Zeitschrift:	Helvetica Physica Acta
Band:	65 (1992)
Heft:	2-3
Artikel:	Dynamics of charge carriers in 2-D quantum antiferromagnets
Autor:	Martínez, Gerardo / Horsch, Peter
DOI:	https://doi.org/10.5169/seals-116464

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 07.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DYNAMICS OF CHARGE CARRIERS IN 2-D QUANTUM ANTIFERROMAGNETS

Gerardo Martínez ^{a,1} and Peter Horsch ^b ^aInstituto de Física, UNICAMP, 13100 Campinas, SP, Brasil ^bMax-Planck-Institut für Festkörperforschung, 7000 Stuttgart 80, Germany

Abstract. We discuss the propagation of holes in the t-J model at low doping concentration using a formulation where the carriers are described by spinless fermions coupled to spin waves. The single-particle Green's function is evaluated numerically within self-consistent Born approximation which has been shown to agree quite well with spectra from exact diagonalization studies. We have shown that the spectral weight of the spin-polaron bound state scales with the inverse of the linear dimension. Based on this we find for the thermodynamic limit $a_{\infty} = 0.62(J/t)^{0.72}$ for values $0.1 \leq J/t \leq 0.4$. Furthermore we compare with the dominant pole approximation and determine its range of validity.

The motion of spin-1/2 charge carriers in two-dimensional quantum Heisenberg antiferromagnets (AF) is intimately related to the dynamics of holes doped in copper-oxide-based superconductors. The problem of a single hole is relevant for the transition from the insulating AF phase to the metallic non-magnetic phase. The t-J model is used for this purpose:

$$H = -t \sum_{\langle ij \rangle} (1 - n_{i,-\sigma}) c_{i\sigma}^{\dagger} c_{j\sigma} (1 - n_{j,-\sigma}) + J \sum_{\langle ij \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4} n_i n_j \right) . \tag{1}$$

Treating the spin excitations in long-range AF linear spin-wave theory and using a holon representation [1-3], the kinetic energy of the t-J model transforms into the coupling term to spin waves. Thus the problem is very similar to the Fröhlich polaron model. An essential difference is the absence of a free kinetic energy for the holons. The resulting spin-polaron propagates on the scale of J, which is merely a consequence of the coupling to the AF spin excitations, unlike the conventional (*charge*-)polaron solution. Although the physical parameters are t > J, we use a self-consistent expansion of second order in t [1,2] which amounts to a summation of the non-crossing diagrams. In this Born approximation the hole propagator thus obeys the integral equation

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \sum_{\mathbf{q}} M^2(\mathbf{k},\mathbf{q}) G(\mathbf{k}-\mathbf{q},\omega-\omega_{\mathbf{q}})} ; \qquad M(\mathbf{k},\mathbf{q}) = \frac{zt}{\sqrt{N}} \left| u_{\mathbf{q}} \gamma_{\mathbf{k}-\mathbf{q}} + v_{\mathbf{q}} \gamma_{\mathbf{k}} \right| , \quad (2)$$

where $M(\mathbf{k}, \mathbf{q})$ represents the coupling of the hole at wavevector \mathbf{k} to spin excitations of wavevectors \mathbf{q} , with energies $\omega_{\mathbf{q}}$, and is depicted in Fig. 1-a for $\mathbf{k} = (\pi/2, \pi/2)$: the bottom of the qp band. For long wavelengths $q \sim 0$ the coupling to magnons has dipolar character, $M \propto (\nabla \gamma_{\mathbf{k}}) \cdot \mathbf{q}/q^{1/2}$, like in McMillan's theory of liquid ³He —⁴He dilute mixtures [see also Ref. 4], and it is zero for $\mathbf{q} = 0$ and (π, π) . Thus the coupling to short wavelengths alone is important.

