Zeitschrift: Helvetica Physica Acta

Band: 65 (1992)

Heft: 2-3

Artikel: Exact diagonalization studies of 2D quantum models
Autor: Poilblanc, D.

DOl: https://doi.org/10.5169/seals-116406

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-116406
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

268 Invited Lectures: Quantum Systems H.P.A.

Exact Diagonalization Studies of 2D Quantum Models

D. Poilblanc
Laboratoire de Physique des Solides
Université Paris-Sud
91405 Orsay, France

Abstract: A review on recent calculations of various equal-time and dynamical correlations of the
2-dim. t-J and frustrated Heisenberg models by Lanczos diagonalizations of small clusters is given.
In particular, the existence of uniform or staggered chiral order is questioned by calculating both
static or dynamical correlations of a plaguette chiral operator. The plaquette-plaquette correlation
falls off rapidly with distance and, hence, no evidence is found for long range chiral order. However,
our numerical results reveal increasing chiral fluctuations at low energy upon doping in the t-J
model or upon increasing frustration in the Heisenberg model. On the other hand, the dimer
phase appears as a serious candidate for a disordered phase in the intermediate J3/Ji-region of
the frustrated Heisenberg model. Twisted boundary conditions are used to calculate the optical
conductivity of the t-J model. The Drude weight is deduced from the curvature of the energy
surface in the parameter space of the twist angles. In the range 1/8 < J/t < 0.5 the Drude
weight is almost independent on the ratio J/t and corresponds to a mass enhancement of ~ 3.
Our numerical work also reveals a remarquably large optical absorption in the frequency range
0 < w < 3t and, typically, less than 40% of the total optical weight is left in the Drude peak (at
w = 0). At small J/t, both Drude weight and finite frequency absorption scale almost linearly
with doping. These results are discussed in connection with the optical experiments in the High-T,
cuprates.

1 Introduction

A common feature of most non-conventional theories of superconductivity[1, 2] is the occurence of
time reversal symmetry breaking (TRSB) involving the flux condensation of a topological gauge
field. Alternatively, unusual transport properties of the “normal phase” of the High-T. supercon-
ductors have been explained by large fluctuations of the gauge field.[3] First, we wish to study,
by using numerical methods,[4, 5, 6] the possible occurence of such phenomena in two simple 2D
models believed to contain the minimal ingredients for either TRSB or large gauge field fluctuations
to take place.
The first candidate is the frustrated Heisenberg model defined as,

H=T0) S Site+2) Si-Sip (1)

ie i,§

where i denotes the sites of a 2D square lattice, € are the two unit vectors along the z or y directions
and & are vectors along the diagonal of the plaquettes. S; are spin 1/2 operators. In the limits
J2 << Jp and J; << J; one expects an antiferromagnetic (Néel) state and a collinear state (with
alternating parallel rows or columns of up and down spins) respectively. On the other hand, in
the intermediate range J2/J; ~ 1/2, according to mean-field theory,[7] frustration would lead to a
chiral spin liquid phase exhibiting TRSB.

*Laboratoire associé au CNRS
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In contrast to the previous model, the frustration in the t-J model is created dynamically by
holes which perturb the antiferromagnetic spin background;

H= JZ(S Sl+c - ninl-l—c) -t Z( éi-{-?,cr + h'c')' (2)

ie 1,60

where cJr = (1-mn; _a)c and c , and nj, are the fermion creation operator and the fermion
density at site 1, respect;vely The t — J model is widely believed to give the simplest description
of the low energy physics of the “normal phase” of the High-7, cuprates. Therefore, besides the
study of the chiral fluctuations, we shall also investigate the nature of the optical conductivity in
this model. This issue is addressed in section 3.

The numerical results presented below are obtained by exact diagonalizations (Lanczos algo-
rithm) of small N = 4 x 4 clusters with periodic (section 2) or twisted (section 3) boundary
conditions. For the t-J model one (N = 1) or two (N = 2) holes are considered.

