Zeitschrift:	Helvetica Physica Acta
Band:	65 (1992)
Heft:	2-3
Artikel:	Is the Kosterlitz-Thouless transition 'exotic'?
Autor:	Shenoy, S.R.
DOI:	https://doi.org/10.5169/seals-116490

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 06.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Is the Kosterlitz-Thouless Transition 'Exotic'?

S.R. Shenoy, School of Physics, University of Hyderabad Hyderabad - 500 134, INDIA

Abstract. Theoretical methods used in the 2DXY Kosterlitz-Thouless (KT) transition, applied to the anisotropic-coupling 3DXY model, yield scaling equations for elliptical vortex loops, with a 1/R segment-segment interaction. The transition temperature, calculated in terms of the (critically irrelevant) coupling anisotropy, is in good agreement with previous Monte Carlo work. The KT transition is thus seen as part of a larger class of topological excitation dominated phase transitions. Possible application include layered superconductors, and (2+1)D quantum Josephson arrays.

Introduction

The KT transition in 2D systems is dominated by ± 1 vortex unbinding, and is hence regarded as unconventional, or 'exotic'. However Monte Carlo work by Shrock [1] and Dasgupta [2] and co-workers indicates that topological excitations (vortex loops and spin hedgehogs) play a central role in even three dimensional XY and Heisenberg models. Simulations of the 3D XY model show vortex loop excitations do exist, grow, and proliferate at $T = T_c$. Epiney finds that [3] the transition temperature in the anisotropic 3D case, $T_c(\delta_o)$, decreases smoothly to the 2D KT value, as the anisotropy parameter $\delta_o = 1 - K_{\perp}/K_{\parallel} \rightarrow 1$.

Layered 3D XY Model

The anisotropic 3D XY model is $(\beta = 1/k_B T)\beta H = -\sum_{\mu}\sum_i K_{\mu}(\cos \Delta_{\mu}\theta_i - 1)$ where Δ_{μ} is a discrete derivative in the $\mu = x, y, z$ direction and i a site on a 3D cubic lattice of lattice constant a_o . The coupling constants describe layers, $\vec{K} = (K_{\parallel}, K_{\parallel}, K_{\perp})$. An anisotropy parameter is $\delta_o = 1 - K_{\perp}/K_{\parallel}$, with $\delta_o = 0$ for the isotropic case and $\delta_o = 1$ for decoupled layers. At the spin wave level, $\beta H \approx \frac{1}{2} \sum_{\mu, \vec{q}} (q_{\mu}a_{\mu})^2 |\theta_{\vec{q}}|^2$, with $\vec{a} = (a_o, a_o, a_1)$ where $a_1 \equiv a_o/(1 - \delta_o)^{1/2}$.

Applying the standard dual transform of Savit [4] to the model one obtains, on dual cubic lattice, [5]

$$\beta H \approx \frac{\pi}{2} K_{\parallel}(1-\delta_{o}) \sum_{\mu} \sum_{r_{\parallel},r_{\parallel}'} \sum_{z,z'} J_{\mu}(\vec{r}_{\parallel},z) J_{\mu}(\vec{r}_{\parallel}',z') U(\vec{r}_{\parallel}-\vec{r}_{\parallel}',z-z') + \frac{\pi}{2} K_{\parallel} \delta_{o} \sum_{r_{\parallel},r_{\parallel}'} \sum_{z,z'} J_{z}(r_{\parallel},z) J_{z}(r_{\parallel}',z') U(r_{\parallel}-r_{\parallel}',z-z')$$
(1)

Here $\vec{J}(\vec{r}_{\parallel}, z) = \pm 1$ are segments of closed vortex loops. The interaction is $U(\vec{r}_{\parallel}, z) = [(\vec{r}_{\parallel}/a_1)^2 + (z/a_o)^2]^{-1/2}$. For $\delta_o = 0$ one recovers previous [6,7] loop results. For $\delta_o \to 1$, one has $U(\vec{r}_{\parallel}, z) \to -2(\ln r_{\parallel})\delta_{z,o} + 0((r_{\parallel}/a_1)^2\ln r_{\parallel})$, and one recovers the 2D KT interaction, with 'charges' $m(r_{\parallel}, z) \equiv J_z(r_{\parallel}, z) = 0, \pm 1$ in decoupled, overall-neutral planes. The \vec{J}_{\parallel} segments cost zero free energy in this limit.

