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Facts and Fantasies in FQHE Theory

A.H. MacDonald!
Institute for Theoretical Physics, UCSB
Santa Barbara, CA 93106

Abstract. The quantum Hall effect occurs when an electronic system has chemical
potential discontinuities (incompressibilities) at magnetic-field dependent densities.
In the fractional quantum Hall effect (FQHE) the incompressibilities occur because of
interactions among electrons in macroscopically degenerate Landau levels. It has been
the task of theory to explain why the incompressibilities occur at certain Landau level
filling factors and to describe the low-lying excitations of FQHE systems at nearby
filling factors. We briefly review some of the novel ideas which have been developed in
response to this challenge. We distinguish the ideas developed to explain the FQHE
near filling factor » = 1/m, which are soundly based on microscopic theory, from the
more speculative ideas used to extrapolate toward the FQHE physics at ‘hierarcy’
filling factors.

L. INTRODUCTION

The quantum Halll»? effect occurs in two-dimensional electronic systems (2DES)
in strong perpendicular magnetic fields (B). The effect is characterized by dissipation-
less current flow and quantized Hall conductivity over a finite range of magnetic field.
The effect occurs only when the chemical potential of the system has discontinuities?
at densities which depend on magnetic field. (The Hall conductivity is proportional
to the magnetic-field dependence of the density at which the chemical potential gap
occurs.) For free 2D electrons gaps occur at densities proportional to the magnetic
field strength because of the quantization of the kinetic energy. (The set of states with
a given value of the kinetic energy is known as a Landau level and the Landau level
degeneracy per unit area, (27¢2)~1, is proportional to the magnetic field strength.
Here £ = hec/eB is the magnetic length.) Gaps at magnetic-ficld-dependent densi-
ties can also occur within a Landau level because of a periodic external potential?
or because of electron-electron interactions. It is the gaps due to electron-electron
interactions which are responsible for the fractional® quantum Hall effect (FQHE).
In this article we will briefly review what is known about the physical origin of these
gaps and about the unique fractionally charged excitations which arc associated with
their existence. The essential aspects of much of what is discussed below were first
described in a series of pioneering papers by Laughlin®, Haldanc? and Halperin®. We
will confine our attention completely to the simplest case in which the magnetic field
is sufficiently strong to align all electronic spins and to accommodate all electrons
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in the Landau level of minimum kinetic energy. We begin by discussing the FQHE
physics for v ~ 1/m which is well understood (m is a small odd integer) and then
turn our attention to a discussion of some of the related but more speculative ideas
which are used to describe the FQHE physics near other filling factors.

II. FACTS

In this section we discuss a number of mathematical properties of many-body
wavefunctions when all electrons are confined to the lowest Landau level of a two-
dimensional electron gas. These facts explain the fractional quantum Hall effect for
v = 1/m. For our discussion we will employ a disk geometry where the single-particle
kinetic energy eigenstates are given by

2 2
(= — iy)™ exp(— T4

¢m(x) y) = (2“222mm!)1/2

(1)

These wavefunctions have a common Gaussian factor and are otherwise powers of
z = ¢ — 1y. The Gaussian is a form factor corresponding to cyclotron orbit radius of
an electron with the minimum allowed kinetic energy. The rest of the wavefunction
depends only on 2z and not on z and y independently. This property is the quantum
mechanical expression of the fact that the only degree of freedom available for the
electrons once their kinetic energy is fixed is the center of their cyclotron orbits. It
can be exploited to prove many general properties of many-body wavefunctions of
electrons in the restricted Hilbert space of the lowest Landau level. Single-particle
wavefunctions in which the electrons have angular momentum m are localized close
to circles which enclose m + 1 flux quanta:

Br(¢mle® + y*|m) = (m + 1) (2)

where @( = hc/e is the electronic flux quantum. The discussion below will be for
the case of electrons confined to a finite disk in which N single-particle states with
angular momentum from 0 to N —1 are available are available within a Landau level.
Note that Ny flux quanta go through the disk. An entirely equivalent discussion can
be given for the case of electrons on the surface of a sphere®.

Any many-electron wavefunction formed entirely within the lowest Landau level
must be a sum of products of one-electron orbitals for each coordinate which are of

the form given be Eq. (1). It follows that the many electron wavefunction must take
the form

N
I[z) = | [] exp(~|z[*/4) | P[] (3)
k=1
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where P[z] is a polynomial in each of the 2z;’s!® and N is the number of electrons.
Since P|z] is antisymmetric under the interchange of particle indices only odd powers
appear can appear when P[z| is expanded in the relative coordinates of any pair of
particles. It follows that we can always write

P[z] = Q[z]Py[] (4)

where Q[z] is a symmetric polynomial and Py(z] = [[;«j<n(2i —%j) i5 the Vander-
monde determinant. The highest power to which each z; appears in Py[z] is N — 1
so that the maximum power to which a z; can appear in Q[z] in Eq. (4) is N, — N.
For a N = N, Q[z] must be a constant so that Py[z] is the wavefunction for a full
Landau level.

