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STATISTICAL MECHANICS ON A 2D-RANDOM SURFACE

Bertrand Duplantier
Service de Physique Théorique de Saclay
F-91191 Gif-sur-Yvette cedex, France

Abstract. Various geometrical models first defined in the Euclidean plane or on a regular
lattice have been briefly reviewed, including self-avoiding walks, random walk intersections,
percolation and Ising clusters. These systems embody infinite sets of field operators defined
in a natural way from the (fractal) geometry of these fluctuating critical systems. Their
scaling behavior can be linked to that of associated conformal field theories.

These systems can also all be redefined on a random lattice or surface, instead of
on a regular 2D lattice. They are then coupled to “quantum gravity”, and live on the
“world-sheet”. The fact that all their new exponents on a random surface can then be
related to those in the usual 2D-plane, although now well known in string theory, is worth
publicizing in this Physics in 2D conference.

We illustrate it by some exact solutions in the case of polymers and branched polymers
(animals) on a random fluid surface.

Introduction and summary

As an example of a statistical system defined on a random 2D lattice or surface, consider
the Ising model [1]. On a fixed lattice graph G, its partition function is defined as
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where K is the coupling constant between spins o;,0; at nearest neighbour sites (, )
belonging to G. Now, one lets the lattice fluctuate and sums over all possible bidimensional
planar configurations of the lattice ¢ made of, e.g., trivalent vertices (Fig.1).

The number of its vertices |G| (its “area”) is also free to fluctuate. A double partition
function is then defined as

Z(ﬁaK) = Z e_ﬂlglzlsing, G(I{) (2)

planar G

where the Ising partition function Z for each specific lattice realization G is weighted by
a Gibbs area factor e #1¢l 8 being the chemical potential for the number of lattice sites,

the “cosmological constant” in string theory.
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Figure 1: A regular hexagonal lattice graph, and a random graph made of trivalent
vertices arbitrarily connected. Both bear in addition a self-avoiding walk, modelling a
polymer.

The summation over planar lattices alone can lead to a critical behaviour when the

average number of sites |G| is infinite, for a certain critical value B¢ [2]

Z(B) = Z e Plel is difined for 8 > . (3)
planar ¢
with
Z(B) ~ (B — Bc)> =, B — Bt (4)

where 7, 1s the “string susceptibility exponent”. Its simply means by inverting the sum
(3), that the number of random lattices with a fixed number of sites (area) A and a fixed
(planar) topology grows exponentially like

Z(A) ~ ePcA Aot =3 (5)
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with a power law correction term governed by ~st;. Now, when mixed with the Ising model
as in (2) the random surface develops also a double singular behavior at some critical
values (., K.) for the pair (8, K') where the random surface is infinite and the Ising model
is at its critical (Curie point) coupling constant K.. Then, by mixing with the random
surface critical behavior, the model acquires new values for its critical exponents like v
and 7. Conversely, the presence of the Ising model induces a new value for the susceptibility
exponent g, of the random suface [1].

An astonishing result [3] is now that the values of the Ising exponents on the random
2D lattice are actually related to the standard Onsager values in two dimensions (namely
on a fixed 2D lattice)! More precisely, if one relates the exponents v and 4 to the conformal
scaling dimensions A, of the spin operator o, and A, of the energy operator ¢ = oo, by

vl =2-2A, v=(2-1n), n =4A, (6)

one gets on a random surface the amazing relation due to Knizhnik, Polyakov and Zamolod-

chikov [3]
grav __
A = ASTav (_A_____A) 7)
1- Vstr

where the corresponding A8™V are the values of the conformal dimensions of the same
operators on the random surface (in presence of “gravity” due to the fluctuations of the
metrics). This relation, which originates from the requirement of the global conformal
invariance of the system (statistical model + random surface) [3,4], can be checked from
the exact solution of the partition function (2) in the case of the Ising model. At this
point, it should be mentionned the new remarkable fact that the double summation (lat-
tice + statistical degrees of freedom) as in (2) actually can be solved exactly by random
matrix techniques [1,5]. It can also be understood intuitively that relaxing a constraint
by summing over all planar lattices actually makes the problem mathematically tractable
(like the grand canonical sum in statistical mechanics).

This generalizes to any statistical system which has a (second order or more) critical
point in two dimensions. One can always define it on an arbitrary planar lattice, sum
over the lattices as in (2) (a case of annealed disorder) and get a new critical behaviour,
still related by 2-dimensional conformal invariance to that on regular 2D lattices as in (7).
This has now been checked in many cases, which have been solved exactly [1,6,7,8] on a
random lattice by random matrix techniques [5], particularly in the case of polymers [7].
The relation (7) is found always to hold true as indicated in (Fig.2). The reader is referred
to the relevant works for further information [6,7,8]. Let us also finally mention that we
have specified the topology of the random surface (here planar for simplicity). It can be
chosen freely but fixed (only 7s; depends on it). Resumming over all topologies is a main
problem of string theories of elementary particles [9]. New progress has also appeared
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Figure 2: The general relation between critical phenomena in the Euclidean plane, and

on a random surface (i.e. in presence of quantum gravity).

recently [10] in this case (the so-called 2D quantum gravity), essentially by using the same
random matrix techniques in some finite size scaling way. But the mathematical problems
encountered in the divergence of the topological series are still lagging [11].

Lastly, let us mention that one could also think of using the relation (7) between
standard 2D critical exponents and those dressed by gravity, to determine the unknown
solution to some problems on regular lattices in two dimensions. An example is that of
branched polymers or “animals”, where a supersymmetric trick [12] gave the 2D value of
the configuration exponent 6, but not the size exponent v. Even the conformal classification
of this statistical model has been elusive. A recent work [13] solves exactly the model on
a random surface (Fig.3), and finds a nice universality. Transferring the results to the
standard plane as in (7) suggests a conformal central change ¢ = 1, and a new value
of exponent v = 2/3. But intriguing questions arise [13], concerning the comparison to

numerical simulations, and the meaning of the conformal theory of animals, if its exists.

In summary, let us stress that as in (2), all 2D statistical mechanics can be redone on
a random lattice (i.e. in presence of a fluctuating metrics).

It is then expected that the resulting model should be actually solvable in particular
by matrix integrals. Near a critical point, the conformal relation (7) to Euclidean statistical
mechanics should hold. It would be also very interesting to explore this avenue for other
systems in 2D, like first-order transition points, disordered systems (spin glasses...) or
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Figure 3: A random tree or branched polymer (“animal”) on a random graph. The dotted
line delimits the shape of the “animal”.

even superconductors.
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