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Diffusive repair for the Ginzburg-Landau equation

By P. Collet, J.-P. Eckmann and H. Epstein

Centre de Physique Théorique, Ecole Polytechnique, F-91128 Palaiseau, France, Laboratoire UPR
Al4,CNRS

Département de Physique Théorique, Université de Geneéve, CH-1211 Geneva 4, Switzerland

IHES 35, Rte. de Chartres, F-91440 Bures-sur-Y vette, France

(15. VII. 1991)

Abstract. We consider the Ginzburg-Landau equation for a complex scalar field in one dimension
and show that small phase and amplitude perturbations of a stationary solution repair diffusively to
converge to a stationary solution. Our methods explain the range of validity of the phase equation, and
the coupling between the “fast” amplitude equation and the “slow” phase equation.

1. Introduction

This study is motivated by a desire to gain a better understanding of the space-
time dynamics occurring in hydrodynamic systems. Our global understanding of
such problems is still very incomplete, and here we focus on a typical, simple
example. However, it will turn out that even this simple example has a few
unsuspected difficulties. They will shed some light on the relation between fast and
slow modes, and their role in regularizing infrared singularities, which are typical
for hydrodynamic systems in large containers, due to the translation invariance.
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Another interesting aspect is the appearance of a sort of center manifold in space-
time dynamics.
The equation we have in mind is the complex Ginzburg-Landau equation for
the complex “field”
v: RxRt—>C,

satisfying
d,u(z,t) = 82u(z,t) +u(z,t) (1 — |u(z,t)|?) . (1.1)

This equation has time-independent (“stationary”) solutions of the form
u(z) = /1 - q2e'?®e'? (1.2)

for g € [-1,1], 9 € [0, 27). We call these solutions “spirals,” although for g = 0
their phase is constant.
We are interested in the initial value problem for initial data of the form

u(z,0) = r(z)e®

with
hrjr:l r(z) = /1 —¢?,
I —_—
Jim ¢'(z) =g,

but with a global phase shift

6=f_°;dw(¢’(w)~q),

which is not necessarily zero. This corresponds to “pulling” or “squeezing” the
spirals of the corresponding stationary solution. The question is whether such a
perturbation of the stationary solution will heal or whether it leads to a phase slip,
or will even migrate to another stationary solution.

When the initial perturbation is sufficiently large, then one expects one of
the latter two catastrophes to happen and such phenomena are still beyond control
of rigorous mathematics. What we shall show here, and illustrate in a somewhat
wider context, is the result that small perturbations heal when q is in the Eckhaus
stable domain (¢° < 1 /3).

A very interesting problem is the global analysis of the initial value problem
with different g-values at +oco and —oco. One expects then the “invasion” of the
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less stable solution by the more stable one. This is again a problem which at this
moment does not allow for precise mathematical statements.

An intuitively appealing argument of why repair happens goes as follows (but
will turn out to miss some essential features of the problem). Consider Eq.(1.1) in

polar coordinates, u = r €*®. One gets
O = r4r—1°—r(?, (1.3)

¢ = ac+20, (%) | (1.4

with ( = J_¢.

Note that since the r.h.s. of (1.4) is a derivative, [({ — ¢) is a conserved
quantity, so that the total phase shift 6 is conserved. However, as a function of
time, {(x,t) — g for every fixed = when the initial data are suitably chosen. This
is behavior similar to that which occurs, with ¢ = 0, for the simple example of the
pure diffusion equation 8,¢ = 82(.

Consider now the vicinity of a stationary solution,

r(e,t) = V1- ¢ +s(z,t), ((z,t) = q+n(z,t).

The reduced equations for s, n are

d,s = 825+ s5—3(1 —¢° 3—3\/1—q23 — 8
—V1-¢?n" —2y/1—q*qn—sq° — 2sqn — sn”, (1.5)

0_s d_s
d,n = 82n+ 20, 2 + 28 2 :
=t (o ()

" The corresponding linear system is (linearized around 0)

0,5 = 833—2(1—(12)3—2 1-q2qn,

2 1.6
yn = 02 + 20%s—= (1.6)

It is well-known, see e.g.[CE], that this system becomes unstable at small nonzero
wavevectors when g2 > 1 /3, 1.e., there are unstable eigenvectors which correspond

to long-wavelength oscillations in space. Thus, one does not expect healing when
g> > 1/3. When ¢ = 0, the problem (1.5) reduces to

3t3=833-2s—n —3s% — 5% — s?,

8”8 (1‘ )
( )
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In essence, the repair of the defect is now seen as follows: Due to the term —2s,
the s variable relaxes quickly to its equilibrium value, and then the n variable
diffusively tends to zero.