2 Chiral Correlations

2.1 Static Correlations

To study chirality in the ground state (GS) or chiral fluctuations we define a chiral operator like
0n(Q) = Z exp (iQ - 1) 0{2, (3)

where the plaquette operator reads,

Of% = 8+ (Sisx X Sipxiy) Bsys
+  Sitx  (Sitxty X Sity) i, )
+  Sipxay - (Sity X Si) nigx,
+  Sity  (5i X Siix) Rigxty-

The momenta Q = 0 (uniform) and Q = (7, 7) (staggered) are here of particular interest. Accord-
ing to group theory, O, is a singlet operator of A, spatial symmetry, i.e. odd under axis reflections
(parity or P), and is even under 7/2-rotation. Oy is also odd under time reversal (T) since it
defines a sign of circulation around the plaquettes. A very similar plaquette operator O? ! odd
under 7 /2-rotation and even under axis reflections can be constructing by using appropriate phase
factors in 4 (see Fig. la for the related correlation function) but only Of;? # 0 in a chiral (TRSB)
ground state.

In the J; — J, model, we shall consider the competition with the dimer state, in which the spins

are coupled in singlet bonds forming columns. For this state, a relevant order parameter can be
defined as, :

1 im
Odim = 'A'? ; O? )

‘ 1 . ;
where Ofm = S((=1) S; - Sipx — (—1) 8- S« (5)
+i (1) S; - Sjpy — i(=1)" Sj - Si_y).
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Fig. 1: (a) Uniform correlation functions; (b) energy gaps for different symmetries.

The equal-time correlations (OSI(Q = 0)) in the frustrated Heisenberg model in Fig. la reveals
a significant increase of the chiral correlation for the A; symmetry of the plaquette operator and
for intermediate Jy/J; ~ 0.5. Although this suggests that frustration may favor chiral ordering, (i)
short distance effects are usually important in finite cluster calculations and (ii) different disordered
phases like the dimer phase may also compete with the chiral liquid phase.
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Fig. 2: Dimer and chiral (plaquette-plaquette) correlation functions C,(0) (r = 0) and

Co(r)/Cy(0) at various distances in the J; — Jy model
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Therefore it is also required to study correlation functions with distance like

Colr) = 53 3 (0f0¢ + 0{20{2,) (6)
1

One can also define[4] a similar correlation function Cgin(r) associated with dimer order (for which
the spins are coupled in singlet bonds forming columns). Fig. 2 shows comparative plots of these
correlation functions. The on-site correlation ((OiA?)z) gives in fact a large contribution to the
correlation function <O§1)' However, Fig. 2 reveals a small enhancement of the chiral correlations
at the largest distances available in the intermediate-.J;/J; region. In the case of the dimer operator
the enhancement is significantly larger so that dimer order seems to be a better candidate for a
disordered phase. Larger cluster calculations are clearly needed in order to give a more definite
conclusion.[8]

Let us now turn to the discussion of the t-J model. As shown in Fig. 3, the equal-time
correlation (Og,) at Q = 0 depends weakly on the doping or on the ratio ¢/J. On the other hand,
the staggered correlation is enhanced by a large hole kinetic energy. At large doping fractions and
t/J > 5 the staggered component even exceeds the uniform one.
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Fig. 3: Uniform (closed symbols) and staggered (open symbols) plaquette correlation function (Og,)
in a4 x4 cluster of the t-J model. (7 /2,7/2) (squares) and (7,0) (triangles) one hole-GS momenta
have been considered.

However, for all dopings studied, the plaquette-plaquette correlation (6) is found to fall off rapidly
with distance. If long range order exists, we then expect a small value (Op;) < 0.04 for the order
parameter.

2.2 Dynamical Correlations

Although, it is probable that long range chiral order does not exist, strong chiral (or gauge field)
fluctuations would play a very important role.[3] In order to study such fluctuations we consider
the spectral representation of O, (uniform),
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[pl("-'-’) = Z ‘<¢n|0pi|¢0>|26(“’ + Eo — Ey), (7)

