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Lyapunov Exponents of the Schrédinger Equation
with Quasi-periodic Potential on a Strip

I. Ya. Goldsheid,!)* E. Sorets?

DFakultit fir Mathematik
Ruhr-Universitat-Bochum (FRG)
SFB-237 Bochum-Essen-Diisseldorf

2)Parametric Technology Corporation
128 Technology Drive
Waltham, MA 02138

Abstract. We decribe conditions under which all the nonnegative Lyapunov exponents
of the quasi-periodic difference Schrédinger equation on a strip are strictly positive.

We shall study the Lyapunov exponents of the difference equation:
“Yn+1+ Q@nYn —Yn-1 =0 —oo<n<+00 (1)

where y, € R™ and Q, is a symmetric m X m matrix whose off-diagonal elements do not
depend on n, and the diagonal elements are quasi-periodic functions

qni(a) -~ Afi(e21ri(6+na)) —E

with f;(z) analytic on 4 = {2 | r < |2| < 1/r}, taking values in [-1,1] for |2| = 1, A
is a (large) parameter called coupling constant, E is the energy, and « is any irrational
number. Without loss of generality we shall assume that maxi<i<m sup,—, fi (2) =1and
min <i<m inf|z|=1 fi(z) = —1.

Equation (1) becomes equivalent to the finite-difference Schrédinger equation when
the off-diagonal elements are chosen properly. For example, the case ¢;; = —1for [t—j| =1
and ¢;; = O for |[{—j| > 1 corresponds to Schrodinger operator on the strip Z x {1,...,m}.
Equation (1) can be written in the form

Yn+1 Qn —I Yn — Yn )

( Yn ) ( I 0 ) (yn—l) " (yn—l 2)
and, thus, the asymptotic behavior of the solutions of equation (1) is determined by the
asymptotic behavior of the product S(n) := A, --- A;.

Various problems in solid-state physics give rise to different classes of matrices Q...
These classes are characterized by the level of randomness. The case of independent

random @, was studied in [GM], where it was shown that under certain algebraic conditions
on the support of the corresponding measure in the space of symmetric matrices all the
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Lyapunov exponents are different and, therefore, the smallest non-negative exponent is, in
fact, positive. When @, ’s are non-deterministic at least some of the Lyapunov exponents
are strictly positive [KS,S,K]. On the other hand, if Q,’s form a periodic sequence, it is
easy to show that the ”interesting” Lyapunov exponents vanish.

The case of quasi-periodic potentials exhibits mixed behavior. If the coupling constant
A is small and « is poorly approximated by rationals, it is known [BLT] that at least on
part of the spectrum the Lyapunov exponent is zero when m = 1. When A is large and
m = 1 the Lyapunov exponent is positive [Si,CS,FSW,S§|.

Here we study the case of m > 1 and large A. We prove [GS] that all non-negative
Lyapunov exponents are positive. The method we use is an extension of the one used in
[SS], which, in turn, grew out of M. Herman’s proof of positivity of the Lyapunov exponent
in the case of m =1, f(z) =2+ 1/2z,and A > 1 [H].

To describe our result let us consider the following decomposition of S(n):

§(r) = U(n)D(n)V (n)

where U,V € O(n), and D(n) = diag(d{™,...,d{")) with d; > d; > --- > dam > 0. Since
A, € Sp(m,R) for all n, we have d = d;,:‘_k 4+1- The k-th Lyapunov exponent < is
defined by

= lim % Tog k). (3)

Clearly, Yk = —Y2m—k+1, and 41 > 2 > -++ > vm > 0. Existence of the limit in (3)
for almost every 6 and its independence of 8 are guaranteed by the Subadditive Ergodic
Theorem [Ki| and ergodicity of the underlying dynamical system 6 — 6 + a.

Our main result is the following

Theorem. There exists Ao such that for all A > Ao and all E, there exists a set
(E) C [0,1] of Lebesque measure 1, such that

Ym(E) = 1m(E,8) >0 V8 € Q(E).

This, together with Oseledeé’s Multiplicative Ergodic Theorem [O,GM] implies existence of
m solutions of equation (1), which decay exponentially as n — 400 and grow exponentially
as n — —oo, and m other solutions of equation (1), which decay exponentially as n — —oo
and grow exponentially as n — +o0o. These 2m solutions are linearly independent and

form a basis of all solutions of equation (1). There are two important consequences of this
fact.

1) The Green’s function of H decays exponentially for almost every energy E.

2) The spectrum of the operator H defined by the left hand side of equation (1) is
singular.

Remarks. We should point out that the spectrum of H can actually be purely
singular continuous if « is a Liouville number [CFKS].

The requirement that A is large cannot be avoided, for when A is small KAM theory
is applicable and there is absolutely continuous spectrum [BLT].
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We strongly use the non-triviality of f;’s in our proof. This condition is necessary,
for there are examples in which the presence of constant f;’s leads to appearance of zero
Lyapunov exponents.
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