The states in the lowest Landau level can be described either in terms of which
single-particle states are occupied , i.e. in terms of electrons, or in terms of which
single-particle states are empty, i.e. in terms of holes. The total number of fermion
many-particle states is oy

4= N!Jffh! )
where N = Np — N is the number of holes in the system. The Landau level filling
factor » = N/Ny. An N-particle system is equivalent to an N-hole system!!. More-

over each antisymmetric polynomial representing a many-fermion state is uniquely
related by Eq. (4) to a symmetric polynomial representing a many-boson state. Since
multiplying by a Vandermonde determinant increases the maximum power to which
a coordinate appears by N —1 it follows from FEgq.(4) that an N fermion system which
encloses N flux quanta is equivalent to a N boson system which encloses Nj — N
flux quanta. A system in which N; = N 4+ Nj, can be described as a system of N
Fermi particles enclosing N + Np, flux-quanta, or under particle-hole conjugation as
a system of Nj Fermi particles enclosing N + Np, flux-quanta. Using the fermion to
boson mapping the same system can also be described as a system of N Bose particles
enclosing Nj, flux quanta or as a system of IV, Bose particles enclosing N flux-quanta.
If the number of holes is smaller than the number of electrons, i.e. if the filling factor
is close to one, it is more economical to describe the system in terms of hole degrees
of freedom. From the above we see that in this language the particles see the original
electrons, and in the fermion case also the other particles, as sources of magnetic flux.

With these preliminaries established we turn to a discussion of the origin of the
chemical potential discontinuity at » = 1/m. When all electrons are confined to the
lowest Landau level the only relevant term in the Hamiltonian is the interaction term.
We assume here that the particles interact pairwise so that

H=Y Y vrY (6)

i<j 1

where Pz-(;) projects particles ¢ and j onto a state of relative angular momentum [ and

we have noted that for any pair of particles there exists only one state of each relative
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angular momentum (RAM):
(7 — ) = di([7 — 751/ V2)/ V2, (7)

In Eq. (6) ! is odd since any pair of Fermi particles can be found only in states of
odd RAM and V; is the energy!? of a pair which has RAM I:

V= f PPV (7). ()

The V; parameters were first introduced by Haldane®. The fractional quantum Hall
effect occurs for sufficiently short-range repulsive interactions for which V; > V3 >
Vs.... The basic physics is usefully discussed in terms of the hard-core model for
which only Vj is non-zero. Zero energy eigenstates of this Hamiltonian must have
wavefunctions which vanish at least as fast as (z; — z; )3 as particles ¢ and 7 approach
each other. This requires that P[z] ~ Py[z]® and hence that Nj, > Ny = mN —m+1.
Thus in the thermodynamic limit it is possible to form states where no pair of electrons
are ever in a state of RAM one only when v < 1/3. As the electron density is
increased at fixed magnetic field so that v crosses 1/3 an added electron has!3!4 a
finite probability for being in a state of relative angular momentum with some other
electron and the chemical potential jumps, for the hard core model, from zero to ~ V7.
The chemical potential gap which occurs for the hard-core model cannot disappear
abruptly as the electron-electron interactions is smoothly altered and there will be
a class of interaction Hamiltonians for which the quantum Hall effect at v = 1/m
will occur. Finite-size numerical exact diagonalization studies!® have been extremely
effective in determining whether or not the FQHE will occur at some particular filling
factor for some particular electron-electron interaction and clearly establish that it
should occur at v = 1/3 and at v = 1/5 for realistic interactions.

An important aspect of the fractional quantum Hall effect concerns the description
of the low-energy degrees of freedom for filling factors close to ones at which an
incompressibility occurs. In the simplest case of v near 1/m the low-energy degrees of
freedom are fractionally charged quasipartilces and quasiholes which are believed to
behave similarly to the non-interacting electrons. For example, our picture of the way
in which disorder is responsible for creating a fractional Hall plateau which persists
over a finite range of magnetic field even in the thermodynamic limit depends on an
analogy to the localization of electrons and holes which occurs in the integer QHE.
Some parts of this picture can be established with some rigor for ¥ < 1/m. In that
case the low-energy part of the Hilbert space is that in which RAM less than m — 1
are avoided and in which Py [z]™ is a factor of the wavefunction. The polynomial
parts of all low energy states can be expressed in the form

Plz] = Q[=]Py(z]’. (9)

