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Abstract

We generalize the standard time independent perturbation theory by constructing
time dependent families of orthogonal projections associated with isolated parts o0

of the spectrum of the unperturbed hamiltonian. The full evolution between

times t0 and t intertwines approximately these projections up to an error of order
AN+11 t-t0 I, where X is the coupling constant and N + 1 is the lowest order at which

g0 becomes resonant with the rest of the spectrum. This provides a rigorous basis

for deriving effective hamiltonians for time dependent perturbations.
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L INTRODUCTION

For a long time the Dirac's variation of constant method has provided the

basis for perturbative solutions of the time dependent Schrôdinger equation

i dtU(t, t0) (h0 + A V(t)) U(t, t0), U(t0, t0) I (1.1)

The most common examples of (1.1) are atoms or molecules subjected to external

electromagnetic fields or spin systems in time variable magnetic fields. When,

with the advent of intense laser fields, it was necessary to push the perturbation
theory to orders higher than the first non vanishing one the method has been

confronted with the problem of so called "secular divergences". It has been early
realised that some of these divergences (i.e. terms containing factors of the form
At) are spurious in the sense that they origin in the expansion of an overall phase

which does not affect the physical measurable quantities. So the natural idea was

first to factorise out the phase factor and only after that to perform the perturbative
expansion. For the case when one starts with a non-degenerate eigenvector of H0

and the Fourier transform of V(t) vanishes outside a small neighborhood of the

origin (i.e. there are no resonant transitions in the low orders of the perturbation
expansion) a factorisation procedure has been (at a formal level) worked out in [1]

(this paper contains a thorough discussion of the early developments). Our results

below can be viewed as the extension at a rigorous level and by a different method

of the factorisation in [1] for the cases when the perturbation couples resonantly

some of the eigenstates of H0. Of course what is factored out is an unitary
evolution in the "resonant" subspace.

One way to cope with the perturbation theory for (1.1) is to translate it in

the time independent formalism using the Howland method [2]. Unfortunately,
the time independent perturbation problem that one obtains in this way is in

general also a complicated one. However, there is a particular case for which this

method works nicely : the one frequency case i.e.

V(t) V cos cot (1.2)

In this case the Howland scheme coincides basically with the so called Floquet

(quasi-energy) formalism which has been much used in the atomic physics [3, 4]

and references therein]. In particular, combining the Floquet theory with dilation
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analiticity (complex scaling) [5, 6] it was possible to develop a fairly detailed

rigorous theory of the a.c. Stark effect in atoms (see e.g. [7-11] and references

therein). Let us note, however, that the techniques are quite elaborated and not

easy to extend; the existence of the Rabi oscillations have been rigorously proved
only for the two-body case [10]. Our aim is to obtain (somewhat less detailled)
results in less stringent conditions (e.g. for non rectangular laser pulses [12] which
amounts to relax the one frequency requirement).

The starting point is the well known fact of the existence of different time
scales in the problem : different processes become significant at different time
scales and consequently have to be treated by different means; for example in the

case of the one or two-photon Rabi oscillations (see e.g. [13]) the radiative damping
(ionisation probability) is weak at the appropriate time scale and should be treated

perturbatively while the resonant transitions leading to the Rabi oscillations are to
be treated nonperturbatively. One can try first to neglect completely the non-
resonant transitions and to solve the problem in the "resonant subspace" (the bare

N level atom problem) and then to add the influence of the non-resonant
transition by perturbation theory, but this approach is not free of difficulties. The

alternative is to "decouple" first by perturbation theory the evolution in the

resonant subspace from that involving the remainder of the Hilbert space, i.e. to

block-diagonalise (up to some order) the time evolution and then solve

nonperturbatively the dynamics within the decoupled resonant subspace (the
"dressed" N level atom problem). The corresponding hamiltonian in the resonant

subspace is usually called "effective hamiltonian". Note that this is the analog of

the well known "reduction scheme" of the time independent perturbation theory
[14].

A remark is in order here. In the case of nonsingular time independent
perturbations, beside the Kato-Rellich analytic perturbation theory [14, 15], there

exist alternative methods for deriving effective hamiltonians; the most popular
are the Feschbach projection method and the method of canonical transformations
(see e.g. [16], [3]). Moreover, at the heuristic level, the projection method has been

extended to the "resonant" case (leading to a nonselfadjoint effective hamiltonian)

as well as to the time dependent perturbations [16], [3]. It would be interesting to

put these formal manipulations on a firm mathematical basis. Let us mention

finally that since the effective hamiltonians are unique only up to a unitary
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transformation in the "resonant" subspace, care must be taken when comparing
the effective hamiltonians given by various methods.

The problems to be solved in this approach are as follows :

i) Develop a perturbation scheme for the (approximate) block diagonalisation of
the evolution; since in general the perturbation theory may not converge one
has to stop at some finite order and to obtain estimations on the remainder.

ii) Give the algorithm for the computation of the effective hamiltonian.

iii) Solve the evolution given by the effective hamiltonian (this is trivial in the

non-resonant case i.e. when the effective hamiltonian acts in a one
dimensional subspace).

In the present paper we shall solve, under appropriate conditions, the steps i) and

ii). Our method is to generalise the time independent reduction scheme : first find

perturbatively approximate "invariant subspaces" for the whole evolution and

then to block diagonalise it using the transformation functions formalism [14, 15].

The content of the paper is at follows. Section II contains the general

setting. The main technical results are contained in Section III, where the step i)

above is solved. Section IV concerns the step ii). For the readers not interested in
the mathematical details we give in Section V a short summary of the results and

comment on some simple examples.

