtain (4.12) we have used (4.2) again and E(Ml(t) MI(t)) = 0. Comparing
(4.12) with (3.31) leads to

[x Hi(t) -ig-%i(—t) M(®) El(t)] = O(AN+1) (4.13)

Since M(t) is unitary (see (4.2)), this is equivalent with

[xM(t) Hi(t) Mi(t) -  Mj(0) dM‘“)_ o]= [Hf® . Po ] =00ON*T)  (414)

The result ii) follows from (4.11) and (4.14).

For practical purposes, one will calculate H‘if(t) up to a certain order q <N,

setting

q
H 0 = ), MHS® (4.15)
=1

and W(I](t, tp) the corresponding "rotated" evolution
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. d
ig Wit to) = H90 Wl to) (4.16)

The main point is that He§ 9(t) commutes with P,, so the equation (4.16) can be

integrated separately in P, # and in (I-Py) #. Usually, in practice, P, # is a finite
dimensional subspace, so the problem is reduced there to a finite system of first
order differential equations.

The error made can be estimated from a comparison of (4.5) and (4.16) and
the fact that H"if GRS HefI qa(t) + O(A9*1). Indeed

d * "
i (W(i (t, to) Wi (t, to)) = w‘} (t, to) (Hfif(t) - HefI q(t)) Wi (¢, to)

leads at once to the estimate

W1 Gt to) - Wt to) | = TWT (5 ) Wit to) - T
t
< st I 1K) - HE () 1 =0 (AT It 1) @.17)
t()

Since Mi(t) is unitary we have obviously the same estimate for the complete
evolution

I U7 @& to) - M) W (1) M, (t9) I =03 It 1) (4.18)

Of course, a knowledge of Uj(t, t,) requires also that of M(t), which can be
calculated from (4.8) to a given order less than N, as well as that of W?(t, to) in the
complementary subspace (I - Po) A In practice, relevant information can already be

obtained from the sole knowledge of the "rotated" evolution restricted to the
subspace Py . This will be discussed in the next section.

We conclude the present section by giving the explicit expressions of the
first perturbation terms, restricted to Py #. One finds from (4.3), (4.7) and (3.30)
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My, 1(t) P = Pr,1(t) Po

1
My, 2(t) Po = 5 [Pf}l (t) + PLZ(t)] P (4.19)

1 '
M, 3(t) Po = {5( Py 1) Py, (1) + Py (D) Pm(t)J +Pf, (t)} P,

Inserting the expansions (4.8) and (4.10) in (4.6) together with (4.19) gives
HEL() Po =P, Hy(H) P,

1
HEEW Po=5Po (0 Py @ + Py (0 H®) Po (4.20)

1
HEL(6 By =5 Py H PA (0 + Pp,(1) J Hy(t) + Hy() [Pl.zl(t) € Pl.:z(t)ﬂ Fo

In obtaining (4.20), use has been made from various identities of the type
P, PL,1(t) Po= 0, PO(PI. 2 + PI?I(t>)Po= 0

which can be deduced from (3.15).
V. COMMENTS AND EXAMPLES

We give a brief summary of the main result in the Schrédinger picture.
Coming back to the Schrédinger picture amounts to perform the unitary
transformation exp(iHyt) on all the objects discussed in the previous sections.
Obviously, all the norm estimates obtained in section III will remain the same.

The evolution operator (2.9) reads
Ut to) = M(D) W(t, to) M'(to) - (5.1)
with M@ = eHot My elfot, W, to) =eTHot Wi, t,) eiflo,

In the Schrédinger picture, W(t, t,) obeys the equation of motion

i -c%: W(t, to) = Hef(t) W(t, to) (5.2)
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where

N
Hef(t) = Hy + Y W He].f(t) + O(aN+1) (5.3)
j=1

and [Hejf(t) , Po] = 0.

