Zeitschrift: Helvetica Physica Acta

Band: 65 (1992)

Heft: 2-3

Artikel: Point-contact spectroscopy on tunable constrictions in GaAs

Autor: Bever, T. / Wieck, A.D. / Klitzing, K.v. DOI: https://doi.org/10.5169/seals-116413

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Point-Contact Spectroscopy on Tunable Constrictions in GaAs

T.Bever, A.D.Wieck, K.v.Klitzing, K.Ploog Max-Planck-Institut für Festkörperforschung, Heisenbergstr.1, D-7000 Stuttgart and

P.Wyder

Max-Planck-Institut für Festkörperforschung, Hochfeldmagnetlabor, 25 Avenue des Martyrs, F-38042 Grenoble CEDEX, France.

Abstract. In quasi one dimensional channels formed in the two dimensional electron-gas (2DEG) of an AlGaAs/GaAs heterostructure, the second derivative d^2V/dI^2 of the voltage-current characteristic is measured at low temperatures as a function of the voltage drop V over the channel length. In increasing the lateral confinement, strong resonant structures appear at voltages V which correspond to energies of GaAs-phonon density of states maxima. Compared with metal point-contact spectroscopy this technique offers reproducible tunability of buried point-contacts.

Point-contact spectroscopy has been performed previously on metals¹ in order to study the electronphonon interaction function $\alpha^2 F$ (Eliashberg function) from an analysis of the $d^2 V/dI^2$ characteristic in the limit of contact dimensions small compared to the effective mean free path l_e . In the following we show that the second derivative $d^2 V/dI^2$ of a point-contact in a 2DEG directly reflects structures in the phonon density of states (DOS).

Samples were prepared from a GaAs/Al_{0.3}Ga_{0.7}As heterostructure (grown by molecular beam epi-

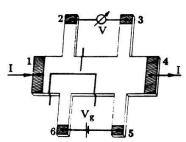


Fig.1: Sketch of the sample. The FIB written path is indicated by the bold lines.

taxy) with carrier density $n=2.1\times10^{11}~cm^{-2}$ and a zero-field mobility of $\mu=3.0\times10^5~cm^2/Vs$ at T=4~K. This corresponds to a transport mean free path of 2.5 μm and a Fermi energy $E_F=7.2~meV$. By means of focused Ga^+ -ion beam (FIB) insulation writing with a spot diameter of 100 nm and a dose of $1\times10^{13}~cm^{-2}$ we create an In-Plane-Gate. In combination with an insulating line written from the sample edge close to the gate this gives a tunable constriction² (see Fig.1). We denote the shortest distance across the constriction between the center points of the FIB-exposed spots as the geometrical width which is $w_{geo}=2\mu m$. By applying different gate voltages both the effective width and the carrier concentration of the constriction can be increased (positive gate voltage) or decreased (negative gate voltage), respectively. All measurements are performed in a bath cryostat at 4.2 K.

In Fig.2 we present the second derivative d^2V/dI^2 as a function of the bias for different gate voltages. Non-linearities at 8 mV and 30 mV appear as positive peaks in d^2V/dI^2 as indicated by arrows in Fig.2. At the bottom of Fig.2 we have plotted the phonon DOS of GaAs for purpose of comparison. The marked structures in the second derivative are very close to maxima in the phonon DOS. This strongly indicates that d^2V/dI^2 is a measure of the energy dependence of the electron-phonon interaction as in the case of point-contact spectroscopy on metals, thereby reflecting the phonon DOS.

In order to rule out the possibility that the Fermi energy of the 2DEG ($E_F = 7.2 \text{ meV}$) might affect

the position of the peak at $V \approx 8$ mV we have prepared samples in the same way as the samples discussed above but from a AlGaAs/GaAs heterostructure with carrier density $n = 4.8 \times 10^{11}$ cm⁻² which yields a Fermi energy $E_F = 16.5$ meV. As can be seen from Fig.2 there is no shift in the position of the peak even though the Fermi energy differs by more than a factor of two.

In contrast to conventional point-contact spectroscopy the width w of the constriction can be tuned continously via the In-Plane-Gate in our samples. This gives us the possibility to adjust different ratios w/l_e . Since in point-contact spectroscopy the condition $w < l_e$ must hold, we expect resonances which become more pronounced the smaller w is, in consistence with the observed phenomena. Another advantage of this method is due to the fact that the current does not flow through a free surface as is the case in a metal point-contact. In our samples the point-contact is formed within the 2DEG. Thus, spectra of the same constriction are well reproduced even after warming up the sample or exposing it to air.

Point-contact spectroscopy on 2D electron systems promises to be a useful tool to study the phonon DOS in semiconductors especially for those materials for which neutron-diffraction data can not be obtained because of the lack of volume crystals (e.g. AlGaAs).

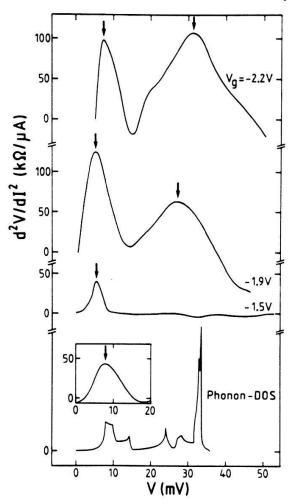


Fig.2: Second derivative of the voltage-current characteristics of the constriction at T=4.2K for gate voltages V_g as indicated in the figure. The Fermi energy of the 2DEG adjacent to the constriction is $E_F=7.2$ meV (n = 2.1×10^{11} cm⁻²). The curve in the inset is obtained for a sample with higher Fermi energy $E_F=16.5$ meV (n = 4.8×10^{11} cm⁻²), gate voltage $V_g=-3.95$ V and geometrical width $w_{geo}=1.5~\mu m$. The lowest curve in the figure represents the energy dependence of the phonon DOS of GaAs in arbitrary units on the vertical scale.

References

- [1] I.K. Yanson, Zh. Eksp. Teor. Fiz. 66, 1035 (1974) [Sov. Phys.-JETP 39, 506 (1974)].
- [2] A.D.Wieck and K.Ploog, Appl.Phys.Lett. 56, 928 (1990).