II. GENERAL SETTING

We consider a time dependent hamiltonian of the form

H(t) H0 + AV(t) (2.1)

where the unperturbed hamiltonian H0 is self-adjoint with domain (D(H0) in the

Hilbert space ïHfiof quantum states, and V(t) in a time dependent perturbation with
coupling constant A.

We assume that V(t) can be represented by the Fourier integral
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fdcoV(V(t) dœV(co) e-iwt (2.2)

Q.

A
where Q is a set' in IR and V(co) is a measurable a.e. bounded operator valued
function satisfying

V*((u) V(- co) (2.3)

dco IcolMI V(co) II <~, k 0,l (2.4)

Q.

All the results below hold true also for V(t) of the form

V(t) f(t)V (2.5)

with V a fixed bounded self-adjoint operator. The real valued function f(t) is the

Fourier transform of a measure du(co)

f(t)

n

d^(co) e-iwt (2.6)

Q
satisfying

dln(œ)Mcolk <°°, k 0,l (2.7)

n

which can have pure point contributions at some specific frequencies. It follows
from these assumptions that V(t) is uniformly bounded and norm differentiable.

Although the proofs below make explicit use of the boundedness of V(t) (e.g. in

writing down a Dyson expansion for the evolution operator) it is possible, at the

expense of more technicalities, to extend the results of the present paper to some

classes of unbounded time dependent perturbations.

Since V(t) is bounded and norm differentiable, H(t) is self-adjoint on £>(H0)

and the evolution equation

i dt"U(t, t0) H(t) U(t, t0), U(t0, t0) I (2.8)
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has a unique unitary solution [15]. We shall use the interaction picture

Ui(t, t0) eiH°l U(t, to) e'iHot (2.9)

with the equation of motion

i dt Ui(t, t0) A Hi(t) Ui(t, t0), Ui(t0, t0) I (2.10)

Hi(t) eiHot V(t) e'iHot (2.11)

As well known the solution of (2.10) can be represented, at any fixed time, by the

norm convergent Dyson series

Ui(t,t0) I+ X AnUi,n(t,t0)
n l

(2.12)

with

Ui,n(t,t0) (-i)n fdCû(n) dsi ds2. dsn

nn *o to

exp

where

n A

i X œjSj Vl(C0l, Sl) Vl(C0n, Sn) (2.13)

dto(n) dcoi... dcon

Vi(co, t) eiH°' V(co) e-iHof (2.14)

and

I Ul,n(t, t0) I! <
n

dco II V(co) II

a

I t-toIn (2.15)

Introducing the adiabatic switching on of the interaction, i.e. replacing V(t)
in (2.1) and (2.11) by eet V(t), one can push the initial time at infinity, t0 - °°. The
evolution is again given by a norm convergent series
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Uf(t,-oc) =1+2 An U^t,--)
n=l

(2.16)

hn-l

U^ft,--) =(-!)" dco(n> dsi... dsnexp

n

-i 2 (coj + ie)sj

n
ATT a
f} Vi(coj,Sj)

lui^^—>II^ÏTT
fPet

e

v n

dco II V(co) II

(2.17)

(2.18)

Note that, while norm convergent for e > 0, the terms of the series (2.16) can blow

up as e —> 0, so (2.16) has no meaning in the limit e -+ 0. Alternatively each term
in (2.12) is, in general, of order Xn(t - t0)n, so in the limit t -10 -> », not only the

series become divergent but each term becomes infinite.

The main point of this paper in that (under appropriate circumstances) the

situation is better when one considers the evolution of orthogonal projections (i.e.

subspaces). Let P(t0) be the orthogonal projection on some subspace of initial states

in fiM.; then its time evolution is given by

P(t) U(t,t0)P(t0)U*(t,t0)

In the interaction picture, one has

Pl(t) Ui(t, t0) Pi(to) Uj(t, t0)

where

Pl(t) eiHo4P(t) e-iHo*

Due to (2.12), Pj(t) has a perturbation expansion

oo

Pi(t) Pi(t0) +£ a.nPi,n(t)
n l

(2.19)

(2.20)

(2.21)

(2.22)

Pl,n(t) £ Ui,k(t, t0) Pi(t0) Uj^ft, to)
k 0

(2.23)
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The fact that Pi(t) is a projection implies that

Pl,n(t) X PI-k(t) M*)
k 0

(2.24)

In the adiabatic switching on scheme the formulae (2.22)-(2.24) have the form

pf(t) p0 + x ^npIen(t)
n l

where P0 stands for Pi(- ~),

(2.25)

Pl!n(t)= I ^ek(t,-~)P0U^k(t,-~)
k 0

(2.26)

k 0

(2.27)

The estimations (2.15) and (2.18) give the obvious estimations for Pi,n(t) and PT8n(t)

IPTn(t)ll<-7
1

211- to I dco II V(co) II Y

(2.28)

1 /2eEt A \n
dco II V(co) II

J

which again blow up when I t-t0 I —> » or e —> 0.

III. UNIFORM ESTIMATES IN TIME

In this section, we show that provided the initial condition Pi(t0) is suitable

chosen and n is not too large, Pi,n(t) are uniformly bounded in time.