The problem with this argument comes from the 5 term in the first equatlon
of (1.7). In fact, s does not relax (fast) to zero but rather to something like n or
some other 7 dependent function F'(7). Substituting into the second equation, we
get the slow equation

dn = &n+20, (%’%n) | (1.8)

Does this equation repair diffusively? We will see that this is indeed the case.
However, at first sight, this is far from obvious, and it is useful to get an idea of
the following, more general, class of problems. Let N (u, ', u"') be a polynomial
in the derivatives of u. Consider the equation

Ou = v + N(u,u',u") . (1.9)

Then, essentially, the following is true. If N is a monomial, N = ()" («')"'

(w”)??, denote by d its “degree,” d = p, + 2p, + 3p,, and assume 2p; + p, < 2,
and p, +p, > 0. If d > 3 then small initial conditions of the equation (1.9) tend to
zero, and if d < 3 then there are arbitrarily small initial conditions which diverge
in finite time. The case d = 3 is marginal, and depends on the details of N. For
example, N = u® is unstable and N = wv' is stable. The results mentioned
above, and much more, are studied in many papers. For a review, see [L], and for
an early reference, [W]. In Section 2 below, we give proofs for the cases which
interest us in the sequel, and in order to familiarize the reader with the method.
Note that the problem (1.8) is stable according to this power counting, but we will
see several difficulties appear when ¢ # 0. To illustrate our method, we will treat
some of the cases for NV in the next section. The general strategy of our proof for
the full problem will then be more transparent.
The main result of this paper is the

Theorem 1.1. Letq® < 1/3. Thereisane = g, > 0 such that the solutions (s, n)
of the Eq.(1.7) tend to zero in L™ as t — oo if the initial data satisfy

IESollz <&, l%olloe <€,

k ~ s
|||k|_|_1770||2<5 Iolly <5 lIolloe < -

Here, f denotes the Fourier transform of f and ||k f||,= ([ dk k2|f(k)|2)1/2.
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2. Some Typical Cases

2.1. The Stable Side

In this section, we analyze the equation
Ou = Ou+uP (2.1)

in the case when p > 3. Then, sufficiently small initial data will converge to zero.
We formulate this theorem with conditions on the Fourier transform of the initial
data, since this will lead to a somewhat easier proof, although the direct space
formulation would work as well.

Notation. Here, and in the sequel, we use £ to denote the Fourier transform of f,
and we use u, to denote u(-, t).

Proposition 2.1. Foreveryp > 3, p € N, there is a constant €, > 0 such that for
ldolloo < €5y ol <&y s

the solution of the initial value problem (2.1) with u(x,0) = u, tends to zero. In
addition, one has the bound

la,]l, < C(t+1)7"2,
for some finite constant Cp.

Remark. The proof which we give here is based on methods in momentum space
(conjugate to ). This will have the advantage of preparing the method of proof for
Theorem 1.1. On the other hand, since fractional powers are awkward to bound
in momentum space in the L' norm, we are forced to restrict the proof to integer
values of p > 3. A proof for arbitrary p > 3 in z-space would look very similar
to the one given here.

Proof. We shall work exclusively in the Fourier transformed space, and we call k&

the variable conjugate to z. We define f** = f ("~ f*! = . The problem
(2.1) is equivalent to the integral equation

t
8,i(k,t) = e~*ta (k) + / dre T @ P (k,t — 1) (2.2)
0
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We fix a maximal time 7" > 0 and work on the space H defined by
Hy = {h:R x[0,T] - C}, (2.3)
equipped with the norm

it

ma'x(”h”T,l ’ ”h’”T,oo) ’

where
lhllr, = sup [A(-t)l, -
0<t<T

The Picard method consists now in viewing (2.2) as a fixed point problem on H .