For N; = Ny, there is only one state in the low-energy Hilbert space by Laughlin® in
his seminal article on the FQHE. This state has Q[z] equal to a constant and is'® the
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non-degenerate ground state of the hard-core model at Nj = Npm. For N, = Njm+Nyp,
the number of states in the low-energy part of the Hilbert space is equal to the number
of distinct symmetric polynomials in N coordinates in which no particle appears to
a power larger than N, . These states describe the quasihole degrees of freedom and
all have an energy per particle ~ V,;,. Quasihole states at v < 1/3 can placed in
one-to-one correspondence with states for holes in a full Landau level since they can
be characterized by the same symmetric polynomials in Eq. (4) for holes and in Eq.
(9) for quasiholes. The quasihole system is therefore equivalent both to a system of
Nyp Fermi particles in a system enclosing N + Ny flux quanta or to a system of
N,p Bose particles in a system enclosing N flux quanta. Just like the holes in a full
Landau level the quasiholes see electrons, and if they are treated as fermions also other
quasiholes, as sources of magnetic flux. Similary, for both holes and quasiholes edge
excitations!” are represented by symmetric polynomials of degree ~ 1 while single hole
or quasihole excitations in the bulk are represented by symmetric polynomials with
total degree ~ N and states at different filling factors are represented by symmetric
polynomials with total degree ~ N2. However, it is easy to see using the plasma
analogy® that if Q[z]Py[z] represents a state in which one or more holes are localized
at various points in the system then Q[z]Py[z]® represents states with 1/m of an
electron charge localized at the same points in the system.

The above discussion shows that a number of aspects of the fractional quantum
Hall effect can be simply understood in terms of the analytic many-body wavefunc-
tions for electrons in the lowest Landau level and the separation of energy scales pro-
vided by the different RAM channels for interaction between electrons. The chemical
potential has a discontinuous jump from ~ V;, to ~ V,_o when N;, exceeds Nj.
For N, = Nm + Ny, the low energy Hilbert space can be mapped to one for Ny
particles, the quasiholes, which see the electrons as sources of magnetic flux. In the
next section we turn to a discussion of aspects of the FQHE which are not as clearly
understood. In particular the effect occurs at a sequence of filling factors v # 1/m,
v # 1 —1/m. These effects, often called hierarchy FQHE’s, are not explained by
the above discussion. We will focus our discussion on the case v = 2/5 which is the
prototype of the hierarchy FQHE’s and discuss some of the arguments which have
been advanced to describe this case.

FANTASIES

Experimentally the strongest fractional quantum Hall effects occur for v = v, =
n/(2n + 1) and for v = 1 — v,. There is strong numerical evidencel® that at each
of these filling factors there is a discontinuity in the minimum probability for finding
a pair of electrons in a state of RAM one. Thus it seems that all FQHE’s have
their origin in changes in short-distance electron-electron correlations. For n # 1
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however, we know of no analytic argument in support of the above statement!®.
There exist several, apparently quite different arguments, which purport to explain
the v = v, FQHE for n # 1. None of these fantasies provides a completely satisfactory
explanation, although it seems likely that each captures a part of the truth and might
be made more satisfactory with further progress. We briefly discuss three of these
arguments in the following paragraphs. It is not possible to do justice to any of the
pictures in the following and we endeavor only to give a flavor of how different the
three pictures really are and how each is deficient. We will address all of our discussion
to the case of v = 2/5.

The first picture for the v = 2/5 picture is the hierarchy picture”®19  In this
picture the low-energy states with v > 1/3 are assumed to be describable in terms of
quasielectron degrees of freedom in the same way as the low-energy states for v < 1/3
are describable in terms of quasihole degrees of freedom. It certainly seems clear that
for N; = Nj—1 that the lowest energy state has a localized defect (the quasielectron)
which must contain an excess of 1/3 of an electron to allow the electron system to
enclose one fewer flux quanta. (Recall that N = 3N — 2.) For Nj, = Nj — N
it is likely that the system can be considered as a gas of quasielectrons as long as
they are sufficiently dilute??. In the hierarchy picture the quasiclectrons are entirely
equivalent to quasiholes except for their charge. Thus when the quasielectrons are
treated as fermions they have non-degenerate ground states and incompressibilities
whenever the quasielectron system can no longer avoid a RAM channel, i.e, whenever

At this point the quasielectrons of the v = 1/3 Laughlin state have formed a v = 1/m
state. In terms of the physical lux quanta these first level ‘hierarchy’ incompressibil-
ities occur at

Np=(3-1/(m~-1))N —3. (11)