We have recently shown [3] by numerical solution of this integral equation that the resulting spectral functions $A(\mathbf{k}, \omega)$ are in detailed agreement with exact diagonalization studies [5]. These spectra, like the one in Fig. 1-b, show a bound state due to the formation of an antiferromagnetic spin-polaron [3], which has a dispersion of order J with a minimum at $(\pi/2, \pi/2)$ and a maximum at the Γ -point. So the quasiparticle Fermi surface is pocket-like with four degenerate valleys. Further an incoherent

¹Financed by FAPESP, São Paulo, Brasil

background, due to multiple-spin excitations, of width $\leq 7t$ is formed above the spin-polaron and it may explain [6] the anomalous mid-infrared absorption in the conductivity experiments of these compounds.

Our quantitative analysis has shown that in 2-D the residue of the quasiparticle at $(\pi/2, \pi/2)$ obeys the scaling law [3] $a(L) = a_{\infty} + b/L$, with L the linear dimension, $N = L \times L$. We note that this result is not limited to the perturbative case. For values J/t = 0.1, 0.2, 0.3, 0.4 the following results are obtained $a_{\infty} = 0.114, 0.198, 0.262, 0.317$ and b = 0.267, 0.327, 0.355, 0.386 respectively, where a_{∞} is the spectral weight in the thermodynamic limit, and it can be fitted by $a_{\infty} \sim 0.62(J/t)^{0.72}$.

In the dominant pole approximation [2] $G(\mathbf{k}, \omega) \sim a_{\mathbf{k}}/(\omega - \varepsilon_{\mathbf{k}})$, where the incoherent background is ignored, the residue and positions of the quasiparticle can be self-consistently obtained from

$$a_{\mathbf{k}} = \left[1 + \sum_{\mathbf{q}} \frac{M^2(\mathbf{k}, \mathbf{q}) a_{\mathbf{k}-\mathbf{q}}}{(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}-\mathbf{q}} - \omega_{\mathbf{q}})^2}\right]^{-1}; \qquad \varepsilon_{\mathbf{k}} = \Sigma(\mathbf{k}, \varepsilon_{\mathbf{k}}) = \sum_{\mathbf{q}} \left. \frac{M^2(\mathbf{k}, \mathbf{q}) a_{\mathbf{k}-\mathbf{q}}}{\omega - \omega_{\mathbf{q}} - \varepsilon_{\mathbf{k}-\mathbf{q}} + i\delta} \right|_{\omega = \varepsilon_{\mathbf{k}}}.$$
 (3)

Figure 1-c shows the comparison of our results with the latter approximation for a 16×16 cluster. We observe that ε_k differs already for J = t by 15% whereas the deviations in a_k are small, since Eq. (3) forces $a_k \to 0$ for $J \to 0$. Hence the use of the dominant pole approximation for *quantitative* purposes is restricted to the intermediate and weak coupling limits $J \ge t$. On the other hand, the full solution of Eq. (2) is a reliable approach for the description of a few holes in a quantum antiferromagnet for any coupling strength [3], as it produces results which are in close agreement with the exact diagonalization studies even in the strong-coupling regime.

Fig. 1 (a) Matrix elements in Eq. (2) at k = (π/2, π/2) showing the coupling 'across the valleys'.
(b) Spectral function of the spin-polaron for J/t = 0.2 at k = (π/2, π/2) in a 4 × 4 cluster.
(c) Comparison of the dominant pole (dashed-lines) and Born (solid-lines) approximations.

References

- [1] S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Phys. Rev. Lett. 60, 2793 (1988).
- [2] C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 6880 (1989).
- [3] G. Martínez and P. Horsch, Int. J. Mod. Phys. B 5, 207 (1991); Phys. Rev. B 44, 317 (1991).
- [4] F. Marsiglio et al., Phys. Rev. B 43, 10882 (1991).
- [5] P. Horsch et al., Physica C 162-164, 783 (1989);
- K. J. von Szczepanski, P. Horsch, W. Stephan, and M. Ziegler, Phys. Rev. B 41, 2017 (1990).
- [6] W. Stephan and P. Horsch, Phys. Rev. B 42, 8736 (1990).