
Superconductivity in quasi-two-dimensional
systems : theoretical aspects

Autor(en): Minnhagen, Petter

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 65 (1992)

Heft 2-3

Persistenter Link: https://doi.org/10.5169/seals-116398

PDF erstellt am: 26.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-116398


Vol. 65, 1992 Invited Lectures: Superconductivity 205

Superconductivity in Quasi-Two-Dimensional Systems: Theoretical

Aspects.

Petter Minnhagen
Department of Theoretical Physics

Umeâ University, 901 87 Umeâ, Sweden

Abstract. Vortex fluctuations for 2D superconductors are reviewed together with the Ginzburg-
Landau Coulomb gas model and the 2D Coulomb gas scaling concept. Some aspects of the 2D

vortex-unbinding transition are clarified. Consequences for the non-linear IV-characteristics and
the resistance are briefly recapitulated. The effects of the phasecoupling between superconducting
planes and its possible consequences for high-Tc superconductors are discussed. The linear term
in the 2D vortex-antivortex interaction, caused by the interplane coupling, is described, together
with the related existence of an intrinsic critical current and the resulting functional form of the
non-linear IV-characteristics. The dramatic 3D to 2D crossover just above Tc for the anisotropic
3D XY-model is described and its possible significance for layered superconductors is pointed out.
Results from MC-simulations for the anisotropic 3D XY-model, its dynamical counterpart the RSJ-
model, and an analysis revealing finestructure in the resistance data for YBCO/PBCO superlattices
are presented.

Introduction
The present survey focuses on vortex-fluctuations in connection with 'quasi'-2D superconductors.
This subject started with the realizationfl] that a 2D superconductor can be associated with a
Kosterlitz-Thouless transition.[2,3] For a review see e.g. ref.[4]. With the discovery of the high-
Tc materials and the possible 'quasi'-2D character of the superconductivity for these materials,
the subject has again attracted a lot of interest. [5] Especially the new superlattice structures
of YBCO/PBCO, where the interplane coupling between superconducting planes can systematically

be varied, lead to questions of when and how the 2D vortex-fluctuations are reflected in the
experiments.[6] However, even the subject of 2D vortex-fluctuations in connection with 'quasi'-2D
superconductors is by now fairly extensive.[4] I will hence narrow down the subject further and
discuss some concepts (and perhaps misconceptions) which I think will be useful to be aware of, in
particular in view of the new development stemming from the high-Tc materials. This selection is

to some extent based on personal preference and conviction. I hope that it will anyway be of some
use to the reader.

Coulomb Gas Scaling

Let me first recapitulate a simple description of a 2D superfluid (see e.g. ref.[4]): A neutral 2D
superfluid can be characterized by an order parameter ip(r) \ip(r)\exp[i8(r)] where the magnitude
of the order parameter is related to the superfluid (area!) density ps, |^(r)|2 ps(r), and the phase
is related to the superfluid velocity vs, vs(r) ¦^•W(r) where ro* is the mass of the superfluid
particle. This gives a phenomenological description of the superfluid characterized in terms of the



206 Invited Lectures: Superconductivity H.P.A.

Hr/rn)

Figure 1: Resistance scaling function: Data from five superconducting films aie plotted against the

scaling variable X and collapse onto a single curve (from ref.[7]). This resistance scaling curve is a
manifestation of the GLCG-model.[8]

density and velocity of the fluid. We assume that the groundstate of the fluid corresponds to zero

velocity and constant density. The energy associated with a thermal fluctuation out of the ground-
state may then be estimated by the kinetic energy associated with the corresponding velocity field,
Hs po Jdr[vs(r)]2 /2, where po is the superfluid density in the absence of currents. The occurrence

of a velocity fluctuation is controlled by the corresponding Boltzmann factor exp[—Hs/kßT].
The velocity field may be separated into a rotation free part Vm and a divergence free part Vi. v_l
describes the thermal vortex excitations; each vj^(r) can be totally specified in terms of a vortex
configuration. We simplify the phenomenology further and assume that we can separate out the
vortex part in such a way that without vortices we have a T-dependent po coming from the üy-part.
The vortex fluctuations are then associated with the effective energy Hs po(T) J dr[v±(v)]2/2.