For example if m = 3, the incompressibility occurs at v = N/N; = 2/5 in the ther-
modynamic limit. An entirely equivalent argument can be advanced to explain the
v = 2/7 FQHE as being due to the formation of a v = 1/3 Laughlin state in quasi-
holes. The difference between the quasihole and quasielectron cases is that a clear
physical basis can be established for the identification of a quasiparticle energy scale
in the former case, as discussed in the previous section, but not in the latter case. The
quasielectron interactions are as strong as the electron-electron interactions and once
their separation is comparable to the electron-electron separation it is not clear why
we should still be able to describe low energy states in terms of only quasielectron
degrees of freedom. Moreover the hierarchy picture would naively predict a FQHE
for m = 5 in Eq. (11) (v = 4/11) where none is observed. At higher levels this
failure of the naive hierarchy picture is repeated and the dominance of the v = v,
effects does not have appear to have a natural explanation. On the other hand the
quasiparticle picture does impressively predict the finite size corrections to the N
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values at which incompressible state occur for a fnite number of electrons. More-
over many aspects of the hierarchy picture are supported by numerical studies and
recent work by Beran and Morf2! may be able to explain systematics in the effective
quasiparticle-quasiparticle interaction which lead to the dominance of the v = vy

FQHE’s.

Another explanation for the hierarchy FQHE’s has been proposed in work by
Jain?2, The essential idea of this work is that the FQHE at v = v, is related to the
integer quantum Hall effect at v = n. In Jain’s picture the non-degenerate incom-
pressible state at v = 2/5 for example is related to the product of the incompressible
state which occurs for non-interacting electrons at v = 2 and Py[z]?. He is able
to show that electrons in this state reside primarily in the lowest Landau level. He
argues that the v = 2 state is incompressible and strongly correlated and that this
incompressibility has echoes for inverse filling factors differing from 1/2 by even inte-
gers. This ‘echo’ corresponds to multiplying the wavefunction by Py[z]? is identical
to the way in which Laughlin states are obtained starting from the full Landau level
state. In this construction the states the dominance v, filling factors arises natu-
rally. The difficulty with this approach is that it seems to require the introduction
of higher Landau levels and there is ample evidence that the FQHE is essentially a
phenomena of interactions among electrons sharing the same quantized kinetic en-
ergy. Numerical evidence? suggests that the ground state wavefunctions obtained
by the Jain construction are good approximations to the true groud state. However,
as we have emphasized, the essential requirement for the FQHE is the existence of
a chemical potential jump at a fixed fractional filling factor. It is not obvious from
the Jain construction why such a jump should occur since the fundamental gap on
which the construction is based is associated with the Landau level separation which
should not play any essential role in the strong magnetic field limit. The construction
nevertheless provides a successful recipe for constructing variation wavefunctions.

The final class of explanations®425 for the hierarchy FQHE’s which we will men-
tion is based on the singular gauge treatement of electron statistics in two-dimensions.
In this approach the statistics of particles can be altered by attaching flux localized
at the positions of the particles. When two quanta of magnetic field are attached to
electrons the statistics repeat so that a system of fermions is equivalent to a system of
fermions with two flux quanta attached to each particle. The simplest approximation
in dealing with the attached fluxes is to replace them with an average uniform flux
density which does not fluctuate as the particles move about. In this average field
approximation it is easy to verify that the the inverse filling factor of the system is
either increased or decreased by two units.

#T Y o B (12)

It is then argued that adding the fluctuations in the attached fluxes does not change
the situation qualitatively so that systems with inverse filling factors differing by two
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do not differ qualitatively. Thus the FQHE at v = vy, is argued to be fundamen-
tally associated with the integer QHE at » = n. This approach toward explaining
the FQHE has a number of difficulties. First of all, no essential role is played by
electron-electron interactions while it is clear from the microscopic theory that no ef-
fect occurs without interactions. It can be argued that electron-electron interactions
are responsible for the gap which allows the » = n and v = v, ground states to be
adiabatically connected. In this case the argument is circular since it requires a gap,
which itself gives the FQHE, to establish its validity. On a phenomenological level
the process of changing statistic from Fermi continuously back to Fermi produces the
same change in filling factor as multiplying a wavefunction by Py[z]?. It remains to
be seen whether this explanation simply mimics the physics associated with changing
the relative angular momenta channels which are important in the low-energy states,
or there is some deeper significance.

IV. FUTURE

We have attempted here to give a brief sketch of what is understood absolutely
clearly about the FQHE and of what ideas exist for explaining some more subtle
aspects of this interesting phenomena. In particular the physical origin of the in-
compressibilities which occur at the hierarchy filling factors still does not have an
absolutely clear explanation. We may hope that in the future the three different ex-
planations of the hierarchy FQHE outlined above can be seen to be different facets
of the same truth. At present it seems that the original hierarchy picture is the most
satisfactory attempt at a full explanation.

I have benefited from discussions with numerous colleagues and by collaborating
on research on this topic with M.D. Johnson, S.M. Girvin, Claudius Gros, Mark
Rasolt, E.H. Rezayi and Daijiro Yoshioka. This work was supported in part by NSF
Grants No. DMR-8802383 and PHY®89-04035.
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