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Numerical study of a Projected Hubbard Model

K. Michielsen and H. De Raedt
University of Groningen
NL 9700 AV Groningen, The Netherlands

Abstract. The extension of a generalized Hubbard model, recently introduced by A. Montorsi
and M. Rasetti, is studied by means of numerical diagonalization, Quantum Monte Carlo and
variational methods. Exact results for lattices up to 4 x 4 are presented. Quantum Monte Carlo
simulations reproduce our exact numerical results. We use these data to assess the accuracy of
variational (including generalized BCS like) methods.

Introduction

Recently A. Montorsi and M. Rasetti (MR) [1] showed that a generalization of the Kivelson, Schri-
effer, Su, and Heeger (KSSH) model [2] is exactly solvable in any dimension by expressing the
free energy in terms of a simple quadrature [1]. As the MR model describes (strongly) interacting
fermions on a lattice, it is of considerable interest to explore its phase diagram and other physical
properties. To this end it is necessary to develop numerical techniques to calculate quantities other
than the free energy (or derivatives of it). In this paper we present the first results of exact numer-
ical diagonalizations, Quantum Monte Carlo simulations and variational calculations and compare
our results to those of MR where possible.

The MR model is defined by the Hamiltonian H = Ho + H; where Hy = —pu)-; ,nis +
U3_;nin;,| where pis the chemical potential, U is the on-site electron interaction and n;,, o =T, |
denotes the number operator at site 4. The kinetic energy Hy = (1/2) 3 ; ;5 2507 tg'”'(affoaj'aj +
he) = (1/2)Eciis Yoot vaU'(aj"Ua]_,o, + h.c.)(ni o +nj _,) differs from the usual Hubbard model
kinetic energy in many respects. Firstly, the kinetic energy does not conserve the spin. Physically
this may be due to the presence of spin-orbit interactions in the more general Hamiltonian of which
the MR model is only the tight-binding approximation. Secondly the last term in H; represents the
bond charge repulsion, characteristic of the KSSH model. The kinetic energy H; assigns different
hopping amplitudes depending on the relative site-occupation. Of particular importance is the case
where 77" = {99 = t. Then hopping processes between two singly-occupied sites and a doubly and
an empty site are inhibited and Hg and H; commute, i.e. the total number of doubly occupied sites
and empty sites are conserved quantities. Note that this is also the case for the original KSSH model
so that this feature is not a consequence of incorporating spin-flip hopping processes. As it stands
H, assigns equal amplitudes for hopping from singly-occupied to empty sites and as for hopping
from doubly to singly occupied sites. This constraint can be removed by modifying t}_le }:'mnd charge
term such that Hy = (1/2) X ;.5 20 t”'”'(a;-{:aaj'a, + he) = (1/2) X cijs oo B7° (a;':gaj'a, +
h'c')(ni,—a +n; o — 7ni,—anj,—a')-

The key feature of the MR model is that by introducing a new set of local operators 4; =
(af) + ati)/\/ﬁv N; = A}t 4, , and D; = (ai,la,ﬂ + a,-’Ta;-fl +n,;; + n,)/2, Hamiltonian H can
be rewritten as H = —u>; (Ni+ Di) + UL, NiDi + t Y. s ki (AT A; + h.c.) where &;; =
1-D;-D;+vyD;D;. As all D; commute with all 4; and all A;.* it follows immediately that the grand
canonical partition function can be written [1] as Z = Tre PH = Tre FHoe—BH — 2osi=01 tre—BH
where tr denotes the trace over all spinless fermions (4, A; ) and the s; denote the eigenvalues
of the idempotent operators D;. As H is a quadratic form of the spinless fermion operators the
trace ¢r can be performed analytically [3] yielding Z = 37, _o, [I; ePrsidet[l + exp(—BM({s:}))],
where M;; = —u+ Us;, M; ; = t(1 — 8; — 8, + 78,8;) if i and j are nearest neighbors and M; ; = 0
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otherwise. We use this exact expression for the partition function as the starting point for our
numerical work. In contrast to the expression for Z one obtains for the Hubbard model [3], the
determinant entering our expression is always positive. This assures that we will not encounter
minus-sign problems in the simulations [3], a very nice and important feature.

Exact, Quantum Monte Carlo and Variational Calculations

The most straightforward way to analyse the model is to perform the sum over all possible config-
urations of the s;. This requires 2"V (N is the number of sites) evaluations of the determinant of an
N x N matrix. As we have to calculate the exponent of the matrix M in any case, it is expedient
to diagonalize M first, then take the exponent and calculate the determinant as a product of all
- eigenvalues. With modest computational effort we can in this way calculate any relevant quantities
for lattices containing up to N = 16 sites. For larger lattices we employ the Metropolis Monte
Carlo method to sample the space of s; configurations. We have carefully checked that our Quan-
tum Monte Carlo simulation code reproduces the exact results for lattices up to N = 16 sites [4].
Our results [4] do not agree with those obtained from the numerical evaluation of Eq.(19) of [1].

To asses the usefulness of approximation schemes frequently used to explore the properties of
models for strongly correlated electrons, we have compared our exact and simulation data with the
results of variational calculations [4]. To this end we invoke the variational principle F < Fr+ <
H — Ht >7, where Hy is a suitable trial Hamiltonian and < X >7 is the thermal expectation
value of the observable X with respect to the ensemble defined by Hy. Alternatively, we have
used the expression for Z and employed the inequality < e >> e<*” to obtain an upper bound
for the free energy F. Our calculations [4] show that taking a Hartree-Fock like trial Hamiltonian
or using the inequality mentioned above yield the same expression for the upper bound namely
BF[N < —In(1+eP*)=3 In(1+e PEx) where Ey = —p+Us+2t(1—25+78%)e, €x = ), 4 cOs ki,
8=1/(1 + e P*) and d is the dimensionality of the lattice.

To account for the presence of the spin-flip hopping processes, we take as a generalized BCS trial
Hamiltonian Hggcs = zk Ea’a: Ek(a;:aak'a, + h.c.) + Zk ZJ a,taakya + >k za,a: Ak(a;aak,a, +
h.c.). As a first step we specialize to the case v = 0. Taking Ex = —p + Us + 2¢(1 — 28)e , the
corresponding upper bound to the free energy reads F/N < —(1/8)In(1 + e*) + 3 (Ex/2 — ex) —
(1/8) Sk In(1+e2Pex) + (U/4—2t)(Z Axfr)? =43 Al fi. Minimizing the upper bound with re-
spect to A, we obtain the gap equation A, = —(U/8) ¥k Axfe+(t/2) 1o ex D fe+(8/2)eg 2ok Ak S
with fi = tanh(fBex)/ex and ex = m This gap equation has the same structure as the
one studied in the context of layered superconductors [5]. Solving this gap equation numerically,
we can compute the upper bound to the free energy [4].

This work is partially supported by the FOM project 90.816 VS-G-C and a supercomputer
grant of the NCF (The Netherlands).
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