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Charge Dynamics in Junction Arrays

A. van Otterlo***, P. Bobbert*, G. Schén**

* Dept. of Applied Physics, Delft University of Technology,
Lorentzweg 1, 2628 CJ Delft, The Netherlands
** Inst. fiir Theoretische Festkérperphysik, University of Karlsruhe,
Postfach 6980, 7500 Karlsruhe 1, FRG

abstract: 2D Junction arrays with nearest neighbour capacitance larger than the self capacitance are a physical
realization of the 2D Coulomb gas. One therefore expects a Kosterlitz-Thouless-Berezinskii (KTB) transition, where
charge dipoles dissociate. We performed simulations of the charge dynamics in such arrays, based on tunnel rates
for single electrons and Cooper pairs. The resulting I-V curves clearly show the Coulomb gap at low temperatures,

while at higher temperatures one finds effects of the KTB transition.

2D arrays of Josephson junctions have long been studied as a realization of the XY-model, which
can be mapped onto a 2D Coulomb gas (CG) of vortices. Nowadays it is possible to fabricate arrays
in which the charging energy Ec exceeds the Josephson coupling E; [1]. The electrostatic energy
Eeist of a configuration of charges Q; on the it? island is: Eeoe = 33 i Qi (C‘l)i'j Q;. If the nearest
neighbour capacitance C is much larger than the self capacitance Cy, the inverse capacitance matrix
C'i’,jl behaves logarithmically up to a scale set by the screening length A = /C/Cp. Therefore the
electric charges in these arrays provide a direct physical realization of a 2D CG.

The dynamics, incoherent tunneling of charges between neighbouring islands 7 and 7, is governed
by tunnel rates. For quasi-particles (QP) and Cooper pairs (CP) they are [2]:

PgP = (AE;j/etht) [exp (AE,’j/ka) - 1]—1
i _  wE3 1 —exp(—AE;;/kyT)
CP ™ 40,hAE;; (1/a,)? + sinh*(3AE;/kyT)

fora, > 1, (1)

where a, = R;/R, measures the effective shunt resistance R, seen by the junction (e, > 1 for
a generic array), o; = R,/R; measures the tunnel resistance R; and Ry, = 4—’;5 is the quantum
resistance. AFE;; is the difference in energy of the whole array before and after a tunnel event
(global rule). Tunneling of a charge in the direction of the voltage drop will generally cost energy if
the external voltage is lower than the Coulomb gap voltage V; ~ N,& (N, is the number of junctions
in series)[3]. At low temperatures the rates (1) vanish for AE;; > 0 and for V < Vj no current will
flow, i.e. Coulomb blockade. At higher voltages the rate I'qp leads to diffusive motion for QP; the
rate I'cp is peaked at AE;; = 0, reflecting the resonant nature of CP tunneling for a, > 1.

As the system is a 2D CG, there is a charge unbinding transition for QP at kT, = %CE (kT =
%f— for CP), where ¢ is a dielectric constant slightly larger than one and E¢ = €*/2C. For T < T,
the conductance is nonlinear for small voltages, i.e. I ~ V() [4]. At the transition the exponent
a jumps from 3 to 1. For T > T, conductance is linear, i.e. I ~ V, and proportional to the density
n of free (unpaired) charges, which follows a square root cusp relation: n ~ exp{-b(T /T, — 1)"%};
b is a constant of order unity.

Real time simulations based on the rates (1) yield I-V curves for QP and CP as shown in figs.
la and 2. For low temperatures a Coulomb gap indeed develops; fig. 2 shows the resonant structure
for CP. The presence of a fixed thermal distribution of QP on the islands weakens the Coulomb
gap for CP (fig. 2b). The density of charges n follows the theoretical prediction (fig.1b) if the
applied voltage is low. Since a finite voltage V, = % is needed to separate pairs with the largest
separation (the system size), there is only a restricted range of voltages where the jump in the



380 Contributed Papers: Superconductivity H.P.A.

3f = 10°
= s it charges (31x32)
g} ooty (al. sim)
4_ =a-lrncs. charges (16x16)
x
8 4 §
;d‘ 3 enctt : Io-l =
g ] 1 2 3 ‘_? o
2t o 1 g [ 102
. ¥/ e-T=2.0Tc - {gj
[ +T=l.0Tc ] 105
| —-T=0.5Tc ; b}g: | +3202amy-
. . -=-T=0.25T¢ 10r 05 1 15 2 25 N
O T s e T 0 b 1 B 2w B
voltage * C/e (T/Ty-1/€)

Figure 1: a: I-V curves for QP in a 32x32 array, the inset shows the exponent a in I ~ V*° vs.
inverse temperature. b: Charge density for T' > T, vs. temperature for CP in 16x16 array, o, =25,

’boxes’: same with fixed QP background; the inset shows conductance x R; vs. temperature /€T,
for CP.
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Figure 2: a: IV curves for CP in a 16x16 array, a, =10. b: same, dashed lines denote fixed QP
background.

exponent of the nonlinear conductance can be observed. The exponent a is shown as a function of

temperature in the inset of fig. la. The correspondence to the theoretical prediction is good for
QP in a 32x32 system. Random fractional offset-charges wash out the transition.

In order to make closer contact to experiment, it would be interesting to obtain IV-curves for
both CP and QP tunneling at the same time. If the ratio of the tunnel rates for QP and CP is

varied, one expects a transition as a function of R; or T from QP dominated to CP dominated
behaviour [5].

References

[1] J.E. Mooij et al., Phys. Rev. Lett. 65, 645 (1990).

[2] D.V. Averin and K.K. Likharev, J. Low. Temp. Phys. 62, 345 (1986);
A.D. Zaikin and I.N. Kosarev, Phys. Lett. A131, 125 (1988).

[3] U. Geigenmiiller and G. Schén, Europhys. Lett. 10, 765 (1989).

[4] V. Ambegaokar, B.I. Halperin, D.R. Nelson and E.D. Siggia, Phys. Rev. B 21, 1806 (1980).
[5] R. Fazio and G. Schon, Phys. Rev. B 43, 5307 (1991).



	Charge dynamics in junction arrays