As in (4.15), one will calculate with the truncated effective hamiltonian at
some order q < N

q
HYA(®) = Hy + M He].f(t) (5.4)
j=1

and the corresponding "rotated" evolution
i L wa fq q
igf Wit to) = HE () Wi, to) 6.5)

leaves the subspaces Py H and (I-P,) # invariant,
[Wq(t, to) PO] = 0 (5.6)

As in (4.18) and (4.19), one can calculate the full evolution in this manner
Ut to) = M) WA (t, to) M*(tg) + O 1t-t,1)
= M(t) Po WAt to) Po M(to) (5.7)
+ M(b) (I-Pg) WY, to) (I-Pg) M*(to) + O(A9* ¢, 1)

The formula (5.7) is the main result of the paper : up to errors of order
o(aa+! It—tol) , the problem of integrating (2.8) is reduced to calculate the
transformation function to some order and to integrate (5.5) separately in P, and
(I-Po) . If this program can be carried out, one obtains the evolution of an arbitrary
initial state.

Let us mention that if
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[ 1@ Id<e (5.8)

then all our estimations become uniform with respect to t (see e.g. Proposition 3).
In particular the error term in (5.7) is O(\9*1) uniformly in t.

In its general features (although they are different at some key technical
points) the theory presented above is similar to the adiabatic approximation
schemes, in the sense that also in the adiabatic case the idea is to approximate the
true evolution by an "adiabatic evolution" which, in an appropriately rotated
frame is block diagonal (see e.g. [18-22] for the construction of various "adiabatic
evolutions" and the degree they approximate the true evolution).

Let us give some simple examples.
Example 1 : non resonant two level atoms

Let # be two dimensional and H, have two non degenerate eigenvalues
with eigenvectors In>, n = 1, 2. Since PoH and (I-Py)H are one dimensional, the
restriction of WA(t, t,) to these subspaces is a simple phase factor. Then the matrix
elements of U (t, t,) are given by

<n U, tg) Im> =
2 t

=k21 C® C\(to) exp| - i j ds <k |H¥9(s) 1 k> |+ O(A% 1t-t1)  (5.9)
- :

with
C (D) = <nIM(® k> (5.10)

Example 2 : three level atom with two resonant states.

Let #H be three dimensional, P, = 11> <11+12> <21 the projection on the
two resonant eigenstates 11> and |2> of Hp, and I-P, = 13> <31 be the projection on
the non resonant state. Then
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2
<nlU, to) Im>= Y C_ (0 C - ((to) <k IWIt, to) 11>
k 1=1
t
+C, 4 C o 4(to) exp | -i st S IHY ) 13> |+ 0T t-t1) (5.11)

to

where the an(t) are defined as in (5.10). In this case one still has to solve (5.5) in

the two dimensional subspace of resonant states. Formula (5.11) enables to take
into account the effect on the resonant dynamics of an isolated level which is
energetically separated from the resonant ones.

In actual situations, Py can be finite dimensional, but (I-Py)# is usually
infinite dimensional (it will contain the subspace of continuous spectrum of Hy),
so that the problem of integrating (5.5) in (I-Po) # may turn out to be as difficult as
the original one. It is therefore of interest to know what kind of information can
be obtained from the mere knowledge of W1 (t, t,) restricted to P, /. We observe
that if an initial condition y is chosen in the subspace I;(to):?{, then by (4.2),
¥ = M(to)9 with ¢ in Py Therefore one has in this case

U (t, to) ¥ = M(t) Po WA (t, to) Py ¢ + O(AT* 1 I t-t, 1)  (B.12)

If by a careful adiabatic switching on one can prepare the system to be in E(to)}( at
t = to, its subsequent evolution will be determined by the knowledge of
Po WA, to) Py and M(t). However, it is more common to have the system prepared
in an eigenstate of Hy at t = to, i.e. Py W = y. Also in this case relevant information
can be obtained from (5.7) if we recall that (see (4.8))

M@) =1 + OQ) (5.13)
where O(A) is uniform in t. Then (5.7) gives

U, to) = WA, to) +A O(1+ A% 1tto 1) (5.14)

i.e. one can compute the evolution of an initial state in Py with the help of
H® 4(t) (q < N) up to an error of order A on time intervals of length It-to| =A™,
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At the first sight one may think that retaining the higher powers in A in
Py Hef d() P, is superflous in (5.14). That this is not so, one can see already in the
trivial case when P, is one dimensional and hence

q :
Po Wq(t, to) Po Sl exp (" i z M e](t)JPo
=0
where
t

ei(t) =j du <0|He].f(u)10> , Pol0>= 10> (5.15)

to

Now in general Al ej(t) = O (A It-ty!) and becomes significant on scales

lt-to | = O (A7) Notice that when P, is not one dimensional the phases in
Po WH(t,t,) P, enter the expressions of the resonant transitions, so (5.14) implies
that the necessary and sufficient condition for P, WA(t,to) Py to describe all resonant
effects on scales |t-to| <A™dis to retain the first q terms in the expression of P, HCff
P,