The existence of a fixed point shows then the existence of solutions for times less

than T, with bounds. Shifting the origin of time from O to 7" and repeating the

procedure, we shall propagate these bounds and obtain the proof of Proposition 2.1.
In view of (2.2) we consider therefore the operator 7 defined by

T:fe (Tf); (THkt) = e tag(k) + (MS)(k,t),  (2.4)
where M is defined by

M frm (MT) (MA0) = [ dre 7o e—r)

Since .
g™l < 1lgllf s 9" llee < llglleo lglT™ (2.5)
and
t 2
/ dre ™™ < ¢,
0
we find
IMFfllry < TNFllfy (2.6)
and .
IMFllT,00 £ Tllfll700 IFIIT: - (2.7)

Remark. It is the inequality (2.5) which does not generalize to non-integer p.
The functional derivative of 7 at f is DM ,, since the inhomogeneous term
is independent of f and hence we get from (2.6), (2.7), by polarization,

1DT;gll7, < PT||gll74 “f”g‘_il ) (2.8)
IDT;gll7.00 < PTN\gll7,00 1157 - (2.9)
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Thus, if we denote, for & € L,

1
T = -
v 2p(2|B)ly )t

then, for T < T and ||f|l1, < 2[|%,]|;, we find

(2.10)

IDT;gllrys < 3llgllra > 1PTrgllre < Fl9ll7e0 -

We fix now T' = T, and denote Uj(k,t) = e‘kztﬁo(k). Then the above

estimates imply that 7 maps the ball of radius ||&,||, around U, € H into itself,
since ||Up|lr; < ||doll; and 7 is a contraction. Therefore the solution % of (2.2)
with initial data u, satisfies

[2llsn < 2llaglly , fort < T, . (2.11)

The inequality
1l 00 < Nolloo + TNl 7 0 llalF

in turn implies
lls00 < 2l[#glloe » fort < Ty, (2.12)

We next show that ||(-,t)||, converges to O when ¢t — oo.

Remark. If uy(z) > 0 for all = then the integral [ dz u(z,t) is an increasing
function of time. Therefore we cannot expect that ||4,||, tends to zero. In fact it
must grow. However, we shall see that it stays bounded.

To show that ||, |, tends to 0, we use the inequality ||Uy (-, t)||, < (7 /t)'/2
||t || o SO that

o allgll _
faly < Y00 1t sup fa g
il , o1 (219
T||%g || oo B
< TR 92t g
by (2.8), (2.11). Similarly, using (2.9), (2.12), we get
1]l oo < Iliiglloo + 278 1ol oo llEo 11T~ - (2.14)

We now denote

My, ¢, — SUp ldglly s my = [laglly
t, <t<t,
Y, 6, — Sup lElloo s ¥ = 1)l -

t) <t<t,
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Since the Eq.(2.1) does not depend explicitly on time, we can rewrite (2.13), (2.14)
as
m < ﬁytl
ti,tz — (t2 _ t1)1/2

Yo, < Yy, (14 (b —¢)p2PmE") (2.16)
and by (2.10), these inequalities hold as long as

+2P(t, — ty)my, (2.15)

B — 2.17
e (217)

Assume now that m, < 1andy, < 7. Henceforth, K denotes a constant
which depends only on p and which can vary from equation to equation. Since
p > 3implies p — 1 > 2p/3, there is a constant C* such that if

* —2p/3
t, = t, + C*m?*
then ¢, satisfies the Eq.(2.17). Then, (2.15) leads to

my, < My g, S Kmflla ) (2.18)
and (2.16) leads to
Yy, < ¥, (1+ Emi 720 < gy, oK (2.19)

with g = p—1 — 2p/3 > 0. We now define recursively ¢, , = t, +C *m;2p/3’

and iterate the process. Then (2.18) leads to

My, <O j=—°(p/3)3mgf/3)n < (0*3/(p—3)m

(2/3)"
) T (220

t1
and hence (2.19) leads to

K " m
ytn+1 < ytle E;=1 7 S zytl S L.
The penultimate inequality follows from (2.20) and holds if m,_is sufficiently
small. This essentially determines the constant ¢, of Proposition 2.1. Note that

n n _Q(E)J’

bpgr — 81 = Z(tHl —t;) =C" Z (C*Sl(p_3)mt1) o

i=1 ij=1
~2r(p\™
=00 ([0*3/(P—3)mt1] 3 (3) ) .

Thus, ¢,,, — oo, and in fact the above estimate shows that if ¢, = 0, then

t, = O(m;?) so that ||@]|, = O((t + 1)7*/%), as t — oco. The proof of
Proposition 2.1 is complete.
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2.2. The Unstable Side

In this case, we shall show that Gaussian initial conditions lead to solutions which
diverge in finite time.

Proposition 2.2. Every Gaussian initial condition for the problem (2.1) withp < 3
diverges in finite time.