The Ginzburg-Landau Coulomb gas model (GLCG) for vortex fluctuations in 2D superconductors

is constructed along these lines (see e.g. ref.[4]): The superconductor in the absence of
vortices is assumed to be well described by a Ginzburg-Landau theory. The vortex shape and

energy is obtained by minimizing the Ginzburg-Landau equations and the energy of a vortex
configuration is estimated by superposition of single vortices. The vortex part of this explicit
model is controlled by two effective parameters i.e. an effective dimensionless temperature variable

Tca kBT/[2wpo(T)(-^)2] and the Ginzburg-Landau coherence length £(T). In practice
the standard Ginzburg-Landau approach usually suffices, so that po(T) po(0)[l — T/Tco] and

£(T) f(0)/\/l — T/Tc0, where Tco is the Ginzburg-Landau temperature. The name Coulomb gas
derives from the fact that the vortices may be viewed as Coulomb gas particles. The Coulomb gas
particles which constitute the GLCG-model have a particular single particle charge distribution
(they are not point charges), chemical potential and interaction; all coming from the Ginzburg-
Landau equations.[4]

The Coulomb gas scaling concept is just the observation that a dimensionless quantity related
to the vortices can only be a function of the effective variable TCG. Such a quantity is the resistance
ratio Ä/Äjv where R is the resistance caused by thermally created vortices. Thus all 'quasi'-2D
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Figure 2: Estimate of the critical region for the KT-transition based on a numerical solution of a

set of self-consistent equations for the Coulomb gas screening length A (from ref.[10] where details
and parameter choices are given). The true KT-signature shows up for TCG/TGG < 1.04 and

X/Ç > 103.

superconductors which can be well described by the GLCG-model should produce a unique R/Rn-
curve provided the data is plotted against Tca. This is illustrated in fig.l. In fig.l the data is

plotted against the variable X TCG/TGG where TGG is the phase transition temperature for the
GLCG-model. This test of the Coulomb gas scaling concept hence presumes that Tco and Tc (=the
temperature where the vortex system has a phase transition) can be extracted from the data in a

convincing way.
I would like to emphasize the following points: The Coulomb gas scaling is well borne out

for 'quasi'-2D superconductors.[4] The Coulomb gas scaling curve obtained from the data can
be explicitly linked to to the GLCG-model through Monte Carlo simulations.[8] So the success
of the scaling is not accidental; it really reflects that thermal vortex fluctuations for 'quasi'-2D
superconductors are often well described by the GLCG-model.

All relevant data obtained so far is for TCG/TCG > 1.1 (or equivalently for R/RN > 10"6).[4]
These means that the majority of the data do not reflect any true critical property of the phase-

transition.^] This is contrary to many claims in the literature and appears to be of some importance
for the high-Tc materials, so I will try to clarify this point further.

Vortex-Unbinding Transition

The 2D Coulomb gas undergoes a charge(=vortex)-unbinding transition at TGG. Pictorially
expressed, all vortices are bound together into vortex-antivortex pairs below TGG whereas above

some pairs are broken. More precisely the Coulomb gas screening length A is infinite below TGG

but finite above. The signature of the phase transition is (at least for low enough Coulomb gas
particle densities [9,4]) given by the Kosterlitz RG equations[3]. A phase transition with this
particular signature is usually referred to as a Kosterlitz-Thouless(KT) transition. A diverges as as

ln(A) oc 1/^JTCG/TGG - 1 for the KT transition. Since R/RN ex A"2, this also means that
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ln(R/Rjy) oc 1/Jtcg/Tgg - 1. Successful fits of Ä/Äjv-data to this functional form is very
commonly (but most likely incorrectly) taken as strong evidence for a KT-transition. Obviously the

KT-interpretation only makes sense provided the data is really inside the critical region of the

vortex unbinding transition.
The width of the critical region can be estimated from a set of self-consistent equations for the

linearly screened Coulomb gas interaction Vt(r).[9] From these equations A can be calculated
numerically. The equations are approximate but go beyond Kosterlitz RG equations.[9] Furthermore
(and contrary to Kosterlitz RG equations) they are also valid in the high-temperature phase.[9]

Fig.2 illustrates the result.[10] Fig.2 gives an estimated critical region 1 < TCG/TGG < 1.04

corresponding roughly to a critical resistance region 0 < R/Rn < 10-6. This suggests that most of the
measured resistance data are well outside the true critical region. An additional complication for
the KT-interpretation is that the critical region 0 < R/Rn < 10-6 involves very large lengthscales
and so the data in this region will in practice easily be contaminated by finite- size, current, and

magnetic field effects.[4]
The Coulomb gas resistance scaling function turns out to have a functional form which is well

approximated by '

ln(R/RN) « constj/yfTCG/TGG - 1 + ln(TCG/rfG) + const2

over a substantial interval.[4] However this fact should not be confused with the critical property
of a KT transition; it happens to be a non-critical property of the GLCG-model.

