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Incompressible Quantum Liquid versus Two—Dimensional
Electron Solid

Günther Meissner
Theoretische Physik, Universität des Saarlandes,

6600 Saarbrücken, Germany

Abstract. A simple but rigorous approach of sum—rule techniques being applied to the
density and displacement fluctuations of the centers of cyclotron orbits of
Coulomb—interacting electrons provides a study of the nature of two respective condensed
phases: an incompressible quantum liquid of Bose condensed charge—vortex composites
and a two-dimensional quantum solid with a lattice—periodic structure due to broken
magnetic translational invariance.

Introduction

Interacting electrons of charge —e being confined to a plane perpendicular to a magnetic
field are considered to compete between two condensed phases: an incompressible
quantum liquid [1] and a two-dimensional (2D) quantum solid, respectively, if the
magnitude B of the field is sufficiently large that the mean number wl of magnetic flux quanta

ch/e per electron exceeds one. For a given area A of that plane this then corresponds to
a fractional filling factor of the lowest Landau level v 27rr2n < 1, i.e., a fractional ratio
of the mean areal density of electrons, N /A n and of flux quanta, N /A (2m,2)"1,
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respectively, if r (cli/eB)1/2 denotes the Larmor radius. For certain rational values of

v p/q < 1, with p and q denoting mutual primes and q usually being odd, the
incompressible quantum liquid (IQL) phase of Bose condensed charge-vortex composites
(p charges and q flux quanta) may be stabilized because of a novel broken symmetry [2].
This IQL exhibits a quantized Hall conductance a\i v e2/h, being accompanied by
minima in the longitudinal conductance an [31. Below a critical filling factor uc the
expectation values Rj <Xj> of the centers of the cyclotron orbits (guiding centers) with
non—commuting Cartesian components are assumed to possibly form a lattice—periodic
structure with a non—vanishing shear modulus p > 0 due to broken magnetic translational
invariance. Particularly, in the dilute electron (i>->0) or high—magnetic-field (r -i0) limit,
the triangular lattice of the classical 2D Wigner crystal [4] may be identified with the
ground—state of this sort of a 2D quantum solid, to be called quantum Hall crystal (QHC)
[5]. Reentrance phenomena of the correlated electron system may finally allow the
IQL—phase to exist even at certain rational values p/q < uc

Outline of Approach and Summary of Results

Differences and similarities in the IQL—phase and the QHC—phase can now be associated
quite generally with differences in their respective symmetries and various results are
obtained by the use of sum—rule techniques without employing approximate wave
functions as having been discussed in detail previously [5]. First, the finite-gap versus
gapless behavior ofcollective modes u^k) was shown to exist rigorously within the lowest
Landau level in the k -> 0 limit of these two phases [6]. An important role in obtaining
these results is played by the respective restoring forces of the non—commuting density
fluctuations A(k,t) S,- exp(-ik-Xj(t)) of the guiding centers Xj(t) and the fluctuations
u(k,t) Ne"1'2 Ej [Xj(t)-Rj] exp(ik-Rj) of their displacements Xj(t) - Rj. The mentioned
restoring forces are related to frequency moments which determine the non—dispersive
parts in the spectral representations of the inverse of the response functions x~l- By the
use of sum rules, these collisionless terms of x"1 can therfore be calculated via those
frequency moments of the spectral functions x"(kiw) without making reference to the
nature of the single—particle excitations.
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In the IQL—phase of the uniform system of interacting electrons that restoring force
at k=0 induces a k—independent ratio of the third and first frequency moment of the
spectral function of guiding center density fluctuations x'A giving rise to the gap at k=0

in the excitation spectrum u (k=0)#0, derived from Re y~ (k,w (k))=0. Combined with a

sum rule, the k4—behavior actually obtained for both frequency moments in the k->0 limit
provides a rigorous proof that also the static susceptibility xAA(k,0)~k4, i.e., the longwave

length density fluctuations are strongly suppressed in that IQL—phase. In single—mode
approximation [7], this then implies moreover the magneto—roton minimum to exist at
some finite k of w whose softening may induce the transition to the QHC—phase.

In the QHC—phase, combinations of the first and zeroth frequency moment of the
spectral function of guiding center displacements play a similar role for the
quasi—transverse restoring force being related to the dynamical matrix of conventional
lattice dynamics. For the long—wavelength limit of the gapless Goldstone mode, being
isotropic for a triangular lattice, the exact expression w2(k)=(27re2/m*2w2e) /ik3 is then

obtained from Re x-i(k,w (k))s0 (m*: effective mass, e: background dielectric constant,

ui M/m* r2: cyclotron frequency). The isothermal shear modulus p is rigorously related

to the second derivative of the free energy with respect to displacement deformations
according to the generalized elastic sum rule [8]. A non—vanishing shear modulus p, > 0,
therefore, reveals the crystalline—like nature of that phase rather generally.

A minimum, found in the ^--dependence of p in an approach allowing for quantum
statistical features and anharmonicities to one—loop order [6],[9], is possibly indicating a
competition between the QHC—phase and the IQL—phase in the vicinity of fractional
filling factors exhibiting quantized Hall conductance as revealed by experiment [10]. This,
finally, would also be consistent with a diverging longitudinal resistivity, having been
observed experimentally in a narrow region around u=l/5 [11], as well as with our recent
estimate for the critical filling factor vc slightly higher than 1/5, obtained from comparing
total energy calculations in both phases, i.e., E (i/c)=E (vA [12].

Partial support of that work by the Deutsche Forschungsgemeinschaft at the occasion
of the Fifth Workshop on the Quantum Hall Effect is gratefully acknowledged.
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