Proof. We shall use the Maximum Principle [F] to produce a diverging lower
bound on the solution. Consider first the case p < 2. Then we use the two
equations

O = 82v, (2.21)
Ow = 02w + ¥, (2.22)

and if both equations have the initial condition uy(z) = v(z,0) = w(z,0) =
Ce " a'/?, then w(z,t) is a lower bound to u satisfying (2.1) with u(z,0) =
uy ().

Remark. The coefficient C can be eliminated by rescaling space and time and thus
we consider only C' = 1.

We shall show that w(0, t) diverges as t — oco. The following observations
will be useful. If v(z,0) = u,y(x), then

/2 __a 2
u(ot) = (3%) e T, (2.23)
o(k,t) = e (t+3) (2.24)
~ 1 .?;_ _kz(i_i.HL)
Rkt = I (o) eV, (2.25)

as follows at once by Gaussian integration. We can write (2.22) as an integral
equation

i
w(k,t) = e—kz(t+é)+f dre *Top(k,t — 7). (2.26)
0

Integrating over k, we find, using (2.25),
i 1 L;"l‘
/ dk b (k,t) > ( = ) ( v

dr — 7
0 VP \1+ar t—I’T7-+a—p)1/2

> o)t
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as t — oo. Thus, for p < 2, the quantity u(0, t) diverges as t — oo.
If p satisfies 2 < p < 3, we essentially iterate the above argument, using
instead of (2.21), (2.22) the equations

v = 0%,

Ow = B:w + wvP
and then iterating n times the integral equation

—r

t
w(k,t) = e R (t+3) +/d£/ dr e‘kz(t_f)vﬁ(k—f,r) vP1(L, ). (2.27)
0

Since all terms are positive, it suffices to consider one of them and to show its
divergence. Setting t = ¢, , ,, this leads to an expression of the form

tni1 ta

o —kj (tj+1-t;)
x [Je7t (2.28)
j=1

n—1
X vp_l(klvtl) H vp_l(kj+1 - kjvtj) 4
=1

In the case of p < 2 we really used (2.28) with n = 1. If we integrate (2.28) over
k.., then dimensional analysis shows that the integral is bounded below by

1 1 1
o™ | —+ — — 2.29
0 (tf)(t&r)t?z— (2.29)
where we use, e.g.,

todr 1 ds 1 ds
e = e s b ] e S ),
/o T+7) / T+ts) ~ f.;.(ws)*f > O

as t — oo. Combining the powers in (2.29), we find a lower bound of

O(1)(0)t) P Dp-%

If p < 3 and ¢ is sufficiently large, this diverges as n — oo.
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2.3. The Marginal Case

In this section, we consider the case p = 3. This case is unstable.

Proposition 2.3. Consider the problem
du = O2u+u’, (2.30)

with initial data u(z,0) = u,(z) = Cal/2e™**". The solution diverges in finite
time for any C > 0, > 0.

Remark. The coefficient C' can be eliminated by rescaling space and time and thus
we consider only C = 1.

Proof. This proof is a variant of the case for p between 2 and 3, but the divergence

can only be seen by tracking logarithmic corrections. We now use the induction
O,v, = 02v, ,
0 0 (2.31)
6 vn+1 - a:c n+1 + vn )

which leads to a lower bound for the solution of (2.30), if the v,, have u, as
(positive) initial data. We will control inductively expressions of the form

n

f.(k,t) = C e“kz(”ﬁz)(log(l + at))™™, (2.32)

which are lower bounds on 9, (k, t). The n*® integral leads then to an expression

t —
Gugalht) 2 [ dre DRk ).

0
By (2.25), this leads to

t e TS FL I N
U,q(k,t) > / Jr ¥ Wtk (§+3“+‘a)(log(1+a1'))3p”

3n
03
"V31+3rar
& 371(103 —kz(t+3n+1 )] dr (IOg(l +Of7'))3pn
- V3 0 37(1 4+ ar)
c; —k? (t4+ —31=) 3pn+1
= e o lee(l+am) T = fuplk).

(2.33)
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Note that for the pure Gaussian problem, n = 0, we have Cy = 1, p, = 0. The
relation (2.33) leads us to define arecursionp,, ., = 3p,+1,ie.,p, = (3" —1)/2.
Furthermore,

L 2C; . 20, o Ca
nt+l = V3(3n+1 — 1) \/_3n+1 = 3n -

If we consider the recursion D, ., = D) - 37", with D, = 1, we find for
E, =log D,, the relation

E..,=3E,—-nlog3,

n

with the solution log3 low3  log3
og og og
E = — = 3
e L T
since B, = 0. Using (2.32), (2.33), we see that

ﬁn(k,t) > fn(k?t) 4 3_3n/43n/231/46_k2t6_k2/(3n+1a) (log(l +at))(3n_1)/4.

