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Département de Physique Théorique, Université de Genève, CH-1211 Geneva 4, Switzerland

IHES 35, Rte. de Chartres, F-91440 Bures-sur-Yvette, France

(15. VH. 1991)

Abstract. We consider the Ginzburg-Landau equation for a complex scalar field in one dimension

and show that small phase and amplitude perturbations of a stationary solution repair diffusively to

converge to a stationary solution. Our methods explain the range of validity of the phase equation, and

the coupling between the "fast" amplitude equation and the "slow" phase equation.

1. Introduction

This study is motivated by a desire to gain a better understanding of the space-
time dynamics occurring in hydrodynamic systems. Our global understanding of
such problems is still very incomplete, and here we focus on a typical, simple
example. However, it will turn out that even this simple example has a few
unsuspected difficulties. They will shed some light on the relation between fast and
slow modes, and their role in regularizing infrared singularities, which are typical
for hydrodynamic systems in large containers, due to the translation invariance.
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Another interesting aspect is the appearance of a sort of center manifold in space-
time dynamics.

The equation we have in mind is the complex Ginzburg-Landau equation for
the complex "field"

u : RxR+-»C,
satisfying

dtu(x, t) d2xu(x, t) + u(x, t) (1 - \u(x, t)\2) (1.1)

This equation has time-independent ("stationary") solutions of the form

u(x) y/ï^fe^j* (1.2)

for q e [—1,1], i\> G [0,2ir). We call these solutions "spirals," although for q 0

their phase is constant.
We are interested in the initial value problem for initial data of the form

u(x,0) r(x)ei<Kx)

with

lim r(x) — \j\ — q2
x—>±oo

lim <t>'(x) q
3—>±00

but with a global phase shift

/oo dx ((f)'(x) - q)
•oo

which is not necessarily zero. This corresponds to "pulling" or "squeezing" the
spirals of the corresponding stationary solution. The question is whether such a

perturbation of the stationary solution will heal or whether it leads to a phase slip,
or will even migrate to another stationary solution.

When the initial perturbation is sufficiently large, then one expects one of
the latter two catastrophes to happen and such phenomena are still beyond control
of rigorous mathematics. What we shall show here, and illustrate in a somewhat
wider context, is the result that small perturbations heal when q is in the Eckhaus
stable domain (q2 < 1/3).

A very interesting problem is the global analysis of the initial value problem
with different g-values at -foo and —oo. One expects then the "invasion" of the
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less stable solution by the more stable one. This is again a problem which at this
moment does not allow for precise mathematical statements.

An intuitively appealing argument of why repairhappens goes as follows (but
will turn out to miss some essential features of the problem). Consider Eq.(l.l) in
polar coordinates, u r e%<i>. One gets

dtr d2xr + r - r3 - r(f (1.3)

dt( d2xC + 2dx (%V) (1-4)

with Ç dx<f>.

Note that since the r.h.s. of (1.4) is a derivative, J(C — q) is a conserved
quantity, so that the total phase shift 6 is conserved. However, as a function of
time, ((x, t) —+ q for every fixed x when the initial data are suitably chosen. This
is behavior similar to that which occurs, with q 0, for the simple example of the

pure diffusion equation dt( d2(,.
Consider now the vicinity of a stationary solution,

r(x, t) \/\-q2 + s(x, t) Ç(x, t) q + r)(x, t)

The reduced equations for s, rj are

dts d2xs + s- 3(1 - q2)s - 3^1 - q2 s2 - s3

— \/l — q2 rf — 2\/l — q2 qr) — sq2 — 2sqr] — srf2 (1.5)

dtV d2xV + 2dx (-JsL—) q + 2dx( d*S -Ì

The corresponding linear system is (linearized around 0)

dts d2xs - 2(1 - q2)s - 2y/l-q2qV

dtV =dl<n + 2dls2„ o,2, 2g (1.6)

It is well-known, see e.g.fCE], that this system becomes unstable at small nonzero
wavevectors when q2 > 1/3, i.e., there are unstable eigenvectors which correspond
to long-wavelength oscillations in space. Thus, one does not expect healing when
q2 > 1/3. When q 0, the problem (1.5) reduces to

dts dis -2s-r]2 - Ss2 - s3 - srf
~ .2 _,.,« dxs \ (1.7)
dtV dxV + 2dx [y^TsV
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In essence, the repair of the defect is now seen as follows: Due to the term —2s,
the s variable relaxes quickly to its equilibrium value, and then the 77 variable
diffusively tends to zero.

The problem with this argument comes from the rf term in the first equation
of (1.7). In fact, s does not relax (fast) to zero but rather to something like rf, or
some other 77 dependent function ^(77). Substituting into the second equation, we
get the slow equation

Does this equation repair diffusively? We will see that this is indeed the case.

However, at first sight, this is far from obvious, and it is useful to get an idea of
the following, more general, class of problems. Let N(u, u ,u") be a polynomial
in the derivatives of u. Consider the equation

dtu u" + N(u,u',u") (1.9)

Then, essentially, the following is true. If AT is a monomial, N (u)Po (u)Pl
(u")P2, denote by d its "degree," d pQ + 2p1 + 3p2, and assume 2px + p2 < 2,

andpo+^ > 0. Ifd > 3 then small initial conditions of the equation (1.9) tend to
zero, and if d < 3 then there are arbitrarily small initial conditions which diverge
in finite time. The case d 3 is marginal, and depends on the details of N. For
example, N u3 is unstable and N — uv! is stable. The results mentioned
above, and much more, are studied in many papers. For a review, see [L], and for
an early reference, [W]. In Section 2 below, we give proofs for the cases which
interest us in the sequel, and in order to familiarize the reader with the method.
Note that the problem (1.8) is stable according to this power counting, but we will
see several difficulties appear when q ^ 0. To illustrate our method, we will treat
some of the cases for N in the next section. The general strategy of our proof for
the full problem will then be more transparent.

The main result of this paper is the

Theorem 1.1. Letq2 < 1/3. There is an e eq > 0 such that the solutions (s, rj)
of the Eq.(1.7) tend to zero in L°° as t —? 00 if the initial data satisfy

k
1L| + 1%I12 <£> \\Vo\\l<£, ll%lloo<£-

Here, /denotes the Fouriertransform of/ and ||fc/||2= (J dkk2\f(k)\2)1/2.
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2. Some Typical Cases

2.1. The Stable Side

In this section, we analyze the equation

dtu diu + up (2.1)

in the case when p > 3. Then, sufficiently small initial data will converge to zero.
We formulate this theorem with conditions on the Fourier transform of the initial
data, since this will lead to a somewhat easier proof, although the direct space
formulation would work as well.

Notation. Here, and in the sequel, we use / to denote the Fourier transform of /,
and we use ut to denote u(-, t).

Proposition 2.1. For every p > 3, p G N, there is a constant ep > 0 such that for

llUolloo < £p ' Usuili < ep '

the solution of the initial value problem (2.1) with u(x, 0) u0 tends to zero. In
addition, one has the bound

u Ii < cjt + iy -1/2

for some finite constant Cp.