We assume that the spectrum o(H0) of the unperturbed hamiltonian has a

bounded isolated part a0, with P0 the corresponding spectral projection
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Po —Q dzR(z),
271

R(z) (Ho-z)-l (3.1)

where T is a contour in the complex z-plane enclosing o0, but none of the points of
the complement o\ of c0 in a(H0). Let

d dist(o0, oi) > 0

and for any complex number u, denote by

o-j(u) [E + u I E e Oj], j 0,1

the translates of the sets o0 and a\ by u. For co(n) [coi,..., con) e Qn and e > 0, define
the sets

X ; (co(n), e) Ù Oj - X cok - i (n - m + 1) e

Note that
k=m

U Oj, j 0, 1

dist X o(0)(n).e) ¦ X i(û)(n).e) > min (e, d)

(3.2)

(3.3)

Let T (cofa), e) be a contour which encloses X 0 ^n\ £)' but contains no points of

Xi(»(nU).

Proposition 1

Let P/^t) be given by (2.26) with P0 given by (3.1). Then

P,e„(t) (-l)neiH°tI.n
dco^ exp

Qn

- it X (coj + i e)

V 1=1

2tc
— o dz n r

r(û)(n\e)
m=l

z + X Cûj + i (n - m + 1) e

V i=m

A A
VOûmHRtz) 3-iH0t

(3.4)
Proof :

After the change of variables sm =X tj, m 1,..., n, (2.17) becomes



Vol. 65, 1992 Martin and Nenciu 537

UL8n(t,-oc) (-i)" fdojW dti f dt2... dtn-i f dtn

— oo — oo — oo

Il exp
m l

itn Hq - X (coj + i e)

^ )=m J

V (com) \ exp iHoX t)

J-l •

(3.5)

We now consider the kth term of the sum (2.26), k 0, 1, n, and label the n-k

integration variables occuring in Uj^*k(t, - «>) as con, con-i,...,cok+i and tn, tn-i,..., tk+i-
Hence

U nc_ -nkI,k(t'-M)PoUIn-k(t'-M) in(-D dco<n> dti dt2... dtn-l f dtn

Un ¦ OO — oo — oo

k
Ilexp

m=l

f k

Ho"X (coj + ie) V(com)^ -^exp -iHoX tj Po exp ìHq Z tj
i=k+l

n a
û V*(C0m) exp

m=k+l

m -\

itm|Ho- X (<»j-ie)
j=k+l

(3.6)

The spectral theorem for H0 allows to write the second bracket in (3.6) as the

spectral integral

dP(E) exp
A

iE I fa X tj
(j=l j=k+l

(3.7)

where P(E) is the spectral measure of H0. Introducing (3.7) in (3.6) and permuting
the spectral with the time integrals (Fubini's theorem), one can perform the time

integrations with the help of the Laplace transform

t

ds exp [is (H0 - co- i e)] - i R (co + i e) exp [it (Hq - co - i e)], e > 0 (3.8)

This leads to
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uIk(t,-~)P0uIn:k(t,-~)

=(-Dn eiH0t f dco<n> exp
fk

Qn

X (coj + ie) - X Ccoj - i e)

y-i j=k+i yJ

nR
m=l

k
E + X cûj + i (k - m + l)e

"N A
V(cùm)^ dP(E)

n a
n Vfacom)R

m=k+l
V

E + X ff>j + i (m-k) e

j=k+l
(3.9)

In order to establish the validity of (3.4), we note that, for a fixed co^, the

integrand in (3.4) is holomorphic except on the n + 1 disjoint sets o0 and

m 1,..., n. Thus we can deform the contouro0 "X tûj-i(n-m + l)e
H" j

r (cû("), e) (see formula (3.4)) into n + 1 subcontours rn-k, k 0, n, with Fn-k
r n \

k 0, 1, n-1, and T0 enclosing o0- Inenclosing a0 - X a>j-i(n-k)e
)=k+1 j

particular, all resolvents occuring in (3.4) are holomorphic in rn_k except for

f n

z+ X coj-i(n-k)e
j=k+l J J

J IR

dP(E) (3.10)

E - X cûj - i (n - k e-z
j=k+l

Therefore the contribution of Tn-k to the contour integral is of the form
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i
In

O dzA(z)R

rn-k

z+ X coj-i(n-k)e
j=k+l

B(z)

i r I— Odz
271 J J

A(z) dP(E) B(z)

r r ¦ E - X «j - i (n - k e-z
1 n-k j=k+1

A E - X tûj-i(n-k)e
i=k+l

\ f n
dP(E) B E - X coj - i (n - k e

V J=k+1

(3.11)

where A(z) and B(z) are holomorphic in Tn-k- In the proof of (3.11), the contour
and spectral integrals have been permuted. The spectral integral can be restricted to

o0 since in rn-k/ the integrand of the r.h.s. of (3.11) is holomorphic when E does not

belong to o0. Using this result in (3.4), changing the signs of the dummy variables
A A

coj, j k + 1,..., n, recalling that V* (co) V (-co) and R*(z) R(z*), one sees that the

contribution of Tn-k k 0, 1, n, to (3.4) is just (3.9). Summing up these

contributions leads to the formula (3.4).

The result in proposition 1 is general, in particular it does not depend on

any assumption on the nature of the frequency spectrum of the time dependent

perturbation V(t). Note that in view of (3.3) it is possible to choose a contour

r(co(n), e) which is at least at distance min \j, j \ from X o (®^' e) anc* X l (^"^ £)-

Hence all resolvents in (3.4) are bounded by 2/e (for e small), which gives an

estimate of the form (2.28), useless in the limit e —» 0.

The proposition 2 below shows, however, that as long as o0 is not resonant

(through the frequency spectrum of V(t) and its harmonics) with o\, the projection
PjEn (t) have limits as e —> 0 which are uniformly bounded in t. For this we set d0

d and

dn
inf

(n)6ßn MLlW.X^Ln.U. (3.12)
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with Xr(cû(n)) Xr(cû(n) 'e 0) ' r l'2- observethat dn+i <dn.