We see that if log(1 + at) > 371/2, then lim__, __ #,,(k,t) = oo, for all k. Thus
the solution diverges in finite time.

3. An Intermediate Equation

We consider here an equation which is obtained to lowest order from the problem
of phase diffusion which is of main concern for this paper. Consider the Eq.( 1.7).
Since both equations are of diffusive type and in fact the s equation has a “mass,’
we expect that both s and 7 are smaller than they would have been in the case
of pure dlffuswn In fact, s should behave about as 5°. Therefore, the terms
s?, s, sn are analogues of terms with p > 3 for the 31mp11ﬁed problem and
we have seen that such terms are not upsetting the diffusive repair of an initial
perturbation. We therefore concentrate on the remaining terms which illustrate the
precise mechanism of repair. Consider

8,8 = 85— 25— 7%,

3.1
Oyn = 92n+28,(nd,s) - W
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Assuming that s is a fast variable, and that n is slow, we find that the equilibrium

value of s is
= (&2 -2\’ (3.2)

This can be viewed as a center manifold for the motion of the (s, n) variable.
Substituting (3.2) into (3.1), we find

9,
52 — 37

8yn = 92n—20,(n (33)

Sometimes, an expansion of the operator 8, /(82 — 2) is performed in perturbation
theory. However, as is easily seen in Fourier transform, the operator —ik /(k* +2)
has much better properties at large k than its expansion in powers of k. Indeed, it
is at once visible from (3.3) that the problem is infrared and ultraviolet regular.
We will materialize this now in the proof of the following

Proposition 3.1. There is an € > 0 such that the solution of Eq.(3.3) with initial
data n,, satisfying

1T0lloo < €5 l7oll; <€,
tends to zero in L*™° ast — oo.

Proof. In momentum space, the integral equation corresponding to (3.3) takes the
form

£
~ _ _k t~ k2 (t—r
(k) = (k) [ ae f ar e MUk (k=8) 2 (0), (34)

where we use the notation 2=m? to make the analogy with quantum field theory
more transparent.

Note thatif m — 0, we get an infrared singularity in (3.4) which would reflect
that the time scale of s (given originally by m ™2 = %) has become comparable to
that of 7.

We can now repeat the methods of Section 2.2. We use again the space H,
defined in (2.3), and we define maps

T:f = (T); (TH(kt) = e tijg(k) + (MF)(k,2)
where M is defined by M : f — (M),

(MS)(k,t) /dﬂ/ dre ® Tk f (k—1)- f (£). (3.5)

£2
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Since |£/(£2 + m?)| < 1/(2m), we see that the integral in (3.4) is bounded by

t —~
[ [ arem e k- - 21
0

Using
it
f drlkle ™" < O@EY?),
0
we find
IMfllzy < KT\ fllg
and

IMFllzoo < ET?|| £l 1,00 11171 -
Therefore, we get for D‘]},

IDTygllry < KoT?ligllr 11171

IDTgll700 < KoT |19l o0 I FITs -

For each v we define a critical time

1
T. = ,
° 4-20K3||9||t

and for T' < Tj, and || f|7, < 2|7,

1> we find

IDTsgliry < 3llgllra s IPTpgllre0 < 3ll9lr,co -

(3.6)

The above estimates imply that 7 contracts the ball of radius ||7,||; around
2
ek "no(k) € Hy into itself. Therefore the solution 7j of (3.4) with initial data 7,

satisfies
”ﬁ”m < 2||7lly, for ¢ < Tﬁo .

The same arguments as those leading to (2.12) imply then

“ﬁ“tpo < 2”ﬁ0"a37 for tf;l%o'

To show that ||7,||, tends to 0, we use the bound

V7|70 [l oo

el < Y1572 + Kot'/* sup |||}

0<r<t

< \/E”ﬁomx

< e = K22 |

(3.11)

(3.12)

(3.13)
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and

illoo < Nolloo + Ko2°t /2 |I7i0l oo 107 - (3.14)
Introducing again
my ¢, — Sup I7lly s ™y = 17111
1<t<t;
Y4, 6, — Sup 1Telloe s Y = 17elloo »
t, <t<t,
and defining
C*
tn+1 = tn + m:t; ’

we find a converging scheme as in Section 2.1. This completes the proof of
Proposition 3.1.