The main result of the section 3 was that one can construct initial
conditions P(ty;) such that P(t) (see (2.19)) has on expansison in.A up to the
"resonant"order with uniformly bounded coefficients. One can see that in general
this is not the case for arbitrary initial conditions. For shortness let us illustrate the
matter on the simple case in example 1. Let In(ty)> = M(t,) In> and y an arbitrary
state. If we write

2 2
Y= Z an In(to)> = Ml(to) 2 ap In>

n=1 n=1
then
P() = U, to) ly> <yl U, ty) =
5 t
S a2’ exp|-i J ds AN, () | M® In > <mIM® + O(N 4, 1)
nm=1
to
where (5.16)

AN (1) = <nlHEN®) In> - <m IHHN() Im> (5.17)
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In general for n # m Anl'\rln (t) do not have expansions in A with uniformly bounded
coefficients, and then the same is true for P(t). Of course if one of the ap equals zero
we are back to the "good" initial conditions. Let us stress however that if the
hamiltonian mvolved is such that A_ N m{t) do not depend on A, then of course
"nice" expansions exist for arbitrary 1n1t1al conditions.

We shall end by illustrating on a solvable example (the driven harmonic
oscillator) that actually stronger results can be obtained in specific cases. We
consider an harmonic oscillator Hy, = ® a’a of frequency ® submitted to the
external time-dependent potential Af(t) (a + a"), and denote In>,n=0,1, 2 ... the
eigenstates of Hp, with eigenvalues nw. If the projection 10> <0l on the ground
state is chosen as initial state at time t,, it is well known that its time evolution is
given by [23]

UL, to) 10> <01 UL, to) = | alt, to)> <alt, to) | (5.18)
where |a(t, tp)> is a coherent state represented in the { | n>} basis by

(Ao (t, to))

~Wnt

lat, to)> = exp ( %7@ lat, to) 52) > (5.19)
n=0

t
alt to) = -i J ds e®S (s) (5.20)

to

In the case of adiabatic switching on, the time evolved projection P‘f(t) is given by

the same formulae (5.18) and (5.19) with a(t, to) replaced by

t
af(t) =-i J ds el(@-i8)s £() : (5.21)

P?(t) = exp(- A2 1 aE(t) 12) i W aﬁ(t.)) A AL In><m | (5.22)
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Since the operators In> <m| have a norm equal to one, these series are norm
convergent for any value fo A.

Consider now the following two cases

a) f(t) = cos wpt , Wy # W
so that
lim aﬁ(t) _ a(t) - ciot @ Ccos 0)0t2- 1 Cl)zo sin Mgt (523)
£e> 0 W, -
A
b) J dtH (D) | < oo ¢ () 55 ponBnuouS)
so that
t
tiv o = ol =i J ds el9s f(s) (5.24)
e—> 0

—00

We conclude in both cases from (5.23) and (5.24) that the series (5.22) have a term
by term limit as € — 0, and

n-lim P{(t) = P(t) = P, + 2 Ak Py k() (5.25)
£e—> 0 k=1

The norm convergent perturbation series (5.25) can be obtained explicitely from
(5.22) with a®(t) replaced by a(t), and reorganizing the powers of A.

Applying the proposition 2 to the case (a) with w, = w/2 we would only
conclude that Pli(t) has a limit, since already at the order 2 a resonance could in
principle occur with the eigenvalue 2w of H,. Nevertheless Pi(t) has a full
perturbation expansion because of the peculiar properties of the oscillator and of
the interaction (equidistant levels and V(t) connects only the state In>to In £ 1>).
In the case (b), assuming for instance that the support of f (w) is the entire real line,
we could not draw any informative conclusion from proposition 2. T/pe fact that
Pi(t) has complete perturbation series is due here to the smoothness of f(w) (but the
P n(t) are no more given by the formula (3.14)).
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