Coupled Layers

How does the vortex-unbinding change when instead of one superconducting plane we have many
parallel superconducting planes weakly coupled together? This may be the situation for some of
the high-Tc materials where the superconducting planes are associated with the CuOi planes. I
will discuss this on the level of a 3D anisotropic XY-model. The hamiltonian is given by

Hxy - E J\\™s(9,-93)- YI Jj.cos(e,-e3)
<y>n <«i>i

where the sums are over the nearest-neighbor pairs on a cubic lattice and < ij >m denotes nearest-
neighbor pairs belonging to the same superconducting plane and < ij >± denotes pairs belonging to
two adjacent planes. So in short we have put the superconducting order parameter ib \ib\ exj>(i9)
on a cubic lattice, suppressed the magnitude variations, and assumed that the interplane coupling
can be described as a phasecoupling between adjacent planes.

Fig.3 shows a vortex-antivortex pair associated with one particular plane. As illustrated in the
figure a 2D vortex-antivortex pair for a 2D superconductor goes over into a vortex loop where the
loop only cuts one plane. The 2D vortex-antivortex interaction is logarithmic for large separations.
This logarithmic interaction is a prerequisite for the KT-transition. The vortex-antivortex interaction

for coupled layers is linear for large separations.[11,12] The variational estimate in ref.[ll] for
the the coefficient in front of this linear term is ir2Jn,/2J±/Ju.

The linearly screened interaction Vi(r) for the vortex-antivortex interaction, obtained from
MC-simulations, is in case of the anisotropic 3D XY-model to good approximation of the form[13]

Vl(t) k0 ln(r) + kr + const (1)

The coefficient k vanishes precisely at Tc as k oc ^fm where ro is the order parameter (=the
magnetization per spin for the XY-model).[13] The screening length of the effective vortex interaction
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Figure 3: Vortex-antivortex pair for coupled layers. The pair is associated with a vortex loop which
only cuts one plane (middle plane in the figure, from ref.[13]).

is finite above Tc.[13] Above Tc the superconducting planes are, from the point of view of the
vortex-antivortex pairs, effectively decoupled.[14,15] The phase transition can just as in the pure
2D case be associated with a vortex-unbinding transition. Above Tc broken pairs associated with
planes generate flux-flow resistance. However, this vortex-unbinding transition does not have a
KT-character. It is quite different; the phase transition of the anisotropic XY-model is of second
order.

Critical Current
A supercurrent Is parallel to the superconducting planes gives rise to a Lorentz force Fi, oc Is which
tries to pull a thermally created vortex-antivortex pair apart. This pulling is counteracted by a
binding force (see eq.l) FB - k0/r + k. The threshold condition for pairbreaking is consequently
given by FL k which in turn corresponds to a critical current /c.[12,16] This pairbreaking mechanism,

generating a finite critical current below Tc, does not involve any pinning. It is a consequence
of the interplane coupling of the material. There are indications for such an 'intrinsic'(=material
characteristic) value of Ic in case of high quality epitaxially grown YBCO-films.[16,17] The simple
estimate from ref.[ll] gives[16]

Ic 5.83 • 102
XL(0)2d\ ml

1 - JL
t7o (2)

provided Ic is in Am-2, AL( London penetration lenght) and f/(=layer spacing) is in Â. mT,/m*± is
the mass-anisotropy. The temperature dependence stems from a Ginzburg-Landau assumption. A
linear temperature dependence is borne out by data for YBCO-films and the simple estimate for
the magnitude is reasonable.[17]

The vortex-antivortex pair breaking can be viewed as an escape over a barrier problem balanced
by a two-particle recombination process.[18] In the present case this leads to a non-linear IV-
characteristics of the form V <x I[I - Ic}a-1 (to be compared to V oc Ia for the pure 2D-case).[16]
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Figure 4: Critical current and resistance for the anisotropic RSJ-model obtained by simulations
(from ref.[19]). J±/J\\ 0.1 and the dashed straight line is a fit to the /c-data subject to the
additional condition that it cuts the horizontal axis precisely at Tc.

This offers a possible signature of the vortex-antivortex breaking mechanism for Ic which can be

tested against experimentally.[16,17]
The critical current due to vortex-antivortex breaking can be studied in some further detail

on the level of an anisotropic RSJ-model (resistance-shunted-junction-model).[19] This model may
be viewed as the dynamical counterpart of the anisotropic 3D XY-model; the coupled dynamical
equations are of the Langevin form (compare Hxy)

V<ir,
d(et-e])

dr fal(-L) sm(9t -8j) + ri<i}>\u±)

where V<y>|(i, is a measure of the voltage across a link in the parallel (perpendicular) direction
on a cubic lattice and the thermal noise current »?<îj>,|(x) is subject to the white noise condition

< 7?<U>||(X)(1")'?<U>||(X,(7"') >= ïkBTÔ(T - T')

A drive current I corresponds to a particular boundary condition imposed at the sides of the cubic
lattice. Fig.4 gives the results from simulations for the RSJ-model.[19] A critical current Ic, linear
with temperature, is obtained. The figure also gives the flux-flow resistance above Tc.