Proposition 2

Let N be the smallest positive integer such that dN + l 0 and for
0)(n) g Qn t n < ^, iet r(co(n)) be a contour enclosing X 0

(^11*) but no points of

X (û)(n))- Then for 1 < n < N

Pl,n(t) =norm- lim PjEn (t)
e -> 0

(3.13)

exist and

n „iH0tPl,n(t) (-l)nelM°

.Qn

n ^
dcofr) exp - it X coj

— O dzj n R(z+X coj)V(com)^R(z)
271 I [m=l j=m

r(ü/n>)

-iH0t (3.14)

Pr,n(t) X Pl,k(t) Pl,n-k(t) 1 < n < N
k=0

(3.15)

d
i^Pl,n(t) Hl(t) Pl,n-l(t) 1 <n<N (3.16)

with
Pl,o(t)= Po

IIPl,n(t)ll sCilrT^v»

(3.17)

(3.18)

where

v (1+ I col) IIV(co) I dco

Q
Proof:

Notice that the definition of the sets (3.2) together with (3.12) imply that
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inf
co<n> e Qn

dist Xo^VfaXlto^ >dn>dN (3.19)

for all e > 0 and n < N. Thus it is possible to find a contour r(co(n)) independent of

e e [0, e0], which encloses the sets X 0 (°^n),e) but no points of the sets X i (cû(n)e),

such that (see Fig. 1 for an illustrative simple case)

dist r(co(n))| X o
(a>(n)e) U X i («(n),e) 4 (3.20)

and

f n

length r(cu<n>) < 2

with C n e0 + 2 dn + diam o0.

c+X I«*'
k=l

<2(1+C) n (l+ lo>kl)
k=l

(3.21)

We use r(co(n>) in (3.4) and let e -> 0. The resolvents converge in norm to their

corresponding limits, and so does PTe (t). This proves (3.14). The relation (3.15)

follows immediately from the corresponding relation (2.27).

From (2.26) it follows that PjEn (t) is differentiable and

ioknft) Qet HiW.P^O) n 1, 2,.

whereof (3.16) follows. Taking into account (3.2), the norms of all the resolvents

appearing in (3.14) are less than 2/dn ^ 2/ dN which together with (3.21) gives (3.18)

withCi (l +0/7I.
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Hlü'2»)riwwEJ nii

2£

3E-

nV 4

Figure 1

o0 {E0} and oi (Ei) consist of the two isolated points E0 and Ei with d Ei-E0 > 0.

The perturbation has a continuous range of frequencies with support Q [- co0, co0].

One has dn d-nco0, and in the case of the figure, N integer part of d/co0 2. The

solide horizontal lines represent the sets of translates [E0 + neo-ine, co e [- a>0< tuoi) of

o0. With the choice co(n) {- co0/ - to0,..., - co0}, the black points E0-kcû0-ike (resp

white points Ei-kco0-ike), k 0,1,..., n,belong to X 0
(to(n),e) (resp. X ^co^e)). The

contour r(co(3),e) occurs in the expression (3.4) of PTf3(t) (proposition 1). The

contour r(co(2)), which is used in the definition (3.14) of Pj 2(t) (proposition 2), can

be fixed independently of e as e —» 0.

Remarks

i) By inspection one can see that there is an alternative formula for dn

dn inf lEi-Ef-X Cui I Ej - Ef
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where the infimum is taken over all E\ e o0, Ef e <s\, coj e Q. and 1 < m < n.

This is nothing but the usual "nonresonance" condition of the usual
perturbation theory. In general, N is some finite positive integer. For instance if
Q [- co0, co0] with 0 < co0 < d, then dn d - n co0, so N is the largest integer such

thatN<d/co0.

ii) Consider now the situation when V(t) V cos co0t- In this case it may happen
that dn > d»» > 0 and then the series for Pj(t) converge for X small enough (the

simplest example in that of a two level atom with energies E0/ Ej such that
I Ei - E01 * kco0 for all k 0,1,...). A more interesting case is a two level atom

P
with V(t) X Vj cos ©jt. In this case one may still have dn > 0 for all n > 0. In

this case the convergence of the series for P,(t) is a more delicate matter and

we will consider it in a future work,

iii) Convergence is always achieved in the static case which corresponds to set

co0 0 in the situation described above. In this case (going back to the

Schrôdinger picture) (3.14) reduces to

pn (- l)n — C dz (R(z)V)n R(z) (3.22)
2n

r

which is nothing but the usual time independent perturbation formula [14].

Notice that for given n the formula (3.14) goes smoothly to (3.22) as

co0 -» 0. Let us point out finally that the method of computing Pi,n(t) in
propositions 1 and 2 is the generalisation to the time dependent case of the

proof in [16] of the Gell-Mann-Low formula. One can also prove proposition 2

by checking directly that the expressions (3.14) for the Pi,n(t) fullfil the

recursion relations (3.15) and (3.16).

iv) The limit of Pj£n(t) as e -> 0 can exist even if n > N, but it will no more be

given by the formula (3.14). This may arise, for instance, for transitions from
bound to ionized states when a\ is absolutely continuous. The limit may also

A
exists when the frequency distribution f (co) is sufficiently smooth. An
elementary example of the latter case is given in Section V. We shall come
back to these more general situations in future work.
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The above results show that, provided proper initial conditions at t0 - °°

are chosen, the Gell-Mann-Low switching procedure leads to expansions in the

coupling constant whose coefficients are uniformly bounded in t up to some order.