Remark. The proof which we give here is based on methods in momentum space
(conjugate to x). This will have the advantage of preparing the method of proof for
Theorem 1.1. On the other hand, since fractional powers are awkward to bound
in momentum space in the L1 norm, we are forced to restrict the proof to integer
values of p > 3. A proof for arbitrary p > 3 in z-space would look very similar
to the one given here.

Proof. We shall work exclusively in the Fourier transformed space, and we call k
the variable conjugate to x. We define /*" /* y*(n~1)) f*1 — y. The problem
(2.1) is equivalent to the integral equation

dtù(k,t) - e~k2tü0(k) + / dTe-k2Tü*p(k,t-r).
Jo

(2.2)
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We fix a maximal time T > 0 and work on the space HT defined by

HT {h : R x [0,T] -? C} (2.3)

equipped with the norm

max T,l>ll"llT,ooV '

where
||fc||T>q sup \\h(;t)\\q

0<t<T

The Picard method consists now in viewing (2.2) as a fixed point problem on HT.
The existence of a fixed point shows then the existence of solutions for times less
than T, with bounds. Shifting the origin of time from 0 to T and repeating the
procedure, we shall propagate these bounds and obtain the proof of Proposition 2.1.

In view of (2.2) we consider therefore the operator T defined by

T : / h- (Tf) ; (Tf)(k,t) e~k2tü0(k) + (Mf)(k,t) (2.4)

where M is defined by

M:f^(Mf); (Mf)(k,t) / dTe-k2rf*p(k,t-r).
Jo

libili < IMI?, Ilvico < Nicol«"1, (2-5)
Since

and

we find

and

Jo

t
dre~k2T < t,

HWIki < ïII/IISm (2-6)

\\Mf\\Tt00 < r||/||Ti00 ll/ll?,-1 (2.7)

Remark. It is the inequality (2.5) which does not generalize to non-integer p.
The functional derivative of T at / is DM.*, since the inhomogeneous term

is independent of / and hence we get from (2.6), (2.7), by polarization,

\\DTfg\\Ttl < pT\\g\\TA \\f\\Ç? (2.8)

\\DTfg\\Tt00 < pT\\g\\Tt00 \\f\\^ (2.9)
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Thus, if we denote, for v e L1,

T> «lr • (2'10)

then, for T < T-o and ||/||T1 < 2||û0||1,wefind

\\DTfg\\Ttl < $\\g\\Ttl \\DTfg\\T>00 < |||g||T>00

We fix now T Tùo and denote U0(k,t) e~k2tü0(k). Then the above

estimates imply that T maps the ball of radius ||tt0||i around U0 G HT into itself,
since ||t/0 llr i ^ ll^o Hi an<^ 7" is a contraction. Therefore the solution ü of (2.2)
with initial data ù0 satisfies

|H|M < 2||ü0|tx fori<T-o. (2.11)

The inequality
INIt.oo < ll«olL+Prll«llr,oollûllr7i1

in turn implies
ll«ll*,oo < 2||«olL, îort<Tûo. (2.12)

We next show that ||«(-, t)\\x converges to 0 when t —> oo.

Remark. If u0(x) > 0 for all x then the integral f dxu(x,t) is an increasing
function of time. Therefore we cannot expect that \\ut H^ tends to zero. In fact it
must grow. However, we shall see that it stays bounded.

To show that HüJ^ tends to 0, we use the inequality ||Z/0(-, *)lli^ (^A)
ll«olloo'SOthat

lutili <:^!!¥a£ + * »up ||fiT||J
VI 0<T<t

< V^II"olloo+2Pt||-o||P
Vt

by (2.8), (2.11). Similarly, using (2.9), (2.12), we get

(2.13)

u tlloo < IKIL + 2pt|KlloolKlir1- (2-14)

We now denote

mti,u SUP libili ' mt libili '
t1<t<t2

VtiM SUP ll«*lloc ' Vt \\Ût\\oo ¦

t1<t<t2



Vol. 65, 1992 Collet, Eckmann and Epstein 63

Since the Eq.(2.1) does not depend explicitly on time, we can rewrite (2.13), (2.14)
as

m^ - (^)i/2 + 2^2 - *iK > (2-15)

ytl>t2 ^»..(l + fe-tx^mff1), (2.16)

0 < t2 - tx < — p-1 (2.17)

and by (2.10), these inequalities hold as long as

1

p2Vm\;

Assume now that mti < 1 and yt < \. Henceforth, K denotes a constant
which depends only on p and which can vary from equation to equation. Since

p > 3 implies p — 1 > 2p/3, there is a constant C* such that if
t2 tx + C*m-2p/3

then <2 satisfies the Eq.(2.17). Then, (2.15) leads to

mt2 < mtiit2 < Kmp(3 (2.18)

and (2.16) leads to

yt2 < yti (1 + Km?-1-2*'3) < ytieKmH (2.19)

with q p — 1 — 2p/3 > 0. We now define recursively tn+l tn + C*m^n Pl

and iterate the process. Then (2.18) leads to

™-.+, < C^S^Mf'3»" < (c-3'<"-s»m„)<P/3r (2.20)

and hence (2.19) leads to

ytn+1 < ytleK^^m^ < 2yti < 1.

The penultimate inequality follows from (2.20) and holds if mt is sufficiently
small. This essentially determines the constant ep of Proposition 2.1. Note that

n n 2p f p\i
'.«-«¦ E(«i«-«i) C*Z(c»«>-»mtl)-'U>

j=l j=l
-*(î)'Ö I [c*3/(p_3) m.,

Thus, tn+l —? oo, and in fact the above estimate shows that if fx 0, then

tn e>(m~2) so that Wü^ 0((t + 1)~1/2), as « -> oo. The proof of
Proposition 2.1 is complete.
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2.2. The Unstable Side

In this case, we shall show that Gaussian initial conditions lead to solutions which
diverge in finite time.

Proposition 2.2. Every Gaussian initial condition for the problem (2.1) with p < 3

diverges in finite time.

Proof. We shall use the Maximum Principle [F] to produce a diverging lower
bound on the solution. Consider first the case p < 2. Then we use the two
equations

dtv d2xv (2.21)

dtw d2xw + vp (2.22)

and if both equations have the initial condition u0(x) 7j(a;,0) w(x,0)
Ce~ax a1!2, then w(x, t) is a lower bound to u satisfying (2.1) with u(x, 0)
u0(x).

Remark. The coefficient C can be eliminated by rescaling space and time and thus
we consider only C 1.

We shall show that w(0, t) diverges as t —> oo. The following observations
will be useful. If v(x, 0) u0(x), then

1 /9

«(*.*) {&) «faTO*2 (2.23)

v(k,t) e-fe2('+i), (2.24)

^(fc,0 ^(î^)Ve-fc2(p +^), (2-25)

as follows at once by Gaussian integration. We can write (2.22) as an integral
equation

w(k,t) e-fe2(t+°>+ / dre-k2TvP(k,t-T) (2.26)
Jo

Integrating over k, we find, using (2.25),

dkw(k.t) > / dr— f—-—J K J - Jo ^p\l + ar)
A

(t - £^±r + ±-yi2
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as t —> oo. Thus, for p < 2, the quantity u(0, t) diverges as t —? oo.
If p satisfies 2 < p < 3, we essentially iterate the above argument, using

instead of (2.21), (2.22) the equations

dtv dlv
dtw dlw + wvp~1

and then iterating n times the integral equation

w(k,t) e-fc2(*+i)+ j dt j dr e-k2{t~r)w(k - t,r)^(t,T) (2.27)

Since all terms are positive, it suffices to consider one of them and to show its
divergence. Setting t tn+1, this leads to an expression of the form

rô<'n+l)(K i'-n+l)
ftn-

Jo
n

-ir
i=i

1-1

dtn

,-k2j(t.

pt2

-J.dt
i+1-tj)

i j dki ¦ n—1

x vP- l(h,t
n-1

i) n vp~

j=i
ri(kj+1--k^tj).