3D to 2D Crossover

Fig.5 shows the vortex density per superconducting plane plotted against the Coulomb gas
temperature TCG for the anisotropic 3D XY-model obtained through MC-simulations.[14] The highest
curve is for the 2D XY-model (i.e. Jj_ 0) and the other two are for non-vanishing interplane
couplings (Jj_/J|| 0.02, and 0.1, respectively). The critical temperatures for these latter two cases are
marked with arrows (the one to the left in the figure corresponds the smaller of the two interplane
coupling constants). The figure suggests that the high-temperature phase in all cases is to very good
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Figure 5: 3D to 2D crossover. Vortex density per plane, n, plotted against TCG for the anisotropic
3D XY-model (from ref.[14]). (a is here the lattice constant, for further explanation see text).

approximation described by the very same 2D Coulomb gas.[14] From the point of view of the
vortices the superconducting planes appear to be effectively decoupled.[14,15] This result carried over
to layered superconductors suggests that the thermally induced flux-flow resistance just above the
transition effectively reduces to the pure 2D case. In other words the resistance scaling curve from
the GLCG-model should be applicable also for the layered superconductors and high-Tc materials.
Evidence for this has been reported for BSCCO [20] and YBCO/PBCO-superlattices[21].

Fig.6 shows resistance data for four YBCO/PBCO-superlattices plotted against the Coulomb
gas scaling variable X TCG /TGG .[21] The data corresponds in order of increasing interplane
coupling to the superlattice structures Ny unit-cell-thick YBCO/Np unit-cell-thick PBCO with
(Ny,NP) (1,16), (2,16), (3,16), and (3,4). The full curve is the 2D Coulomb gas resistance
scaling curve. At the small resistance end of this curve the data for (3,16) and (3,4) show a
slight but significant deviation from the 2D scaling curve. This deviation increases with increasing
interplane coupling and reflects a corresponding increase of Tc.[21] The same effect is seen in Fig.5.
Above Tc the data rapidly collapse onto the 2D scaling curve suggesting a dramatic crossover from
3D to an effectively 2D vortex description associated with decoupled planes. BSCCO resistance data
suggest that this material has effectively the same interplane coupling as the (3,16) YBCO/PBCO-
superlattice.[21]

According to the GLCG-description for a 2D superconductor, the exponent a for the non-linear
IV-characteristics below Tc (V oc Ia), is another Coulomb gas scaling function and a 3 precisely
at the phase transition.[4] However, there is no effective 3D to 2D decoupling of the vortex system
below Tc for layered superconductors. Consequently a(TCG) for layered superconductors should
depend on the interplane coupling. This is illustrated in Fig.7. The figure gives a(T<7G)-data for
two realizations of a 2D superconductor. The 2D Coulomb gas scaling is well borne out.[4,22]
The full curve represents BSCCO-data (close to Tc so that I is small but still I > Ic) and is

significantly different.[22] There are indications that a(TCG) also in this latter case is a scaling
function e.g. in the sense that a magnetic field dependence perpendicular to the superconducting
planes is absorbed into the Coulomb gas temperature TCG .[22] The existence of such a scaling
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Figure 6: Resistance scaling for YBCO/PBCO-superlattices. Full curve is the 2D resistance scaling
function and the four sets of data correspond to four superlattices with different interplane coupling
(circles, diamonds, triangles and asterisks correspond to increasing interlayer coupling, for further
explanations see text, from ref.[21]).
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Figure 7: The exponent a plotted against TCG. The filled and open circles corresponds to data from
two different realizations of a 2D superconductor. The full curve is constructed from BSCCO-data.
The dashed curve represents a in the absence of vortex-fluctuations (from ref.[22]).
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would impose restrictions on the possible form of effective interplane coupling.[22]

Concluding Remarks

Thermal vortex-fluctuations for 2D superconductors has a direct counterpart in case of layered
superconductors. However, the vortex-antivortex interaction is different due to the interlayer
coupling. This difference gives rise to a critical current and a vortex-unbinding transition which is

not of the KT-type. Some caution when interpreting resistance data has to be exercised because

| In R\ oc 1/Jtcg - TGG can, in practice, not be taken as evidence for a KT-transition.
Nevertheless, Coulomb gas scaling, the 2D resistance scaling function and the 2D GLCG-model is

applicable above Tc due to an effective 3D to 2D decoupling. The Coulomb gas scaling concept
appears to be applicable also below Tc. This suggests that data analysis based on the Coulomb

gas scaling concept has the potential of revealing new interesting information. For example the
size of the deviation from the 2D resistance scaling function for the smallest resistances in case of
YBCO/PBCO-superlattices is directly related to the size of the interlayer coupling.
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