The next step is to obtain similar results for finite time initial conditions. The need

for that is obvious from the physical point of view; for example it will not be

possible to describe the Rabi oscillations [13] in the Gell-Mann-Low formalism:

during the infinite interval of time from - oo to 0 the radiative damping, albeit

small, will decay completely the bound states.

The problem is how to chose Pi(t0), in order to ensure that its evolution

given by (2.20) has an expansion in X up to order N with uniformly bounded
coefficients and a small reminder. Notice that one cannot follow simply the naive

extension of the Gell-Mann-Low theorem

Pl(to) lim Pf(to) (3.23)
e-> 0

since, at the present stage, we have proved that the limit exists only for the first N
coefficients; in particular the limit in (3.23) may not exists. Also one cannot take
(see proposition 2)

N
Pl(t0) X ^Plfato) (3.24)

j=0

since the truncated series in the r.h.s. of (3.24) does not represent a projection. So

the natural thing to do is to seek the following form for Pi(t0)

N
Pl(t0) Pl(t0) X *J pl, j(to) + ^N+1 Rl(to, W (3-25)

j=0

and to provide suitable estimates on the remainder Ri(t0, X). We shall use the

following simple perturbation lemma.

Lemma 1.

Let 0<5<3/16 and T be a bounded self-adjoint operator satisfying
Il T2 - T II < 6 Then

i) o(T) c [-2S, 25] U [1-25,1 + 25]

ii) the spectral projection of T corresponding to [1-25,1+ 25], i.e.
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r
P -j- 0) dz (T-z)'1, satisfies II T - P II < 25.

i
27C

lz-ll=l/2

Proof

i) From the functional calculus

sup 1*2-JU IIT2-TII <5
X € o(T)

Hence c(T) c {X; IX2-X\ <5}.

ii) Write T PTP + (1 - P) T (1 -P) (recall that [P, T] 0),

so that T - P P (T -1) P + (1 - P) T (1 - P) and then

IIT-PII < maxi IIPCT-DPII, 11(1-P)T(1-P) I

Now use the fact that a(P(T - 1)P) c [-25, 25], o((l - P) T (1 - P)) c [-25, 25] and again
the function calculus.

Consider, for t e IR

N
TN(t) =Po + X WPi,j(t) (3.26)

H

Since Pi, j(t) obey the relations (3.15) one has

2N
T2(t)-TN(t)= X ^k X Pl,l(t)Pl,m(t) (3.27)

k=N+l 0 < 1 m < N

1 + m k

whereof, by (3.18), for every ^.i > 0 there exists A < oo (A independent of t), such

that

I! T£(t) - TN(t) II < XN+1 A, 0 < X < Xi (3.28)

For sufficiently small X one can apply the lemma 1 and define
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Pl(t) ;f- O dz (TN(t)-z)"1
271

lz-11=1/2

(3.29)

We conclude from the lemma 1 and the fact that the estimate (3.28) is uniform in t

that Pi(t) is indeed of the form (3.25) with II Ri(Jv, t) II < C where C is independent of

t and X. We will simply write the expansion

N
Pl(t) =X ^Pl,j(t) + 0(/vN+l)

j=0

(3.30)

where 0(XN+1) means an operator whose norm is bounded by const. a-n + 1

uniformly in time.

The result below shows in particular that Pi(t0) has all the properties we
required for a "good" initial condition.

Proposition 3

i ^ Pitt) X Hi(t), Pi(t) + JiN+lS(t,/0 (3.31)

where

S(t,/v)=^- O dzONW-z)-1 [Hi(t),Pi,N(t)] (TN(t)-z)"1 (3.32)
271

lz-11 =1/2

I Pi(t) - Ui(t, t0) Pi(t0) Uj(t, t0)) II < X]N+1 dullS(u,À)ll (3.33)

Proof

From (3.29), (3.26) and (3.16)
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d r i X / v-1 r d
dz (TN(t)-z) '¦

lz-ll=l/2
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i & pltt) - £ C) dz (TN(t) - z)"1 fi ^TN(t)j (TN(t) - z)"1

/•'

-^- O dz (TN(t) - z)"1 |X

lz-11=1/2

Hi(t), TN(t) - z

- aN+1 [ Hl(t), Pi,N(t)| (TN(t) - z)"1

whereof (3.31) and (3.32) follow. Denoting

AP(t) Pi(t) - Ui (t, t0) Pi(t0) U* (t, t0)

one has

i^AP(t) X[Hi(t),AP(t)] + XN+1 S(t,X)

whereof

i ^ (Uj(t, t0) AP(t) Ui(t, t0)) XN+1 U*(t, t0) S(t, X) Ui(t, t0)

which gives (3.33).

The remainder S(t, X) in (3.31) is also uniformly bounded in time since all

operators occuring in (3.32) have this property. Thus proposition 3 implies

Pl(t) Ui (t, t0) Pi(t0) U* (t, t0) + 0(XN+l I t-to I

IV. REDUCTION THEORY AND THE EFFECTIVE HAMILTONIAN

(3.34)

In this section, using the results of the previous one, we shall perform the

reduction scheme generalizing the time independent procedure. As in the time

independent case we use the transformation function method ([14], Chap. II, § 4).

Consider the pair of orthogonal projections P0, Pitt) where Pi(t) is defined

in (3.29). By (3.30), one can find X0 (independent of t) such that
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IIPo-Pi(t)ll <1 \X\ <Xo (4.1)

Therefore P0 and Pitt) are unitarily equivalent for all times, i.e., there exists a

unitary operator Mi(t) (the transformation function) such that

Pitt) Mi(t) P0 M*(f), M'/ft) Mj(t) (4.2)

The transformation function is clearly not unique. If K(t) is any unitary
transformation such that [K(t), P0] 0/ then the product Mi(t) K(t) also satisfies

(4.1).