(2.28)

In the case of p < 2 we really used (2.28) with n 1. If we integrate (2.28) over
kn, then dimensional analysis shows that the integral is bounded below by

°W (ik) {7?) W • (2'29)

where we use, e.g.,

t* dr f1 ds f1 ds n. ^

as t —? oo. Combining the powers in (2.29), we find a lower bound of

.(f-f)(»-i) -

If p < 3 and t is sufficiently large, this diverges as n —> oo.
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2.3. The Marginal Case

In this section, we consider the case p 3. This case is unstable.

Proposition 2.3. Consider the problem

dtu d2xu + u3 (2.30)

with initial data u(x, 0) u0(x) Ca1/2e~ax The solution diverges in finite
time for any C > 0, a > 0.

Remark. The coefficient C can be eliminated by rescaling space and time and thus
we consider only C — 1.

Proof. This proof is a variant of the case for p between 2 and 3, but the divergence
can only be seen by tracking logarithmic corrections. We now use the induction

to x o
(231)

9tVn+l 9xVn+l +Vn >

which leads to a lower bound for the solution of (2.30), if the vn have u0 as

(positive) initial data. We will control inductively expressions of the form

fn(k,t) Cne~k2{t+ ski(log(1 + at)y~ > (232)

which are lower bounds on vn(k, t). The nth integral leads then to an expression

vn+x(k,t) > fdre-k^-^Tl(k,r).
Jo

By (2.25), this leads to

««+i(M) > [tdre~k2{t~r)~k2^ + r^)(log(lA-ar))3pn
Jo

x C3
y/3 1 + 3"o!r

> T^Çl^itA^) ^dr(log(l + ar))3-
Joy/3 J0 3"(1 + ar)

Cl ,-k2^r^-J(log(l + ar)r^ fn+1(k,t)
^3(3pn + 1)

(2.33)
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Note that for the pure Gaussian problem, n 0, we have C0 1, p0 0. The
relation (2.33) leads us to define a recursionpn+1 3pn+l,i.e.,pn (3" — l)/2.
Furthermore,

2C3 2C3 C3
n+1 " ^(3"+!-!) - ^33"+! ~ 3" '

If we consider the recursion Dn+l D3n ¦ 3_n, with D0 1, we find for
En log Dn the relation

K+i 3En-nlog3,

with the solution

p onlog3 „log3 log3

since E0 0. Using (2.32), (2.33), we see that

5„(M) > /„(*,*) > s-3"/^"/^1/^-''2^-^^3"4"1^^^^))^-1^4.

We see that if log(l + at) > 3~1/2, then lim^^ vn(k, t) oo, for all k. Thus
the solution diverges in finite time.

3. An Intermediate Equation

We consider here an equation which is obtained to lowest order from the problem
of phase diffusion which is of main concern for this paper. Consider the Eq.(1.7).
Since both equations are of diffusive type and in fact the s equation has a "mass,"
we expect that both s and 77 are smaller than they would have been in the case
of pure diffusion. In fact, s should behave about as T72. Therefore, the terms
s2, s3, srf are analogues of terms with p > 3 for the simplified problem and
we have seen that such terms are not upsetting the diffusive repair of an initial
perturbation. We therefore concentrate on the remaining terms which illustrate the
precise mechanism of repair. Consider

dts d2s — 2s — rf
(3 1)

dtrì^d2xrìA-2dx(rldxs).
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Assuming that s is a fast variable, and that 77 is slow, we find that the equilibrium
value of s is

s -(dl - 2)-y (3.2)

This can be viewed as a center manifold for the motion of the (s, 77) variable.
Substituting (3.2) into (3.1), we find

dtr1 d2xri-2dx(ri-^-2rf). (3.3)

Sometimes, an expansion of the operator <9x/(<92 - 2) is performed in perturbation
theory. However, as is easily seen in Fourier transform, the operator —ik/(k2 + 2)
has much better properties at large k than its expansion in powers of k. Indeed, it
is at once visible from (3.3) that the problem is infrared and ultraviolet regular.
We will materialize this now in the proof of the following

Proposition 3.1. There is an e > 0 such that the solution ofEq.(3.3) with initial
data rj0, satisfying

ll%lloo<£> Holll<£>
fends to zero in L°° as t —? 00.

Proof. In momentum space, the integral equation corresponding to (3.3) takes the
form

%(k) e-k2%(k)-j dt j\re-k2^hrTT(k-t).-^^rJ2(t) ^ (3.4)

where we use the notation 2=ra2 to make the analogy with quantum field theory
more transparent.

Note that if m —? 0, we get an infrared singularity in (3.4) which would reflect
that the time scale of s (given originally by m~2 |) has become comparable to
that of 77.

We can now repeat the methods of Section 2.2. We use again the space TLT,
defined in (2.3), and we define maps

T:f^ (Tf) ; (Tf)(k, t) e~k2%(k) + (Mf)(k, t)

where M is defined by M : f (-»• (Mf),

(Mf)(k, t) -Jdt£ dr e-fc2('-)fc fT(k - t) ¦ -^±-ß(t). (3.5)
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Since \t/(t2 + m2)\ < l/(2m), we see that the integral in (3.4) is bounded by

'*-e-*'<*-T>i*|.|ir,.(*-/)|.|.i?Mi.hi!
Using

we find

and

/ dr\k\e-k2T < 0(t1/2)
Jo

\\Mf\\Ttl <KT"2\\f\\3Til, (3.6)

\\Mf\\Ti0a <äT1/8||/||t,ooII/IIt,i- (3-7)

Therefore, we get for DTf,

\\DTfg\\Ttl <K0TL'*\\g\\TA\\f\\iA, (3-8)

\\DTfg\\Tt00 < K0T^2\\g\\TiOO \\f\\2TA (3.9)

For each v we define a critical time

T> - A-*nmi ' (310)

andforT<r-oand||/||T1 < 2^^, we find

\\DTfg\\Ttl < i\\g\\Ttl \\DTfg\\Tt00 < \\\g\\Tt00

The above estimates imply that T contracts the ball of radius ||t70||i around
_ 2

e Vo(k) E HT into itself. Therefore the solution 77 of (3.4) with initial data Tfo

coti çfiûp

||r}||t)1 < 211^11, for t < T-o (3.11)

The same arguments as those leading to (2.12) imply then

\\v\\t,oo < 2||%lloo, for t<T^. (3.12)

To show that ||^||x tends to 0, we use the bound

^-Mloo+K0t^2 sup II« II»

* ' 0<T<t
wvtWi <v :;;u2iio° +w SUP wui

(3.13)

< V^Holloo K «3/1/2 M - ||3
— /1/2 * oz L ir/oiii
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and

Ilvico < Il%lloo + ^o23i1/2||^ollooll%lli- (3-14)

Introducing again

m*i,<2 SUP listili i mt libili >

Vh,t2 SUP Halloo » Vt Moo
<!<t<t2

and defining
C*

tn +"n+1 -n m3 '

we find a converging scheme as in Section 2.1. This completes the proof of
Proposition 3.1.

