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Single-Particle Spectrum for High-T, Superconductors: A Numerical Study.
G. Dopf!?, J. Wagner!, P. Dleterlch1 A. Muramatsu®?, and W. Hanke!
1Physnka.hsches Institut, Unlvers1tat Wiirzburg, 8700 Wiirzburg,
2HLRZ, KFA-Jﬁlich, 5170 Jilich, Fed. Rep. of Germany

Quantum Monte Carlo data are used to calculate the spectral density A(I::,w) for the three-band Hubbard
model in order to analyze the states near the Fermi energy. These states are related to the Zhang-Rice singlet
and exhibit a band-like behavior for finite doping 6. At a hole concentration é = 0.25 we find both a good
quantitative agreement for the Fermi velocity and the location of the Fermi surface, when compared with
angle-resolved photoemission data. However, the imaginary part of the self-energy does not vanish close to
the Fermi level, indicating that a non-Fermi liquid behavior sets in. This feature is absent for large doping
(6 = 0.50), where a Fermi liquid picture seems to be appropriate.

A central and controversial issue in the high-T,
cuprates concerns the nature of carriers near the Fer-
mi surface. The most crucial experimental results
until now stem from angle-resolved photoemission
(ARPES) and inverse photoemission (ARIPES) mea-
surements [1] that clearly show the existence of a dis-
persive band that crosses the Fermi surface. The
topology of the Fermi surface is in general agree-
ment with LDA-bandstructure calculations [2], how-
ever the Ferm velocity is quite different. This in-
dicates that electronic correlations renormalize con-
siderably the results obtained in the frame of a one-
particle treatment. So far, strong correlation effects
can be properly taken into account only by exact nu-
merical methods.

In this article we study the dynamic properties of
one-particle excitations in the three-band Hubbard
model, which is the generic one to describe the CuQ,
planes in the high-T. superconductors. The Hamil-
tonian of this model is as follows:

= ZEiJCIOC]f’ T = ZUanzanJo )

(T(T

where cza creates a hole in the Cu-3d;2_y2- and in

the O-2p,- or 2py-orbital depending on the site 7.
€i; includes the on-site energies E4 (Cu) and E, (O)
with A = E, — E; and a Cu-O hopping t,4, while
Ui; describes the on-site Coulomb energies U; and
U, and the inter-site Cu-O interaction Upg4.

Exact diagonalization methods are the natural
framework for the calculation of dynamical proper-
ties. However, serious limitations are imposed on the
system size. In particular, for a realistic model like
the one discussed here, the largest size is 2x2 ele-
mentary cells (12 sites). This limitation is removed
by using a QMC approach [3] complemented by a
least-square fit in order to extract the dynamical in-
formation in the system [4]. In this article we have
performed simulations for lattice sizes up to 48 sites
(4x4 elementary cells).

The Matsubara thermodynamic Green’s function
is defined as

Gm(k: T) = (Cm(ka T)Cln(k’ 0)>’

where the index m corresponds either to the d »_,2-
or the p, y-orbitals. To calculate the spectral density,

we have to invert the spectral representation of the
Green’s function
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This is essentially a Laplace transform, which is nu-
merically extremely ill posed, if the data are noisy. In
order to deal with this problem recent progress was
made [4]. We follow closely the approach of White et
al., applying a modified least-squares fit.

Using a parameter set A = 4, Uy = 6 [5], which
leads to a charge transfer gap in agreement with ex-
perimental values, we have checked the numerical ac-
curacy of our QMC data for A(k,w) in comparison
with exact diagonalization results. The overall agree-
ment between both curves is very good, especially
near the Fermi surface [5].

Now we proceed to study a 48 site system (4 x 4 u-
nit cells) in order to extract the dispersion of the low-
lying excitations. As shown in [6] these excitations
are correlated states, which are mainly of Zhang-Rice
(ZR) [7] character. The result is plotted in Fig. (1)
along the high-symmetry lines of the Brillouin zone.
We can clearly see that the ZR states form a disper-
sive band, that crosses the Fermi energy.

In Fig. (1) also shows the ARPES and
ARIPES data for the superconducting material
BisSryCaCuz0g [1]. For this material the doping
is assumed to be approximately 20 %. The exper-
imental electron-excitations are only given as error
bars due to the finite experimental resolution. Com-
pared to these data we find a very good agreement
for the locus of the Fermi surface and, in addition, we
can reproduce the Fermi velocity. Small differences
are possibly due to marginal different doping con-
centrations in the simulation and the real material.
This result shows that the three-band Hubbard mod-
el describes accurately the one-particle excitations of
the cuprates. On the other hand the parameter set
(A = 4,U;s = 6) seems also to be a good starting
point in order to investigate the superconducting be-
havior in these systems [5].

Additionally the relevance of fluctuations is clear-
ly demonstrated by comparing our results with
an ab initio LDA-bandstructure calculation for
BisSryCaCusOg [2]. Although the LDA Fermi sur-
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Figure 1: Comparison of the QMC-, LDA-bandstruc-
ture and experimental results.

face corresponds well to the experimental one, the
Fermi velocity as well as the band-width are totally
overestimated.

Finally we address the question whether the
present system can be well described by a Fermi lig-
uid picture. Fig. (2) shows the imaginary part of the
self-energy obtained for a 2x 2 (12 sites) system by ex-
act diagonalization. For a doping concentration of 50
% ImE(k,w) vanishes for k = (,0) in a broad region
around the Fermi energy. This clearly indicates the
existence of long-living quasiparticles and the Fermi
liquid picture is appropriate. However, for a doping
of § = 0.25, ImX(k,w) does not vanish on approach-
ing the Fermi energy. Therefore the corresponding
ZR state has a finite lifetime and the Fermi liquid
picture with well defined quasiparticles at the Fermi
energy breaks down. We suggest that at doping levels
6 <0.25, which are relevant for the high-7, cuprates,
the system is better described as a Luttinger liquid
[8]. A more quantitative characterization of this state
needs a careful finite-size analysis of ImX(k,w). Such
simulations are presently being carried out.

In the case of half-filling (6 = 0) we find an enor-
mous enhancement of ImX(k,w) at the Fermi energy.
This is due to the fact that the system is an insulator
for zero doping. The related gap was already ob-
served in the single-particle excitation spectrum be-
tween the correlated states and the upper Hubbard
band [5,6].

In summary, our numerical results show that the
three-band Hubbard-model gives a very accurate de-
scription of the low-lying one-particle excitations in
the high-T, superconductors. We can reproduce the
experimentally observed Fermi surface and Fermi ve-
locity quantitatively. The Fermi liquid picture is sup-
ported by our data for heavily doped systems. How-
ever, at doping concentrations relevant for supercon-
ductivity, we find that the lifetime of the one-particle
excitations remains finite on approaching the Fermi
energy. Such a break-down of the Fermi liquid pic-
ture and the fact that the locus of the Fermi surface
coincides with LDA calculations, suggest that at dop-
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Figure 2: Imaginary part of the self-energy at

k = (m,0).

ing levels & < 25% the system is better described as a
Luttinger-liquid.
The numerical calculations were performed on the

Cray Y-MP of the HLRZ Jilich. We thank the HLRZ
for its support.
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