**Zeitschrift:** Helvetica Physica Acta

**Band:** 65 (1992)

**Heft:** 2-3

**Artikel:** Violation of Ehrenfest's theorem in particle dynamics of quantum Hall

systems

Autor: Riess, J.

**DOI:** https://doi.org/10.5169/seals-116414

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Violation of Ehrenfest's Theorem in Particle Dynamics of Quantum Hall Systems

#### J. Riess

Centre de Recherches sur les Très Basses Températures, C.N.R.S., B.P. 166X, 38042 Grenoble Cédex 9, France

Abstract. We investigate a large class of two-dimensional systems of electrons under quantum Hall conditions. Scattering between the localized Landau functions leads to time-dependent single-particle wave functions, which spread in the direction perpendicular to the macroscopic Hall field. The average velocity of these states does not in general correspond to a classical orbit according to Ehrenfest's theorem. We find that in addition to the usual classical term the Hall velocity contains a nonclassical part, which does not contribute to the Lorentz force. This nonclassical velocity term (which has been shown to play a crucial role for the integer quantum Hall effect in our systems) disappears, when the disorder potential is absent.

#### Introduction

We consider independent electrons on a two-dimensional strip of width  $L_y$  subject to a perpendicular strong magnetic field (0,0,B), a Hall electric field  $(0,E_y,0)$  and a static disorder potential V(x,y), created by homogeneously distributed impurities. We chose the gauge  $A_x = 0$ ,  $A_y = Bx - cE_yt$  together with periodic boundary conditions in y-direction and  $|\psi| = 0$  for large |x|. This model describes bulk states in a quantum Hall system.

The solutions of the time-dependent Schroedinger equation can be expanded into Landau functions  $\psi_p(x,y,t) = L_y^{-1/2} \exp(i2\pi py) u_p(x,t)$ , which are solutions in the absence of V(x,y). Here  $u_p(x,t)$  is the product of a Hermit polynomial and a Gaussian centered at  $x_p(t) = \frac{chp}{qBL_y} + \frac{cE_yt}{B}$ . (We consider a one-band approximation.)

The Hall velocity of a (normalized) state  $|j\rangle \equiv \psi^j(x,y,t) = \sum_p c_p^j(t)\psi_p(x,y,t)$  has the form

$$v_x j(t) = d < j |x| j > /dt = d[\Sigma_p |c_p j(t)|^2 x_p(t)] / dt = cE_y / B + \Sigma_p x_p(t) d|c_p j(t)|^2 / dt.$$
 (1)

The first term  $cE_y/B$  on the right hand side is the classical Hall velocity in the field  $E_y$ . The second term  $\Sigma_p x_p(t) d|c_p j(t)|^2/dt$  is a nonclassical Hall velocity  $v_{ncl}$ , which originates from the time-dependent scattering between the localized Landau functions. This process is induced by the disorder potential V(x,y) and the Hall field  $E_y$  [1].

The Schroedinger solutions  $\psi^j(x,y,t)$  of our system have the following general properties [1]: At sufficiently low  $E_y$  all states are adiabatic [2] solutions. These adiabatic solutions have a modulus  $|\psi^j(x,y,t)|$ , which is periodic in time with period  $\tau=h/(qE_yL_y)$ . Since  $\tau$  is very small (e.g.  $\tau=4\times10^{-12}s$  for  $E_yL_y=1mV$ ), only time averages over  $\Delta t=\tau$  are relevant for macroscopic purposes (these averages will be denoted by a bar  $\overline{\ }$ . Adiabatic solutions in our system have the property, that  $\overline{v}^j_x(t)=\overline{v}^j_y(t)=0$ . This means that adiabatic states do not contribute to the macroscopic Hall current. They are *insulating*.

Conducting states occur at higher (non-infinitesimal) values of the Hall field  $E_y$ , when nonadiabatic transitions between adiabatic states become possible. In general different adiabatic states become conducting at different values (threshold fields) of  $E_y$ .

