| Helvetica Physica Acta                                             |
|--------------------------------------------------------------------|
| 65 (1992)                                                          |
| 2-3                                                                |
|                                                                    |
| Vortices : collective variables for turbulence in Josephson arrays |
| Mehrotra, R. / Shenoy, S.R.                                        |
| https://doi.org/10.5169/seals-116491                               |
|                                                                    |

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

## Download PDF: 07.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Vortices: collective variables for turbulence in Josephson arrays

By R. Mehrotra<sup>1</sup> and S. R. Shenoy<sup>2</sup>

<sup>1</sup>DC Standards Division, National Physical Laboratory, New Dehli 110 012, India

<sup>2</sup>School of Physics, University of Hyderabad, Hyderabad 500 134, India

Abstract. In previous work we had shown that a dc-current driven  $(I_x(y))$  array of overdamped Josephson junctions, without disorder, external field (f = 0) or thermal excitation (T = 0), would exhibit chaos for sufficiently large edge injected vorticity  $\partial I_x(y)/\partial y$ . We now show that the chaos transition (rise in voltage noise) is associated with injected vortices moving suddenly away from the injection edge, and their (previous regular) appearance times becoming irregular. Thus vortices may be collective variables for spatially varying chaos, or 'turbulence'.

## Introduction

The dynamics of 2D Josephson arrays is governed by Total Current Conservation (TCC), as first considered in a calculation of the dynamic conductivity  $\sigma(\omega, T)$ at the Kosterlitz-Thouless transition [1]. TCC dynamics was then applied to the simplest possible nonequilibrium case, to investigate the possibility of chaos in arrays and its origin [2]. The junctions were overdamped, and external drives dc, so chaos could only come from many-body couplings. Complicating factors such as thermal or field-induced vortices, or disorder, were eliminated. (These have been considered, in some further studies [3, 4]).

It was found [2] that under these conditions f = 0, T = 0, only an ac Josephson effect results from a *uniform* dc drive at the x = 0 edge, with external current per bond I > 1, (scaled in the critical current  $I_J$ ). For *chaos* to occur, a transversely varying *nonuniform* dc drive was necessary. The simplest such drive was a linear profile (Fig. 1).

$$I_x(y) = I_{\max} - \Delta I \bar{y}; \qquad \bar{y} = y/L_y \tag{1}$$

for array dimensions  $L_x \times L_y$ , with  $I_{\max}L_x = (N_x - 1)a_0$ , where  $-\partial I_x/\partial y = \Delta I$  is a local injected vorticity at the edge, x = 0. The  $I_m$  versus  $\Delta I$  phase diagram has periodic, quasiperiodic (3 frequencies), and spatially varying chaotic regimes, the last for  $\Delta I > \Delta I_c$  and  $I_{\max} > 2$ . The critical  $\Delta I_c$  is independent of the length  $N_x$  for  $N_x > 4$ .  $\Delta I_c$  decreases with the width  $L_y$ , but in a definite way, with total injected vorticity  $\Delta I_c(N_y + 1)$  a constant,  $\simeq 8$  as checked from  $N_y = 3$  up to  $N_y = 14$ . Thus  $4 \times 3$  and upward-sized arrays behave similarly.



Figure 1 Junction array, with plaquettes numbered and nonuniform drive, at x = 0 with  $x = L_x$  side shorted out.

## Vortex behaviour at chaos onset

Vortices in plaquettes can be identified by adding the phase differences along the plaquette boundary. The number  $N_{\pm}(t)$  of vortices in the array  $(N_{-} \ge N_{+})$ varies, as they appear and disappear, in time, with only a few present at any instant. In the quasiperiodic regime, their appearance times, (in a particular plaquette) are regular (Fig. 2a) but go irregular for  $\Delta I > \Delta I_c$ , in the chaotic regime (Fig. 2b).

The x-component of the 'centre-of-charge', or first moment of the (time averaged)  $\pm$  vortex charge density,  $X^{(\pm)} = \sum_{\vec{r}} n^{(\pm)}(\vec{r}, t)x$ , shows a sharp change at  $\Delta I_c$ , with -1 vortices 'de-adsorbed' from the injection edges, and +1 vortices moving to x = 0 and 'mixing' (Fig. 3). Thus vortices, central to the equilibrium KT transition, may also drive the chaos transition.



Figure 2

Distribution  $N_{0C}$  of intervals of occurrence t of -1 vortices appearing in plaquette 1, in a quasi periodic (QP) and chaotic (C) regimes.



Figure 3

(a) X-component of centre of charge versus  $\Delta I$  for negative (0) and positive (+) vortices. Injection edge is x = 0. (b) schematic of physical picture.

# REFERENCES

- [1] S. R. SHENOY, J. Phys. C. 18, 5163 (1985).
- [2] R. MEHROTRA and S. R. SHENOY, Europhys. Lett. 9, 11 (1989).
- [3] J. S. CHUNG, K. H. LEE and D. STROUD, Phys Rev. B40, 6570 (1989).
- [4] F. FALO, A. R. BISHOP and P. S. LOMDAHL, Phys. Rev. B41, 10983 (1990).