4. The Full Equation

In this section, we provide the proof of Theorem 1.1. Since the proof is somewhat
lengthy, we explain first the main steps. If we denote by s, 77 the two components
of the problem, then the linear part of the problem is, in fc-space, equal to a matrix
operator —L, where L is of the form

/,ta + 2(l-g2) 2q^T77g2\
L={ TSfa2 "2 )¦

We shall treat this operator differently for |fc| < 1 and for jfcj > 1. The large
momenta are easy to handle since then L has spectrum in the right half-plane,
which is bounded away from the imaginary axis. To handle the case \k\ < 1, we
diagonalize L by a transformation R,

* - Q f e-u

where we define Â by

w)w {(i/)W, !fw<î; <4-2'
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and

with

Similarly,

where

s/r-- 92(A --1)
2q

5

V/1 + 4q2k2/(l -q2)2
_

_/o," I (Bf)(k)
\i\k\
if jfc|

> 1

<1

-2q

V^-q2(l + A)'

(4.3)

(*/)(*)= nrWM St 5i (4-4)

(4.5)

Note that R commutes with multiplication by k and is the identity when \k\ > 1.

We consider, for small momenta, L0 — RLR-1, and we work in the basis

(v,w) R(s,r)). In the new variables, (tj,**;), there is a "fast" coordinate, v,
and a "slow" one, w, and therefore the ideas of the simplified model of Section
3 apply. We do not work directly with the operator k/(k2 + 2) we found there,
but the choice of the norms which we shall use will allow us to transfer some
regularity from the v variable onto the w variable, and this process mimicks the

explicit regularization of k/(k2 + 2). In fact, (k2 + 2)_1/2 would have sufficed in
the simplified model. Of course, the "positivity of the mass," i.e., the observation
that for k — 0 one of the two eigenvalues of L is strictly positive, will also be used
in all estimates of e~Lt and e~Lot.

4.1. The Operator L

We consider first the operator L. By the change of variables (4.1), we find, for
1*1 < 1.

,-1 r /A 0RLR-i L0 J I (4.6)

with
A k2 + (1 - g2)(l + A)

H k2 + (l-q2)(l-A), (4.7)

A y/l + 4q2k2/(l -q2)2
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The Eckhaus instability occurs when /i behaves, for small k, like —const, k2, with
a positive constant. This occurs when q2 > 1/3 and is the reason for restricting
the analysis to q2 < 1/3. One has

p-Lot e~Xi 0
¦" '

0 e"*** (4.8)

When |fc| > 1 then we consider L itself and get

1 / e-* _ ABe~ßt B(e~ßt - e~Xt)e-Lt (4.9)
1 - AB V A(e~xt - e-"') e~ßt - ABe~xt

where A has been defined in (4.3) and B has been defined in (4.5). Note that

A 0(k2) when k -» 0

A O(lfcl) when fc -> ooVl u 4.10
B 0(1) when k -> 0

5 0(|fc|_1) when A; -? oo

Finally, observe that (1 — AB)-1 is uniformly bounded for fcçR.

4.2. The Spaces

We begin by defining the spaces in which we are going to work. All norms are in
momentum space, e.g., ||fc/||2 is a short-hand notation for

ii*/iia (y'dkk2\f(k)\
1/2

2
"

Also, we omit the ~ which denotes Fourier transform and work exclusively with
functions in fc-space. As in the proofs of the simplified model or in Section 3 we
have spaces at "fixed" time, denoted by TC, /C, and C, and spaces for intervals of
time, denoted by HT, /CT, and CT. We denote by P< and P> the operators of
multiplication by the characteristic functions of {\k\ < 1} and {|fc| > 1}. We also
define Q(k) min(|fc|, 1).
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Definition.

H {X0 (s,V) : kseL2, se^nL00, Q(k)rjeL2, 77 g x1 ni00},
/C {Y0 (v,w) : kveL2, ïGlfar, Q(k)w G L2, w G L1 n L00}

C {Z0 (f,g) : Q(k)f e L2, f e L1 nL°°, g e L2 nL°°}.

Remark. The spaces H and /C are equal, but we distinguish them and will view R
as a map from Ti to /C. Also, the inclusion of the condition s G L1 is redundant,
but convenient.

Since we shall use the strategy of Section 2.1 to show that the solution tends
to zero, we again need to define the "integral" and the "sup" part of the norms, so

we define

mn(Xo) max(||fca||2, \\s\h, ||Q(%||2, Nili) >

Vh(Xo) max(llslloo> Nloo) >

and similarly for K. For the space C, we have by analogy

mc(Z0) max(||Q(fc)/||2, H/lk, \\g\\2)

yc(Z0) maxdl/IL, \\g\U
We consider on H, JC, C the corresponding norms

\\xo\\h maAmn(xo)^yH(xo)) »

ll^ollx: max(m/c(^o)5yx:(yo)) >

||Z0||£ max(mc(Z0),yc(Z0))
We also define the spaces

UT {X {Xjf€[0(T] X, G H for t G [0,T]}

/CT {F TOf6[0>ï1 Ft G /Cfort G [0,2*]}

CT {z {Zt}t6[0i31 ZtG£foriG[0,r]}
with the corresponding norms

\\x\\ht SUP Wxt\\n >

t€[0,T]

\\Y\\Kt S»P \\Yt\\K,
<€[0,T]

||Z||£t sup ||Zt||£
te[o,r]

(4.11)
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Finally, we extend the other definitions to the full spaces:

mnT(x) SUP mn(xt) i
te[o,T\

y-HT(x) SUP yn(xt) >

te[o,r]

(4.12)

and similarly for /C, £.

4.3. The Integral Equation

Before we state the estimates, we reformulate the problem as an integral equation.
We recall the main equation, written in x-space,

dts d2xs + s - 3(1 - q2)s - 3VI -q2s2 - s3

— y/l — q2 rf — 2 \/l — q2 qrj — sq2 — 2qsr/ — srf

0,77 <9277 + 2dx JS q + 2dx( d~*
(4.13)

We define the nonlinearities, written in x-space, by

Af0(s,r]) -3-v/î - Q2 s2 - s3 - y/l - q2 rf - 2qsr) - srf (4.14)

M1(sìrì) 2q{"^--4^=\+2- ^ -
_y/ï=ÏP + s yF^q2) y/l-q2 + s

Note that the overall derivative in the second component has been omitted. It
will be taken care of below. This term will in fact show that the derivative in the

nonlinearity in the second equation of (4.13) is compensated by the semigroup.
Define M by

M :Z->MZ; (MZ)t [ dre-TLZt_T. (4.15)
Jo

The problem we consider is of the form: Given X0 G Ti, and T > 0, try to find an
X G TiT such that

X TX (4.16)
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where

(TX)t e~LtX0 + (MVM(X))t (4.17)

with X G TiT, M (A/q J\f1 and V defined by

"(>>-G$,)'
in other words, V is the operator we omitted in the operator Mv

Recall that P< and P> denote the operators of multiplication by the characteristic

functions of {|fc| < 1} and {|fc| > 1}. Then we can rewrite the operator T
in the form