As explained in the introduction, we want to factorize in the total
evolution phase factors having an unbounded growth in time from a part which
remains bounded in time when expanded in powers of X. We require that the

transformation function Mi(t) has the latter property : Mi(t) should have an

expansion in X up to order N with coefficients bounded in time. Moreover, Mi(t)
should reduce to the identity when X -* 0. The transformation function defined by
Sz.-Nagy

Mi(t) (l - (Pi(t) - P0)2) LPi(t) Po + (I - Pitt) (I-Po)) J (4.3)

is a convenient choice for two reasons. Since it is an algebraic expression in Pitt), it
can easily be expanded; moreover the coefficients will have the requested
boundness property (see (4.8) below).

Then one can define the "rotated" evolution

Wi(t, t0) Mj(t) Ui(t, t0) Mitto) (4.4)

The equation of motion for Wi (t, t0) follows from (4.4) and (2.10)

i Hewitt, t0) He/(t) Witt, t0) (4.5)

where the effective hamiltonian (in the interaction picture) is given by

He/(t) XMj(t) Hi(t) Mi(t) - i M[(t) ^ Mi(t) (4.6)
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We now come to the perturbation expansions for Mitt) and Hy(t). When

~ ->Yn
(4.1) holds, VI - (Pi(t) - P0) / is represented for all times by the convergent series

~ -,Vt/2 °° (2 i-1)" ~Vi - (Pi(t) - p0)2) î + x L-^r(Pi(t) ¦Po) ' (4-7)

Using (4.7) in (4.3) together with the expansion (3.30) of Pi(t) leads to the expansion
of Mi(t)

N
Mi(t) I + X W Mi, j(t) + 0(JiN+1) (4.8)

i=i

Since the Mi, j(t) are expressed by the Pi,ktt), k 1,..., j, they are uniformly bounded
in t. (see formula (4.19) below for the first terms). As in (3.30), o(XN+1) represents

an operator with norm bounded by const. XN+1 uniformly in time. It follows from
the proposition 3, (3.30) and (3.16) that

^Pltt) X W^PMtt) + 0(XN+1) (4.9)

H

where o(XN+1) is again uniform in t. This implies with (4.3) and (4.7) that

^=X ^MI^+OO--) (4.10)

H

where -jr Mi, j(t) are uniformly bounded.

With this we can state the properties of the expansion of H j (t) :

Proposition 4

The effective hamiltonian (4.6) has an expansion up to order N

N
Hf(t) X W H=f.(t) + 0(XN+1) (4.11)

j=l

with the following properties



550 Martin and Nenciu H.P.A.

i) the operators H^tt), j 1, N, as well as the remainder o(an+1) are

uniformly bounded in t.

ii) fTj .(f) are reduced by the subspace P0, i.e.

fa'
Proof :

rHI,jtt), Po 0 j= 1,...,N

The existence of the expansion (4.11) and of i) follow immediately from
(4.6), (4.8) and (4.10). To show ii), we first differentiate (4.2) with respect to t

d Pi(t)
dt

fadMi(t) n ./xl{ dt poMitt) +
dMt(tr

Po Mi(t) dt

"
dMi(t) * ~
i-dj— Mj(t), Pitt) (4.12)

To obtain (4.12) we have used (4.2) again and -rr(Mitt) Mj(t)i 0. Comparing

(4.12) with (3.31) leads to

XHi(t) -i^^-Mj(t),Pitt) o(XN+1) (4.13)

Since M(t) is unitary (see (4.2)), this is equivalent with

dMi(t)
[X M\(t) Hi(t) Mi(t) - i M^f) ^p, P0] [Hf(t) P0] 0(XN+1) (4.14)

The result ii) follows from (4.11) and (4.14).

For practical purposes, one will calculate Hy (f) up to a certain order q < N,

setting

H^tt) X W Hg(t) (4.15)

H l"

.fland W^t, t0) the corresponding "rotated" evolution
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i gj Wj(t, t0) Hef! 1(t) Wj (t, t0) (4.16)

The main point is that Hej1(t) commutes with P0/ so the equation (4.16) can be

integrated separately in P0 i^and in (I-P0) M. Usually, in practice, P0 Mis a finite
dimensional subspace, so the problem is reduced there to a finite system of first
order differential equations.

The error made can be estimated from a comparison of (4.5) and (4.16) and

the fact that Hf(t) Hefj1(t) + o(/.cl+1). Indeed

i gf (W q* (t, t0) Wi (t, t0)) wf (t, t0) (lif(t) - H^tt)) Wi (t, t0)

leads at once to the estimate

II Wi (t, t0) - Wj (t, t0) II II Wqt* (t, t0) Wi (t, t0) -1 II

t

ds II Hf(s) - Hefj %) Il O (X1+11 t-to I (4.17)

Since Mi(t) is unitary we have obviously the same estimate for the complete
evolution

II Uj (t, t0) - Mj(t) Wj (t,t0) M* (t0) II 0(^+11 t-t01 (4-18)

Of course, a knowledge of Uj(t, t0) requires also that of Mi(t), which can be

calculated from (4.8) to a given order less than N, as well as that of W^(t, t0) in the

complementary subspace (I - P0) 9-C In practice, relevant information can already be

obtained from the sole knowledge of the "rotated" evolution restricted to the

subspace P0 'Ji- This will be discussed in the next section.