where |¢,) are eigenstates of H with energy E, (Fq < En,n > 0).
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hole numbers.
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For the J; — Jy model, O,(Q = 0) induces transitions from the singlet fully symmetric GS
|Y0) to the singlet A, excited states (odd under parity). The effect of the frustration J; is simply
to shift the very sharp feature of Fig. 4a (Heisenberg model with Jo = 0) to lower energy. In
the thermodynamic limit one would expect the spectrum to become broader but small cluster
calculations probably give the right estimate for the average position of the peak. The behavior of
the gap (refered as A;) associated with the lowest energy transition versus J;/J; is shown in Fig.
1b. In fact, whatever J5/Jy, triplet states characteristic of Q = 0 (Swl) or Q = (7,0) (Sw2) spin-
wave excitations (Sa | ¥o)) or of a spiral (twisted) state stay always below the lowest A; state (Fig.
1b). We point out that, in the intermediate-J;/J; region, the four lowest energy states (including
the GS) are singlet states (Fig. 1b) that are compatible with a four-fold degenerate dimer state in
the thermodynamic limit. Indeed, by linear combinations of the four dimer configurations (parallel
rows of dimer bonds and equivalent configurations obtained by translation and/or rotation), one
can straightforwardly construct (i) a Q = 0 totally symmetric (A;) state, (ii) a Q = 0 state odd
under Z-rotation (B), (iii) two non-uniform (7,0) and (0, 7)-momentum states. Hence, the gaps
refered as “B;” and “dimer” in Fig. 1b can be interpreted as the corresponding splittings between
these states which are expected to occur in a finite size system.

In contrast to the frustrated Heisenberg model, when dynamical frustration through holes (1 —J
model) is introduced, the spectral decomposition of O, becomes much broader, as seen from Fig.
4. It is interesting to note that spectral weight is transfered to lower energy. These low-energy
fluctuations of the plaquette chiralities can alternatively be viewed as gauge field fluctuations(3]
, typical of strongly correlated systems. However, spinwave-like (S = 1) excitations still exist at
lower energies. For example, at J/t = 0.4 and Nj = 2, a sharp spinwave peak occurs at w ~ 0.7J
in the spin fluctuation spectrum while the lowest A; § = 0 excited state lies around 1.75J (Fig.
4). Comparing uniform (Fig. 4) and staggered (Fig. 5) chiral fluctuation spectra we have found
that more spectral weight is concentrated at low energy in the staggered case.

We finish this section by a comment about spiral correlations in the ¢t — J model. To study this
order we define the vector operator

Ti = S; X (Sitx + Sity)s (8)

and its associated correlation Ogpi =< 4 (¥ T;)? > . We have also observed that O,y is slightly
enhanced (of about 25% with respect to half-filling) at small doping and small ratio J/t.[6] However,
this enhancement occurs in a regime where the spin correlations are strongly suppressed (except
at short distances) by the hole motion. We then conclude that there is no real evidence for a long
range incommensurate phase, although a local twist between spins at short distances may occur.[9)

3 Optical Conductivity in the t-J Model

In this section, we turn to the calculation of the optical conductivity of the t — J model. This issue
is closely related to the concept of charge stiffness which characterizes the response of a finite size
system to a change in the boundary conditions (BC).[10] To implement arbitrary BC, the hopping
term in (2) is multiplied by a phase factor according to

éiT,(,Ei+é',u o 6§,aéi+€,a exp (26 F“")& (9)
where K = 2#(%5-}- %’;ﬁ) and L,(= 4) are the lenghts of the cluster. Since the system is topo-

logically equivalent to a torus, these phases can alternatively be seen as the result of two fluxes
¢z and ¢, inserted through the two holes of the torus. For example, ¢, = 0 (= 1/2) corresponds
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to periodic (antiperiodic) BC. The GS energy E(F{) is obtained by the Lanczos method and is
generally made of several intersecting branches.[11] Since E(R) is a periodic function of the fluxes,
we shall restrict ourselves to —1/2 < ¢, < 1/2.

The real part of the optical conductivity reads

Reoyo(w,K) = 21 Dpo(R) 8(w) + 0.9 (w, §), (10)

where the regular part is proportional to the spectral function of the current-current correlation
function,
Tiva (W5 ) Z (U | Jo | Yo)|? 6(Jw| = Em + E). (11)
m;&{)
We emphasize here that in (11) both GS, excited states, energies and current operator j, =
OH [0k depend on the twist & in the BC. The Drude weight, term proportional to §(w), is directly
proportional to the local charge stiffness,[10]

2 b
DaplR) = 5ot (12)
The total weight at finite frequency, [ dw o, is also of physical interest and will be compared to
the Drude weight.