TX TKX + T>X
where

(TyX)t e-itP>X0 + (MVP>M(X))t
We really work on K RTi (see below) and therefore, we consider instead of T
the operatore RTR-1. We next rewrite U< as

(UKY)t e-i°tP<F0 + fdre'^VP^^R-'Y))^ (4.18)
Jo

where LQ RLR-1. Recall the definition of R, Eq.(4.1). Since the operator A
has an explicit factor of k2 by Eq.(4.10), we can write RDP^, VSP<y where

* <(£?)• (4.19)

and hence we shall consider

(UKY)t e-^P^A- j\re-LoTVSP<(Af(R-1Y))t_T

(W>n e-itP>r0 + (^DP/^y)),.
Some factors of R and i?_1 have been omitted in the last equation since Rr1 P>
P> (strictly speaking, they should have been replaced by the natural isomorphisms
between Ti and K). Note that the operators R, S, L, L0 and V, but not M, commute
with multiplication by k. We will control the operator U by studying the operators
as maps between the following spaces:

R:Ti->K, R-x:K^Ti, Af:H^£, M : C -> K 5 : C -» C
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4.4. The Operators R and S

Remark. Here, and in the sequel, K denotes a constant which may vary from
equation to equation, and which is independent of the ingredients of the equation,

except of q, but which is bounded uniformly in q for \q\ < q0 < 3 '
In this subsection, we bound R, R-1, and S. Since R, and S are nontrivial

only for |fc| < 1 and since R and R'1 have the same form up to the factor

1/(1 — AB), and signs, it suffices to bound the operators A, k~lA, B and kB. In
the next two lemmas we bound R, resp. S. Recall that AP> BP> — 0.

Lemma 4.1. One has the following bounds

\\kÂP<s\\2 < K\\

\\ÄP<4i < K\
II^Vlloo < K\

||fcBP<i7||2 < K\

\\BP<<l\\i < K\

\\BP<l\\ao < K\

ks\\2

«lloo >

Q(k)v\\2 >

»?lll.

^lloo-

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Lemma 4.2. One has the following bounds

Hk-^/Ha < ÜT||P<*/||a

ir2ip</iL < «moo,
\\k(kBP<9)\\2 < K\\g\\2

WkêP^W, < K\\g\\2

||*ÄP<fflL < ütiml

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Proof. Since, by Eq.(4.10), we have |A;_2i| < K, and Ê 0(1), the proof is
obvious.

Corollary 4.3. The following linear operators are bounded:

R.TÌ-+K, R'1 :K^H, SP<:C-^C.
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Furthermore,

mKT(RX) < KmHT(X) yKT(RX) < KyHT(X)
mHT(R-XY) < KmKT(Y) y^R^Y) < KyKr(Y)

Finally,

m^SP^) < KmCT(Z) yjCa.(5P<Z) < KyCr(Z) (4.33)

Proof. The proof is obvious from the definitions of the spaces, and from (4.21)-
(4.31).

4.5. The Linear Semigroup for \k\ < 1

Here, we consider the semigroup e~L°iP< acting on /C. We denote the matrix
elements of e~L°tP< by Gi;j(t), i,j 0,1. Note that G10 G01 0. From the

definition (4.7) of A, /x, we have the bounds, valid for q2 < 1/3: A > k2 + 1 and

pt > k2(l — 3g2). Therefore,

|Goo(*)l<e-(fc2+1)t,

\Gn(t)\ < e-^~3^k2t
(4.34)

This implies that

||G0o(t)llp < Ke-t,îoip l,2,
HöooWIL < fa

llöuWIL < L
||fcGu(*)||a <K(l + t)-3>\
IIGuWIli <K(l + t)-"2.

(4.35)

The last two inequalities are obtained by bounding the integral over k either by
the sup of the integrand (which leads to an 0(1) bound since |fc| < 1), or by
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integrating over all of k which leads to the inverse powers of t. Using (4.34), we
find

l|Goo(*ML £ IMI«, IIGiiW^lloo < HL • (4-36)

Furthermore, we have

\\kG00(t)v\\2 < e-*\\kv\\3 ||Goo(*Hi < e-'||«||x

l|fcGn(«)«;||2 < M\P<kw\\2 ||Gn(tHli < 4||«;||1
(4.37)

Finally, as in Eq.(2.13), we shall need the more interesting bounds where the

integral norms are bounded in terms of the sup norm, which are readily obtained
from (4.35):

\\kG0Q(t)v\\2 < Ke-*\\v\\t

l|G00(*)«lli < Ke-*\\v\

||*Gn(*Mla <ür(* + i)-8/4lHL.
||Gn(*Hli <ÜT(* + ir1/2|HL-

lOO >

loo '
(4.38)

4.6. The Linear Semigroup for \k\ > 1

We next produce the analogous bounds for the case when |fc| > 1, i.e., we work on
the space P>Ti. Using now the form (4.9) for e~LtP>,we call its matrix elements

Hi:j(t). Recall that A > k2 and p > k2(l - Zq2) k2p. Note that p depends on

q, but for fixed q2 < 1/3, p is a positive (g-dependent) constant. Since K is also
defined to be g-dependent, the estimates in this section are valid for every fixed
q2 < 1/3. We get, using always that |(1 - AB)*11 < K, and |fc| > 1,

\H00(t)\ < Ke-»*-1*2»*,

IHoiWI < K^ie~Pt~k2pt » (4-39)

\Hu(t)\ < Ke-pt~k2pt

In order to bound H10, we need to take into account the cancellation of the

two terms. Recall that Hw(t) A(l - AB)~1(e~xt - e~ßt)P>, and that
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A — \i — 2A(1 — q2). Thus, we can write

^o(/) rfa^e"<(1-e_2A(1"2)<)p>-

We also have A 0(\k\) and A 0(\k\) as k -> oo, so that we find a bound of
the form

\Hl0(t)\ < K\k\e-pt-k2pt(l - e-°WWt)

When \k\t > 1, we can bound (1 - e~0(1)|fc|t) by 2 and get

|#10(*)| < Kk2te-pt-k2pt < Ke-pt-k2ptl2

and when \k\t < 1 we bound (1 - e"~°(1)|fe|<) < ö(|fc|i) and hence we find in
all cases,

\H10(t)\ < Ke-pt-k2pt/2 (4.40)

Clearly, for all p > 0, we have bounds of the form

IFJTyWI < Kpt-p/2e-pt~k2pt/2

We can now proceed to the analogues of the bounds on G-. We have

IWWL < Ke-Pt\\h\\oo ¦ (4-41)

Furthermore, we get

\\kH00(t)s\\2 < Ke-pt\\ks\\2 11^00(0*111 < ^""ll'lli
\\kH0X(t)V\\2 < Ke-pt\\P>V\\2 \\Hox(t)V\\x < Ke-*\\v\\i

f4 42)
||#10(*)*||2 < Ke-pt\\ks\\2 ||jyio(0*lli < Kahili >

H^nW^lla < ^e-"*||P>r7||2 ||JErlx(*)iy||x < ife^l^H,
Finally, one can bound the integral norms in terms of the sup norms and one gets

\\kH00(t)S\\2 < ^"3/4e-p<|klloo > ll#oo(*)'lli < Kr^2e-pt\\s\
\\kH01(t)ri\\2 < Kt-^e-^U^, \\H0X(t)r,\\x < Kt'^e^U

\\Ex,(t)s\\2 < ^-1/4e-"i||s||oo, \\H10(t)S\\x < Kt-^2e-pt\\s\

\\Bu(t)v\\9 < Kt-^e-^U^, \\Hxx(t)V\\x < Kt-^2e-pt\

00 '

00 '

00 '

00

(4.43)
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4.7. The Inhomogeneous Term

We combine here the estimates of the last two subsections to formulate the bounds
on the inhomogeneous term e~LtX0 for later use.