We conclude the present section by giving the explicit expressions of the

first perturbation terms, restricted to P0 fiJi. One finds from (4.3), (4.7) and (3.30)
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Mi, i(t) P0 Pi, i(t) P0

Mi,2(t)P0=2 Pj^D+P^tt)

Mi,3(t)Po

Po

PM(t) PIi2(t) + PI|2(t) PL1(t) + Pjj (t) Po

Inserting the expansions (4.8) and (4.10) in (4.6) together with (4.19) gives

refHft(t) Po PoHItt)P0

refH«(t) P0 2 Po (Hj(t) PLl(t) + PLl(t) Hj(t)\ P0

refH^(t)P0 2Po P^(t) + PIi2(t) H^O+Hjtt) P^(t)+PL2(t)
yJ

(4.19)

(4.20)

In obtaining (4.20), use has been made from various identities of the type

Po Pi, ltt) Po 0, P0 f Pi, 2 + PLitt)ÌP0 0

which can be deduced from (3.15).

V. COMMENTS AND EXAMPLES

We give a brief summary of the main result in the Schrôdinger picture.

Coming back to the Schrôdinger picture amounts to perform the unitary
transformation exp(iH0t) on all the objects discussed in the previous sections.

Obviously, all the norm estimates obtained in section III will remain the same.

The evolution operator (2.9) reads

U(t, t0) M(f) W(t, t0) M*(to)

with M(t) e"iHot Mi(t) eiHot, W(t, t0) e"iHot Witt, t0) eiHot.

In the Schrôdinger picture, W(t, t0) obeys the equation of motion

(5.1)

i dt* W(t' *o> Hef(t) W(t' to) (5.2)
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where
N

Hef(t) Ho + X W He.f(t) + 0(JiN+1)
i=l

(5.3)

and 'Hf(t), Po' 0.

As in (4.15), one will calculate with the truncated effective hamiltonian at

some order q < N

Hef(î(t) Ho +X X'Hf(t)

and the corresponding "rotated" evolution

i^wi(t,to) H^tt) wq(t,t0)

leaves the subspaces P0^and (I-Pq)^ invariant,

(5.4)

WKt, t0), P0 0.

(5.5)

(5.6)

As in (4.18) and (4.19), one can calculate the full evolution in this manner

U(t, t0) M(t) Wi (t, t0) M*(t0) + 0(Ji1+11 t-t01

Mtt)PoWcl(t,to)PoM*(t0) (5.7)

+ M(t) (i-Po) wi(t, t0) (i-p0) M*(t0) + o(xq+11 t-to I

The formula (5.7) is the main result of the paper : up to errors of order
o(/v.1+11 t-t01 the problem of integrating (2.8) is reduced to calculate the

transformation function to some order and to integrate (5.5) separately in P0^and
(I-P0)^ If this program can be carried out, one obtains the evolution of an arbitrary
initial state.

Let us mention that if
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J Hj(t) II dt < oo (5.8)

then all our estimations become uniform with respect to t (see e.g. Proposition 3).

In particular the error term in (5.7) is 0(J\,1+1) uniformly in t.

In its general features (although they are different at some key technical

points) the theory presented above is similar to the adiabatic approximation
schemes, in the sense that also in the adiabatic case the idea is to approximate the

true evolution by an "adiabatic evolution" which, in an appropriately rotated
frame is block diagonal (see e.g. [18-22] for the construction of various "adiabatic

evolutions" and the degree they approximate the true evolution).

Let us give some simple examples.

Example 1 : non resonant two level atoms

Let !Hbe two dimensional and H0 have two non degenerate eigenvalues
with eigenvectors ln>, n 1, 2. Since Poland (I-P0)^are one dimensional, the

restriction of Wl(t, t0) to these subspaces is a simple phase factor. Then the matrix
elements of U (t, t0) are given by

<n I U(t, t0) I m>

with

X C^tt) Cm\(t0)exp
k=l

Cnk(t) <nlM(t)lk>

A

ds<klHef1(s)lk>

V

+ o(X£l+11 t-to I (5.9)

(5.10)

Example 2 : three level atom with two resonant states.

Let Hlbe three dimensional, P0 11> <11 + 12> <21 the projection on the

two resonant eigenstates 11> and 12> of Hq, and I-P0 13> <31 be the projection on
the non resonant state. Then



Vol. 65, 1992 Martin and Nenciu 555

<nlU(t,t0)lm>= X Cnk(t)C^I(to)<klWcI(t,to)ll>
k. 1=1

f t

+ Cn3(t)Cm3(to)exp

\
ds<3lHef1(s)l3>

V t0

+ 0(X1+Ì I t-to I (5.11)

J

where the Cnk(t) are defined as in (5.10). In this case one still has to solve (5.5) in

the two dimensional subspace of resonant states. Formula (5.11) enables to take

into account the effect on the resonant dynamics of an isolated level which is

energetically separated from the resonant ones.