When N — o0, at fixed hole density, one expects that the BC (i.e. the value of ) will no longer
play a role. However, in the case of a small 4 x 4 cluster, the local curvature tensor still depends
on the choice of the BC. Finite size effects can be estlmated by using various averaging weighting
factors,

(Dat)an s, = § dbe § 46, W(ER) DaglR) (13)

where § means that the integral is performed over a period of the flux. The same procedure is also
applied to the regular part of the conductivity

(D), = fd%j!dgby W(E(R)) o™, (14)

and the integrated finite frequency absorption 2pq,
200 = [ (o), (15)

Practicaﬂy, we have chosen two extreme limits (i) W(E) = 1 (that leads to a uniform average) or
(i) W(E) = Z7V6(E - Eg) (where Z is a normalization factor). In the second case, Eg corresponds
to the lowest energy of E(K) so that only the local curvatures at the energy minima are considered.
What are the actual locations of the absolute minima? It is interesting to note that, in general,
K = 0 (i.e. periodic BC) do not correspond to the absolute minimum of the energy but rather to a
local maximum or minimum. Indeed, restricting ourselves to N, = 2 holes for simplicity (but the
conclusions are qualitatively very similar for N3 = 1), we have found that, for 1/8 < J/t < 0.5,
the energy minima are located at (¢, ¢,) = (0,4£1/2) and (£1/2,0). For J/t > 2/3 the minima
lie at (¢, ¢,) = (£1/2,£1/2). When J/t — 0, many crossings occur rapidly between the various
branches indicating a transition towards a ferromagnetic phase. For example, at J/t = 0.1 the
minima are located at (¢, dy) = (Lo, £ Po) (¢o ~ 0.284) and for J/t = 1/16 at (¢, ¢,) = 0.[12]
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At J/t = 0, the ferromagnetic state is optained for (¢, ¢,) = (0,£1/2) and (£1/2,0). This more
complex regime will be studied separately.[13]
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Fig. 6: Drude weight and finite frequency optical absorption versus J/t. The open and closed
symbols correspond to the two different choices (i) and (ii) respectively for the weighting factors
(see text).

The behavior of the Drude weight and the finite frequency absorption are shown on Fig. 6
versus J/t. Uniformly averaging the curvature E(R) over the twist & gives a continuous curve
with J/t (open symbols). On the other hand, the Drude weight and 2pg calculated from the local
curvatures at the minima of F(K) exhibit discontinuities at some particuliar values of J/t (for
example between J/t = 0.5 and 2/3) when a level crossing occurs between the bottom of two
separate branches. However, we do not know yet whether such discontinuities indicate actual first
order transitions in the infinite system (like e.g. a phase separation for large J/#[14]). Since the
curvature of E(R) is larger at the minima the two averaging procedures give, roughly speaking, a
lower and a upper bound for the Drude weight. In the range 0.1 < J/t < 0.5, these two values
are resonnably close (within 20%) so that this method can give quantitative predictions. First, we
should notice that the Drude weight is rather unsensitive to the ratio J/t, (at least in the range
0.1-0.5). Compared to the ferromagnetic value 27(DE ) ~ 0.67 (for N, = 2 and J/t = 0) we
obtain a typical ratio of (Dyq)/{DE,) ~ 0.3 which corresponds to a mass enhancement of order 3.
We also find that the Drude weight scale almost proportionally with doping. All these results are
in qualitative agreement with slave boson treatments of the metallic phase.[15] For J/t > 2/3 we
notice a sudden transfer of spectral weight from finite to zero frequency. This may well be the sign
of an instability towards phase separation.[14]

Interestingly, our calculations show that the integrated weight 2p, (Fig. 6) of the finite frequency
conductivity (Fig. 7) is surprisingly large and even exceeds the Drude weight for 0.1 < J/t < 0.5.
This is to be connected to the anomalous mid-infrared absorption observed experimentally in the
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high-T, cuprates.[16]
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Fig. 7: Regular part of the optical conductivity versus frequency for various values of J/t. The
calulation is performed at the minima of E(R).