Proposition 4.4. Let X0 eH,Y0e IC. There is a constant Cx for which the

operators e~Li, e~Lot satisfy

mHT({e~LtXo}te[o,T]) < CxmH(X0) (4.44)

yHT({e~LtxoU[o,T]) < Cxyn(X0) (4.45)

yK(e-iotP<F0) < yK(P<Y0) (4-46)

yw(e-itP>X0) < G1e-'/2yw(P>X0) (4.47)

Finally, there is a t0 > 0 such that for t > t0,

mH(e-LtX0) <Cx(t + l)-1/2yH(X0), (4.48)

yK(e-i»'P<F0 + Pe-Ltp-1P>F0) < yK(Y0) (4.49)

Proof. The inequality (4.44) follows from (4.37) and (4.42). The inequality (4.45)
follows from (4.36) and (4.41). Eq.(4.46) follows from (4.36) and Eq.(4.47)
follows from (4.41). Eq.(4.48) follows from (4.38) and (4.43). Finally, choosing
t0 > 21og(G1), we see that (4.46), (4.47) and R±1P> P> imply (4.49).

4.8. The Nonlinearity

We consider the nonlinearity in (4.14) as a map from TiT to CT. Note that the
norms have been chosen to make these estimates easy. We need the following
version of the Sobolev inequalities:

Lemma 4.5. Let kf G L2 and f G L°°. Then we have f G L2 and

^Sll/ll^llfc/ll^3. (4.50)
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Proof. Assume for simplicity that / > 0. To prove (4.50), we use

ll/ll2 / dkf2(k)+ [ dkk2f2(k)±

MfWl + ^\\kf\\l

Setting a \ \\kf\\22'31|/||^2/3, the bound (4.50) follows.

Lemma 4.6. There are constants ßQ > 0, G2 > 1, such that the following is true

ify < ßo< m < ßo: assume that

mn(xo) < m yn(xo) < y ¦

Then one has, in k-space

\\Q(k)M0(X0)\\2 < C2(m2 + m3/V/2) (4.51)

IM»(*o)lli < C2m2 (4.52)

\\K(xo)\Ì2 < C2m2 (4.53)

IM(*o)lloo < C2my, (4.54)

IM(*o)IL < G2(m4/V/3 + m3/V/2) (4.55)

Proof. The proof follows by a multiple application of the Young inequality. We
denote convolution by *, and assume X0 (s, rf). For example, in order to prove
(4.52), we observe that

IIs * *||i < ||s||i < rr? 11T7=|c ^?!Ix ^ IMIi —
m2

>

and all other terms in AfQ lead to even better bounds. In order to bound the
difference term in J\fx, we write it as a geometric series, and bound each term
individually. The most dangerous term is, written in x-space,

2q " ?d.., (4-56)vT^yr^
and this is bounded by üTHsl^ ||fcs||2 < Km2. All other terms are smaller and the
geometric series converges. This proves (4.53). The bounds for the norms in L°°
are obtained similarly. For example, we have

\\s*s\\oo < IMIilMloo < ™y »

NHL < IMIilML < ™y ¦
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Again, for Afx, we use the geometric series, and get, for example for the term
(4.56), a bound of the form

K\\(ks) * sW^ < K\\ks\\2\\s\\2 < K\\ks\\t/3\\s\\2J? < Km*/3y2/3 (4.57)

by Eq.(4.50). Similarly,

K\\(ks) *v\\oo < KWksUnh < ^H^Il2hlli/2lkH^2<^^3/V/2.
(4.58)

These bounds prove (4.53)-(4.55).
Finally, we prove Eq.(4.51). We have

WkP^s * s)\\2 2||P<((fcs)*«)||2 < 2||(fc«)**||2 < 2||fc«||2||s||1 < m2

Similarly,

11^(77*77)11, < ||P<(77*77)||2 < \\V\\2\\V\\X < \\V\\3A\V\\IL2 < m3/2y1/2.

For \k\ > 1, we have

l|P>(***))„2 < l|P>fc(s*s)ll2 < 2||(fe«)*«||2 < 2||fc«||2|Mli < m2

and

\\P>(l*v)h < NI2NI1 < NI^NI^ < m3'2^!2.
All other terms are smaller, and hence (4.51) follows.

We finally bound the tangent map.

Corollary 4.7. There are constants ß0 > 0, G2 > 1, such that the following holds
when y < ß0 and m < ß0: Assume that X0 G Ti and that

mH(X0) < m \\x0\\H < z

Assume V0 G Ti, andletm' mH(V0), \\V0\\H z Then the tangent map DM
satisfies

\\Q(k)DAf0tXV0\\2 < C2(m + m1/2z1/2)m' (4.59)

\\DK,XoVo\\i < C2mm' (4.60)

WDKxoVoh < C2mm', (4.61)

\\DM0Jc0V0\\oo < C2mz', (4.62)

\\DKx0V0\L < C2(mz'2/3m'1/3 + m^z^m') (4.63)
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Proof. Note that \\X0\\n ma,x(yn(X0),mn(X0)). The proof follows by
polarization from the proof of Lemma 4.6. The critical case in (4.63) is handled
as follows: Let X0 (s,rj), V0 (s',r)'). To prove (4.63), we have to bound a

term of the form \\(ks) * s'W^. Using (4.57), (4.58), we see that

||(fcs)* s'IL < K\\ks\\2\\ks'lll^WfJ,3

ms) *v'\\oo < ^ii^ii2iivni/2iiviro/2 •

oo '

Similarly,

||(fcs')HL < ^IIMI^II'll^'lMIa
W(kB')*v\\co < ^NIi/2Nri2ll^'ll2 •

Other such terms are handled analogously and, using m' < z', these bounds prove
(4.63).

Without loss of generality, we assume the constants in Lemma 4.6 and

Corollary 4.7 are the same.

4.9. The Operator M

In this subsection, we bound the operator M as a map from CtoTi (or IC, which
is the same).