### Violation of Ehrenfest's theorem

We consider now a *conducting* state  $|j\rangle$ , which has developed according to the time-dependent Schroedinger equation during a time much larger than  $\tau$ . We claim, that such a state violates Ehrenfest's

theorem, which says, that the quantum mechanical mean values of the position and the velocity obey the classical equations of motion (see e. g. chapter VI of ref. [2]). Indeed, if this theorem was true, we would have

$$md\overline{v}_{j}(t)/dt = q < j E_{y}(x,y) j > -(q/c)\overline{v}_{x}^{j}B.$$
 (2)

(Here  $E_y(x,y)$  denotes the y-component of the total electric field  $E_y$  -  $\partial V(x,y)/\partial y$  at (x,y).) This is Ehrenfest's relation after a time average over the short period  $\tau$ . Now for times sufficiently longer than  $\tau$  the wave function of a conducting state is spread in x-direction (delocalized) as a result of the time-dependent process of non-adiabatic transitions, which leads to scattering into Landau functions localized at different sites  $x_p$  on the x-axis (see [3] for explicit calculations). Hence  $v_j$  to tends to zero for these states (the local Hall velocities proportional to  $\partial V(x,y)/\partial y$  are averaged out) and  $v_j$  to becomes just equal to the homogeneous field component  $v_j$  (the average over the homogeneous disorder potential with respect to the delocalized orbital vanishes). Therefore equation (2) becomes

$$0 = qE_{\mathbf{V}} - (q/c)\overline{\mathbf{v}}_{\mathbf{X}}^{\mathbf{J}}\mathbf{B}. \tag{3}$$

According to (1) the velocity  $\overline{vj}_X(t)$  is composed of a constant, classical part  $cE_y/B$  and of a nonclassical part  $v_{ncl}$ , i. e., relation (3) is already fulfilled by the classical velocity part alone. There is no contradiction in this result, since the Ehrenfest theorem is valid only if the fluctuations of position and momentum are sufficiently small (see e. g. chapter VI-2 of [2]), and this condition is not fulfilled in our case.

Equations (2) and (3) formally define the y-component of the (average) Lorentz force (which is a classical concept). These equations are identical with the corresponding classical equation of motion, i. e., they are valid only for those quantum mechanical velocities, which are associated with classical trajectories. But this is not the case for the nonclassical velocity  $v_{ncl}$ , which vanishes in the classical limit. Since the velocity dependent part of the Lorentz force (which cancels the average electric force  $qE_y$  imposed on the particle and therefore keeps it on its equilibrium position in y-direction) is created entirely by the classical part  $cE_y/B$  of the average particle velocity  $v_x/J_x$ , we therefore conclude, that the nonclassical part  $v_{ncl}$  of the particle velocity does not give rise to a Lorentz force!

### Discussion

The nonclassical velocity parts represent the so-called compensating currents, which lead to integer quantization of the Hall conductance [1]. Our results provide a microscopic picture for the IQHE, which differs from arguments developed in the literature [4], according to which current compensation is thought to originate from effective Hall fields  $E_{eff}$ , which are different for so-called localized and extended states, and therefore lead to different Hall velocities for these states according to the *classical* formula  $cE_{eff}/B$ , i. e., the totality of each particle velocity is thought to create a Lorentz force, in opposition to our present result.

## References

- [1] For a review see J. Riess, in Application of High Magnetic Fields in Semiconductor Physics III, G.Landwehr ed., Springer Verlag, Berlin, 1991, and references quoted therein.
- [2] A. Messiah, *Quantum Mechanics*, North Holland, Amsterdam; John Wiley & Sons, INC., New York London Sidney, 1966, chapter XVII-II.
- [3] J. Riess and C. Duport, J. Phys. I, 1, 515 (1991); D. Bicout, P.-A. Hervieux and J. Riess, unpublished.
- [4] T. Ando, J. Phys. Soc. Japan 58, 3711 (1989).