The self-energy of elliptical loops with minor axis at an angle α to the z axis, from Equ.(1), gives a bare loop fugacity, (B=5.631) that peaks at $\alpha = \frac{\pi}{2}$, in agreement with Friedel [8],

$$y_o(\alpha) \approx exp\{-BK_o(1-\delta_o)^{1/2}[1+\frac{1}{2}\frac{\delta_o}{(1-\delta_o)}\sin^2(\alpha-\frac{\pi}{2})]\}$$
 (2)

In Equ.(2) the isotropic part coefficient scales just as in the $\delta_o = 0$ case isotropic coupling K_l [6,7], with however the initial value $K_{l=0} = K_{\parallel}(1 - \delta_o)^{1/2}$. The anisotropic part is irrelevant, and critical exponents [7] are unchanged, for any nonzero $1 - \delta_o$. With increasing anisotropy, the fugacity of Equ.(2) increases, and the transition temperature is pushed down. The bare critical coupling $K_{\parallel}(T_c) = E_{\parallel}/k_BT_c$, using isotropic case results [7] is $(K_{oo} = 0.454, A = 4.197, B = 5.631)$,

$$K_{\parallel}(1-\delta_o)^{1/2} = K_{oo} + A[e^{-BK_{\parallel}(1-\delta_o)^{1/2}} \tilde{e}^{\eta} I_o(\eta) - e^{-BK_{oo}}]$$
(3)

Fig. 1. Inverse transition temperature $K_{\parallel} = \mathbf{E}_{\parallel}/k_{B}T_{c}$ versus interplane coupling $(1 - \delta_{0}) = K_{\perp}/K_{\parallel}$ $= \mathbf{E}_{\perp}/\mathbf{E}_{\parallel}$.

Here $\eta \equiv B\delta_o K_{\parallel}/4(1-\delta_o)^{1/2}$ and $I_o(\eta)$ is a zeroth-order imaginary-argument Bessel function, arising from an angular average of Equ.(2). Equ.(3) does not include Hikami-Tsuneto [9] type single-plane rectangular excitations, that contribute for $(1-\delta_o) \ll 0.2$ Fig.1 shows a plot of the critical K_{\parallel} versus $1-\delta_o$, (solid line) compared with some of the MC data of Epiney (diamonds). Agreement is also good for $1 < K_{\perp}/K_{\parallel} < 15$, (not shown). There are no fitted parameters.

The author thanks Biplab Chattopadhyay for help in preparing the figure. REFERENCES

- 1. G. Kohring, R. Shrock, and P. Wills, Phys. Rev. Lett. 57, 1538 (1987).
- 2. M.-H. Lau and C. Dasgupta, Phys. Rev. B39, 7212 (1989).
- 3. J.Epiney, Preprint (1990) "3D XY Model Near Criticality," IPS 90-08, ETH Zurich.
- 4. R. Savit Phys. Rev. B17, 1340 (1978).
- 5. This is also the zero charge limit of the lattice superconductor, S.E. Korshunov, Europhys. Lett. 11, 757 (1990).
- 6. G. Williams, Phys. Rev. Lett. 59, 1926 (1987).
- 7. S.R. Shenoy, Phys. Rev. B 40, 5056, (1989); Phys. Rev. B42, 8595 (1990).
- 8. J. Friedel, J. Phys. (Paris) 49, 1561 (1988); 49 1769 (1988).
- 9. S. Hikami and T. Tsuneto, Prog. Theor. Phys. 63, 387 (1980).