The bounds are divided into two groups, one for PK and one for P>. We

begin by estimating the matrix elements of f dreLaT. These estimates are all
based on the following type of inequality:

\\k\ drG00(r)ft_T\\2 < f dr \\G00(r)\\^ sup ||fc/T||2
Jo Jo 0<T<t

We shall henceforth write supT instead of sup0<T<t. We will use various norms
and powers of k, but the principle will always remain the same.
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We have the bounds, using (4.34), (4.35),

/ <MG00(r)IL < K,
Jo

[ dr\\kGxx(r)\\2 < Kt1'*,
Jo

f drWk'G^r)]^ < Klog(l + t),
Jo

f drWkG^r)^ KKt1'2.
Jo

The bounds on G,-,- which we need below are:

\\k I drGm(T)ft_T\\2
Jo

< [ dr ||G00(r)||oosup||P<fc/T||2 < üfsup ||<?(fe)/T||2 (4.64)
JO T T

|| fdrGQ0(r)ft_T\\x< /"'drllGooMll^supll^H^A-supll/Jl!.
Jo Jo T T

Similarly,

\\k f drGxx(r)kgt_r\\2
Jo

< j dr H^GnMIL sup ||5t||2 < iCi1/4 sup ||5t||2,
JO TT|| / drGxx(T)kgt_r\\x< f dr ||fcGn(r)||2 sup ||gT||2 < Kt1'* sup ||yT||2.

Jo Jo T T

(4.65)
We obtain similar bounds for the L°° norms:

|| / drG00(r)ft-TIL < üTsupll/J«,,
JO T

|| f drGnCrJfcft^lL < /rt^supll^H«, (4.66)
JO T

|| /'drGuMfeVrlloo < iSriog(l + *)8Up||£rT|L.
JO T



Vol. 65, 1992 Collet, Eckmann and Epstein 85

We next handle the momenta |fc| > 1. Then, by Eq.(4.39), (4.40), we have

/"«friktfooOOIL £K> /"*" titoli« < K,
Jo Jo

f dr \\kH0X(r)\\2 <K, [ dr ||fcP10(r)|L < K
Jo Jo

f dr\\kHxx(r)\\2 < K, f dr WkH^r)^ <K.
Jo Jo

All these inequalities follow by straightforward integration. Using these inequalities,

we find

||fc / drHw(r)ft_T\\2 <k[ drllfciWrJILsupllP^lla
Jo Jo r

< ürsup||p>/T||2,
T

|| / dTH00(r)ft_T\\x < K [* dT\\H00(T)\\oos*1>\\fT\\1 < KSnp\\fT\\x.
JO JO T T

(4.67)
Next,

II* / drHQX(r)kgt_T\\2 < [ dr ||fc2ff0iMlloo SUP libila < PC sup ||âr^||2,
JO JO TT|| f drH0X(r)kgt_T\\x < f dr\\kH01(r)\\2 sup \\gT\\2 < Ksup \\gr\\2.

JO JO T T

(4.68)
For Hxo,we get

|| f drHX0(r)ft_T\\2< f dr||JH-10(r)||oosup||P>/T||2<ifsup||P>/T||2,
JO JO T T

|| f drHXQ(r)ft_r\\x < I drll^oMILaupH/,^ <Ksup\\fT\\x.
Jo Jo r t

(4.69)
Finally,

|| f dr Hxx(r)kgt_T\\x < [ dr\\kHxx(r)\\2 sup \\gT\\2 < Ksup \\gT\\2
JO JO T T

|| f dr Hxl(r)kgt_T\\2 < [ dr {{kH^r)^ sup \\gT\\2 < ÜTsup ||^T||2
JO JO T T

(4.70)
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The L°° bounds are easy, and we get, for i, j G {0,1},

/"drflyOOfeVrlloo < supllMoo • (4-71)
Jo T

4.10. The Completion of the Proof of Theorem 1.1

In this section, we combine the various terms to show, first, that the map U, defined
in Eq.(4.20) is a contraction of a small ball in /CT. Then, we shall show that the
estimates on mK can be iterated and lead to the convergence of the solution to
zero.

Let T > 0 be given. This is the time interval during which we control the
solution of Eq.(4.16). We shall fix it below. Let Y G K,T. We start by giving
bounds on the nonlinear contribution to U, which, at fixed time t, is given by

(RMVM(R~1Y))t

(MVP>Af(R~1Y)) + f dre~LoTVSP<(M(R-1Y))t_T
Jo

(MVP>M(R~1Y))t + (M0VSP<U(R~1Y))t

By Corollary 4.3, the operator P_1 is bounded. Therefore, there is a constant
ßx > 0 such that if

\\Y\\Kt < ßi (4.72)

then ||P-1}'|LT < ßo-. so that Lemma 4.6 applies. Henceforth, we assume (4.72)
holds. In fact, we shall make increasingly stronger assumptions throughout the
proof, which guarantee that at every step of the proof all quantities are sufficiently
small for the various bounds to apply. Using (4.51)-(4.55), we find that

WiR-'Y)^ < K\\Y\\lT (4.73)

In fact, while this estimate is very suggestive, we will use directly the bounds
obtained from Corollary 4.7 to control the tangent map, because (4.73) is not a

good enough bound to prove convergence in time. We start by estimating the
tangent map of the nonlinearity.
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Proposition 4.8. Let ßx be the constant defined above. There is a constant Dx,
with 1 < Dx < oo, such that if \\Y\\Kt < ßx, then the derivative of the nonlinear
term is bounded by

mKT(DRMVM(R~1Y)Y') < D^l + T)1'*

x (mKT (Y) + mKT (Y)1'2\\Y\\]/2)mKT (X') (4-74)

yKT(DRMVM(R'1Y)Y') < Dx(l + Tf'*mKT(Y) \\Y'\\Kt

+Dx(l + T)1'2mKT(Y)1'3 \\Y\\2£mKT<r) (4.75)

+DX(1 + T)1'2™^ (Y) \\Y'\\TT ™Kt (Y')1'3

Proof. We start by considering VM. We have from (4.62), (4.63), the bounds

ycT(DK,xvQ) <C2mHT(X) ¦ \\vq\\Ht

ycT(DK,xVo) <C2mHT(X).mnT(V0)113 ¦ ||V0||^ (4.76)

+C2mnT(X)1'3.\\X\\27i3T.mHT(V0).

Similarly, taking the worst bound among (4.59)-(4.61), we get

™Ct(DMxV0) < C2(mHT(X) + mHT(X)1'2 -\\X\(£) -mHT(V0) (4.77)

We next combine these bounds with those on M. By (4.67)-(4.71), we see
that

m^MVP^) < KmCT(Z) yKT(MVPyZ) < KVCt(Z)

By (4.64)-(4.65), we see that

m^MoVSP^) < ÜT(l+T)1/4m£T(^).

The case of the bounds on y for |fc| < 1 is more complicated, because the two
components have different growth behavior in time, but also different powers of
the norms. We handle this in the following

Lemma 4.9. Let Z (f,g) G C and let

Wt (MQVSPKZ)t
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There is a constant K such that one has the bound

yK(Wt) < K^ + l)1'* sup ||/T|L + #(* + l)1/2 sup \\gT\
0<T<t 0<T<t

Proof. For the first component of W, these bounds are obvious, and in fact better,
as is easily seen from (4.66) and from the bounds (4.33) on S in Corollary 4.3. For
the second component, we note that S maps (/, g) to

i(k~xAf + g) i(kk~2Af + g).

By the last two inequalities of (4.66) and since k~2A is bounded, this leads to a
bound of the form

|| fdrG^Hkk-'Âf + g)^
Jo

<K fdr ||Gn(r)fe2/IL + K fdr UG^r)*^« >

Jo Jo

from which the assertion follows.
Returning to the proof of Proposition 4.8 we observe that by Corollary 4.3,

we have that P_1 and R are bounded linear operators in the various norms. We
can now combine the various estimates, in particular, by setting Z DMR-iYY'
in Lemma 4.9, and the assertion of Proposition 4.8 follows at once.