As shown in Fig. 7, the main absorption occurs in the frequency range 0 < w < 3t¢. For
1/8 < J/t < 0.5 the mean-frequency @ defined as the first moment of the spectrum,

W= /dww(agif)%l% / 2po, (16)

can be parametrized as @ ~ 1.9t + 0.7J and depends only weakly on J. At J/t ~ 2/3 © jumps
to ~ 3.2t and reaches ~ 3.9t at J/t = 1. These large values are characteristic of a tail ~ 1/w

extending to large energies.[17]

4 Conclusion

Our small cluster calculation reveals relatively short distance correlations of chirality between
plaquettes. This means that, if long range chiral order exists, the order parameter must be very
small. In the J; —J3 model, the dimer phase is a serious candidate for a disordered phase competing
with the PT-breaking phase. In the t-J model, the hole kinetic energy seems to favor staggered
chiral correlations rather than uniform. In both models, low energy chiral fluctuations are enhanced
by frustration. However only dynamical frustration by holes leads to a large broadening of the
fluctuation spectrum.

We have also calculated the optical conductivity in the t-J model by twisting the boundary
conditions. The spectrum exhibits interesting level crossings as a function of the twist. The Drude
weight is deduced from the curvature of the energy surface at the bottom of the spectrum and is
found to depend only weakly on the ratio J/t. The Drude weight is reduced by approximately a
factor 3 with respect to the ferromagnetic state (which occurs at ./ = 0). Our work also reveals
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a surprisingly large optical weight in the frequency range 0 < w < 3t which we identify with the
observed mid-infrared absorption in the high-T,. copper oxides.

Acknowledgments

This project was supported in part by the EEC Science Program. The computer simulations were
done on the CRAY-YMP at the San Diego Supercomputer Center, San Diego, California and on
the CRAY-2 of Centre de Calcul Vectoriel pour la Recherche, Palaiseau, France. We thank SDSC
and CCVR for their support.

References
[1] R.B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988).
[2] P. Lederer, D. Poilblanc, T.M. Rice, Phys. Rev. Lett. 63, 1519 (1989).

[3] I.B. Ioffe and A.I. Larkin, Phys. Rev. B 39, 8988 (1989); N. Nagaosa and P.A. Lee, Phys. Rev.
Lett. 684, 2450 (1990).

[4] D. Poilblanc, E. Gagliano, S. Bacci, E. Dagotto, Phys. Rev. B 43, 10 970 (1991) and references
cited therein.

[5] D. Poilblanc, E. Dagotto, J. Riera, Phys. Rev. B 43, 7899 (1991) and references cited therein.

[6] E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, J. Riera, D. Scalapino, NSF-ITP-91-54
preprint (1991).

[7] X.G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).

[8] Surprisingly, a finite size scaling analysis of the gaps in the fluctuation spectra of the 4 x 4
and the 6 x 6 clusters seems to indicate that both dimer and chiral phases are stable in the
vicinity of Jp/.J; ~ 1/2 (see H. Schulz and T. Ziman, Orsay preprint (1991)).

[9] B. Shraiman and E. Siggia, Phys. Rev. Lett. 62, 1564 (1989).
(10] W. Kohn, Phys. Rev. 133, A171 (1964).

[11] D. Poilblanc, E. Dagotto, Phys. Rev. B 44, 466 (1991); D. Poilblanc, Phys. Rev. B 44, under
press (1991).

[12] In this case (J/t = 1/16,K = 0) the GS is a totally symmetric A, spin singlet (S=0).

[13] D. Poilblanc et al. (in preparation).

[14] V. Emery, S. Kivelson, and H. Lin, Phys. Rev. Lett. 64, 475 (1990).

[15] M. Grilli, G. Kotliar, Phys. Rev. Lett. 64, 1170 (1990); see also J.P. Rodriguez, Orsay preprint.
[16] G.A. Thomas et al. Phys. Rev. B 40, 11358 (1989) and references cited therein.

[17) T. M. Rice and F. C. Zhang, Phys. Rev. B 39, 815 (1989).



	Exact diagonalization studies of 2D quantum models