In actual situations, P0^t"can be finite dimensional, but (I-P0)^ is usually
infinite dimensional (it will contain the subspace of continuous spectrum of H0),
so that the problem of integrating (5.5) in (I-P0)^may turn out to be as difficult as

the original one. It is therefore of interest to know what kind of information can

be obtained from the mere knowledge of Wq (t, t0) restricted to P0^ We observe

that if an initial condition \|/ is chosen in the subspace P(t0)^, then by (4.2),

\\r M(t0)cp with cp in P09i Therefore one has in this case

U (t, t0) \|/ M(f) P0 W^ (t, t0) P0 cp + o(tf+11 t-to I (5.12)

If by a careful adiabatic switching on one can prepare the system to be in P(t0)^at
t t0, its subsequent evolution will be determined by the knowledge of
P0 Wl(t, t0) P0 and M(t). However, it is more common to have the system prepared
in an eigenstate of H0 at t t0, i.e. P0 V ¥• Also in this case relevant information
can be obtained from (5.7) if we recall that (see (4.8))

M(t) I + 0(X)

where 0(X) is uniform in t. Then (5.7) gives

U(t,t0) Wl(t,t0) +XO(l+tflt-tol)

(5.13)

(5.14)

i.e. one can compute the evolution of an initial state in P0^ with the help of
H ^tt) (q < N) up to an error of order X on time intervals of length I t-t0 I X'l
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At the first sight one may think that retaining the higher powers in X in
P0 He q(t) P0 is superflous in (5.14). That this is not so, one can see already in the

trivial case when P0 is one dimensional and hence

where

PoWq(t,t0)P0 exp -iX Welt)
t )=0

Po

e,(t) du <01 He/(u) 10> P010> 10> (5.15)

Now in general Jv' e.(t) O (Xi I t-t0 I and becomes significant on scales

I t-t0 I O (X"J). Notice that when P0 is not one dimensional the phases in
Po Wcl(t,t0) Po enter the expressions of the resonant transitions, so (5.14) implies
that the necessary and sufficient condition for P0 Wq(t,t0) P0 to describe all resonant
effects on scales I t-t0 I ^ A,"*" is to retain the first q terms in the expression of P0 H
Po-

The main result of the section 3 was that one can construct initial
conditions P(t0) such that P(t) (see (2.19)) has on expansison in .X up to the

"resonanf'order with uniformly bounded coefficients. One can see that in general
this is not the case for arbitrary initial conditions. For shortness let us illustrate the

matter on the simple case in example 1. Let I n(t0)> M(t0) I n> and \|/ an arbitrary
state. If we write

2 2

\|/ X an I n(t0)> Mtto) X an I n>
n=l

then
n=l

P(t)=U(t,t0) lyxyl U*(t,to)

f t

¦ iX anamexP
n.m=l

\
dsAnNm(s)

where
V l°

Mtt) I n xm I M*(t) + o(JiN+11 t-t01

J

A„rl(t) <nlHefN(t)ln>-<mlHefN(t)lm>

(5.16)

(5.17)
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In general for n * m A ^ (t) do not have expansions in X with uniformly bounded

coefficients, and then the same is true for P(t). Of course if one of the an equals zero

we are back to the "good" initial conditions. Let us stress however that if the

hamiltonian involved is such that A ^(t) do not depend on X, then of course
"nice" expansions exist for arbitrary initial conditions.

We shall end by illustrating on a solvable example (the driven harmonic

oscillator) that actually stronger results can be obtained in specific cases. We

consider an harmonic oscillator H0 co a*a of frequency co submitted to the

external time-dependent potential Xf(t) (a + a*), and denote I n>, n 0, 1, 2 the

eigenstates of H0, with eigenvalues nco. If the projection 10> <01 on the ground
state is chosen as initial state at time t0, it is well known that its time evolution is

given by [23]

Ui(t, t0) 10x01 Ujtt, t0) I cc(t, t0)> <a(t, t0) I (5.18)

where I a(t, t0)> is a coherent state represented in the {I n>] basis by

I oft, t0)> exp (- \x2 I oc(t, t0) 12) Y {XaiiAlo))n
I n> (5.19)

KA J^ Vn!

t

oc(t, t0) - i I ds eicos f(s) (5.20)I
tn

In the case of adiabatic switching on, the time evolved projection P^(t) is given by

the same formulae (5.18) and (5.19) with ct(t, t0) replaced by

t

aE(t) - i f ds ei(c°-iE)s f(s) (5.21)

Hence

i2. Ê^,2ï v a«E(t))n aa£(t))m ,___.P,(t) exp(- X21 aE(t) 12) X p= I nxm I (5.22)

n.m=o Vn! Vm!



558 Martin and Nenciu H.P.A.

Since the operators I n> <m I have a norm equal to one, these series are norm

convergent for any value fo X.

a)

b)

Consider now the following two cases

f(t) cos co0t co0 * co

so that

lim oce(t) cx(t)

e-> 0

eicot
'co cos co0t - i co0 sin co0tN

cofaco2
K °

f dtlf(f)! <oo
A

(f (co) is continuous)

(5.23)

so that

lim txE(t) cc(f)
e-> 0

ds eiœs f(s) (5.24)

We conclude in both cases from (5.23) and (5.24) that the series (5.22) have a term

by term limit as e —» 0, and

n-lim Pf(t) Pi(f) P0 + X *k pI,k(t)
e-> 0 k=l

(5.25)

The norm convergent perturbation series (5.25) can be obtained explicitely from
(5.22) with ocE(t) replaced by oc(t), and reorganizing the powers of X.

Applying the proposition 2 to the case (a) with co0 co/2 we would only
conclude that Pj^tt) has a limit, since already at the order 2 a resonance could in

principle occur with the eigenvalue 2co of H0- Nevertheless Pitt) has a full
perturbation expansion because of the peculiar properties of the oscillator and of
the interaction (equidistant levels and V(t) connects only the state ln> to In + 1>).

In the case (b), assuming for instance that the support of f (co) is the entire real line,

we could not draw any informative conclusion from proposition 2. The fact that

Pitt) has complete perturbation series is due here to the smoothness of f (co) (but the

Pl,n(t) are no more given by the formula (3.14)).
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