We can now proceed to the proof of existence of solutions for a time span T.
We need to define the subspace of /Cr of functions with the same initial condition.
Let UQ G /C. Then we define

)CT(U0) {Y G KT : YQ U0] (4.78)

All norms below will be on the space KT and we shall omit the corresponding
index from the norms, i.e., we write

m(Y) mKT(Y), y(Y) yKr(Y)

We consider initial data U0 G K. By Proposition 4.4, and Corollary 4.3, we
conclude that there is a constant D2, such that the inhomogeneous term

U {Re-^R-'Uo}^^ (4.79)



Vol. 65, 1992 Collet, Eckmann and Epstein 89

satisfies

yKT(U) < yKT(e-io'P<t/0) + yX:T(e-LtP>C/0) < D2yKT(U0) (4.80)

Similarly,
™Kt(U) < D2mK(U0). (4.81)

In principle, we would like to apply the contraction mapping theorem to show
that the equation U(Y Y has a solution, and to bound it for a time T of order

(l/mK(U0))2. However, the nonlinear nature of Eq.(4.75) does not allow this,
and we need a direct control of convergence to provide the necessary bounds. Let
Uq and T be given, and define U by (4.79). Then we construct a solution Y in
ICT(UQ) by iteration, setting

y(°) U Y{n+1) U(Y{n))

We shall show that the Y^ form a Cauchy sequence by using the identity

y(n+l) _ y(n) _ £/(y("h —U(Y^n~1^)

[ (feD^,..„^yw.y«..,))(y(")-ir(B-1)).
Jo

(4.82)
The difference between (4.82) and the general contraction principle is the availability

of some relation between the tangent vector and the point at which the derivative
is evaluated. This will allow to overcome the nonlinear bound in Proposition 4.8.

We shall apply the inequalities of Proposition 4.8 not directly to the norms,
but instead to upper bounds on these norms. We assume Y*-0' is given and we set

y fa1) 0. We assume

m(y(°)) < m0 y(y(°>) < y0 m\'3 < y0

(It is the last inequality which may only hold for the bounds, but not for the
norms themselves, and this is the reason for introducing the bounds.) We define
Ara0 m0 and Ay0 y0, and

n n

mn Yl Am> ' yn YI AyJ ¦

j=0 j=0

We shall show by induction that

Amn < 8-"Am0 Ayn < 2~nAy0 (4.83)
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and

m(y(n) _ y(n-l)j < Anin t y(y(») _ y(»-D) < Ayn (4.84)

By (4.82), this implies

m(Y(n)) < mn y(y<»)) < yB (4.85)

Note also that the bounds (4.83) imply that

mn < 2m0 yn < 2y0

Throughout, we assume that m0 and yQ are sufficiently small; this will give
conditions for the applicability range of Theorem 1.1.

We now prove (4.83) and (4.84) by using Proposition 4.8 and (4.82). Note
that (1 + T)1/4 < (1 + T)1/2. Using the inductive assumption for n, we get the
bounds

m(y(»+D _ r(n)} < AmJl + r)fa4i)Jmn + mJ/V/2)
< Amn(l + r)1/42D1(m0 + mJ/27/01/2)

y(y(«+D _ y(»)) < Ayn(l+T)1'iDxmn
+(1 + T)1/2!), (A7nnmy3y2/3 + (A7nJ1/3(AyJ2/37n„)

< Ayn(l + r)1/42D1m0

+(1 + T)1'^ (Amnml'3y2'3 + (Amn)1'3(Ayn)2'3m0)

< AyJl + T)1'42D1m0 + (AmS/3(l + T)1'24Dx(m0y20'3+y20'3rn0)

Therefore, if (1 + T)1'4™,^ is sufficiently small, we see that the inductive
hypothesis follows for (n + 1) if it was valid for 0,..., n. We have thus shown

Proposition 4.10. There are constants D* > 0, ß > 0 such that if the initial data

satisfy
mK(U0) < m0 <ß, yK(UQ) < y0 <ß,

with
1/3"V < Vo >

the problem U(Y) Y has a unique solution Y with Y G KT(U0) forT satisfying
(1 + T)1/4 < D*rriQ1'2. Furthermore, this solution satisfies

mKT(Y) < 2mQ, VKt(Y) < 2y0
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Remark. The above statement says that solutions exist for time T and bounds on
their norms double at most during this time.

We finally want to show the convergence to 0 of the solution as t —* oo.
As in the earlier examples, we do not expect convergence in the norm yK(-), but
only of the integral norms mK(-). In fact, the bounds on the y-norms will be seen
to grow to a finite multiple of their initial value. We therefore will assume that
the initial value has been chosen small enough to offset this growth. We divide
the time into segments whose length T is of the order of the value of ra-2 at the
beginning of the considered time span.

Assume UQ and T are given, and let Y G K.T(U0). Assume furthermore that

m(U0) < m, y(UQ) < y, and assume y < e, m1'3 < y. If e > 0 is sufficiently
small, then the constant t0 of Proposition 4.4 will satisfy (1 + 2t0)1'im1'2 < D*.
We define T by (1 + T)1/4m1/2 D*. By Proposition 4.10, the solution
Y G 1CT(U0) of U(Y) Y satisfies

™Kt(Y) < 2m, yKT(Y) < 2y

Since T > t0, we have by Eqs.(4.48), (4.49), the bounds, valid for t0<t<T,
mK(Yt) < Gxy(l + r1/2 + «IMI + 01/4™3/V/2

yK(Yt) < y + SD^l + t^'^my + SD^lA-t^m^y2'3.
This implies

mK(Yt) < (C^y + SD.D*1'^1'2)™ < S(y + y1'2)m,

yK(Yt) < y + SD.D^ym1'2 A-iD^D*1'2™1'3 (4"86)

^y + Hy + y2'3)™1'3,

with S as small as we like if e is sufficiently small. (We have also used m < 1.)
Taking now YT as the new initial data, we find from the above bounds that for

m! 6(y + y1/2)m y' y + 6(y + y2/3)m1/3

we have

mK(YT) < m', yAYT) < y ¦

Since m1'3 < y we see that

m'i/3 < 81'3(y + y1'2)1'3m1'3 < y < y'
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provided S is sufficiently small. So YT satisfies the same bounds as U0 but with
m and y replaced by m and y Therefore we can iterate the argument. If we call

yk the kth iterate of the bound above, and determine always T from the preceding
bound on m, then, if e is sufficiently small we can achieve

%. 1/2 2/3n /i ^1
k + yk + y*, < è > mfc ^ 8mfc-i '

and therefore, by induction,

S^r* (1/2)' Sdy* < y0e 5=1 < yoe •

Therefore yfc is bounded for all k if e is sufficiently small, and mk tends to 0.

Furthermore, T —> oo as k —> oo and hence the proof of Theorem 1.1 is complete.
In fact, the construction of (1 + t^1'* D*mk1'2 shows that mK(Yt) <

O^-1'2), in other words, the convergence to zero is of diffusive type.
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