4. The Full Equation

In this section, we provide the proof of Theorem 1.1. Since the proof is somewhat
lengthy, we explain first the main steps. If we denote by s, n the two components
of the problem, then the linear part of the problem is, in k-space, equal to a matrix
operator — L, where L is of the form

(k2 +2(1 - ¢%) 2q4/1-— qz)
kz .

2q kZ

We shall treat this operator differently for |k| < 1 and for |k| > 1. The large
momenta are easy to handle since then L has spectrum in the right half-plane,
which is bounded away from the imaginary axis. To handle the case |k| < 1, we
diagonalize L by a transformation R,

- (}1 Jf) , (4.1)

where we define A by

: 0, if k| > 1,
(AN)(k) = {(Af)(k), k21, (42)
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and
— (A -1
A= Mi—gia-1) (4.3)
2q
with
A = /1+4g%k2/(1 - ¢?)2.
Similarly,
; _Jo, if |k| > 1,
@00 = {Ghpw, i1 (&4
where 5
B = = (4.5)

V1I—-@1+4)

Note that R commutes with multiplication by k and is the identity when |k| > 1.

We consider, for small momenta, L, = RLR™", and we work in the basis
(v,w) = R(s,n). In the new variables, (v, w), there is a “fast” coordinate, v,
and a “slow” one, w, and therefore the ideas of the simplified model of Section
3 apply. We do not work directly with the operator k/(k* + 2) we found there,
but the choice of the norms which we shall use will allow us to transfer some
regularity from the v variable onto the w variable, and this process mimicks the
explicit regularization of k/(k* 4 2). In fact, (k* +2) /% would have sufficed in
the simplified model. Of course, the “positivity of the mass,” i.e., the observation
that for £ = 0 one of the two eigenvalues of L is strictly positive, will also be used
in all estimates of e~ % and e~ %°?,

4.1. The Operator L

We consider first the operator L. By the change of variables (4.1), we find, for
k| <1,

_ A0
RLR™' =L, = ( ) , (4.6)

with

p=k+01-¢)1-4), (4.7)
A = /1+4¢%2/(1-¢?)2.
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The Eckhaus instability occurs when p behaves, for small k, like —const. k2, with
a positive constant. This occurs when ¢® > 1/3 and is the reason for restricting

the analysis to ¢° < 1/3. One has

—At
~Lo 0
When |k| > 1 then we consider L itself and get
1 e ™ — ABe™H B(e“‘t e )
e = —— (" T L e ) o (49)
1- AB A(e —e ) e # — ABe

where A has been defined in (4.3) and B has been defined in (4.5). Note that

A = O(k*) when k— 0,

A = O(|k|) when k£ — oo,
B = O(1) when kK — 0,

B = O(|k|™") when k — oo .

(4.10)

Finally, observe that (1 — AB)™" is uniformly bounded for k € R.

4.2. The Spaces

We begin by defining the spaces in which we are going to work. All norms are in
momentum space, e.g., is a short-hand notation for

lefly = ( [ a kzlf(k)lz)llz .

Also, we omit the ~ which denotes Fourier transform and work exclusively with
functions in k-space. As in the proofs of the simplified model or in Section 3 we
have spaces at “fixed” time, denoted by H, X, and £, and spaces for intervals of
time, denoted by Hp, K, and L. We denote by P_ and P, the operators of
multiplication by the characterlstlc functions of {I1k| < 1} and f |k| > 1}. We also
define Q(k) = min(|k|, 1).
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Definition.

H={X,=(s,n) : kseL? se L' nL>®, Q(k)y € L* ne L' N L*},
K ={Y,=(v,w) : kve L* ve L' nL*®, Q(k)w € L*, w € L' n L™},
L={Zy=(f,9) : Qk)f € L? feL'nL>®, ge L*NL>}.

Remark. The spaces H and K are equal, but we distinguish them and will view R

as a map from H to K. Also, the inclusion of the condition s € L! is redundant,
but convenient.

Since we shall use the strategy of Section 2.1 to show that the solution tends
to zero, we again need to define the “integral” and the “sup” part of the norms, so
we define

my(Xo) = max(|[ks|ly, [Islly, |Q(&)nllz, [I7ll1)
Y (Xo) = max(|ls|l o, l7lle) 5
and similarly for K. For the space £, we have by analogy

mg(Zy) = max(||Q(k)fllz, I fll1, llgll2)
Y(Zy) = max(||flleos 19lleo) -

We consider on H, K, £ the corresponding norms

[ Xollne = max(my(Xo), y2(Xo)) »

[Yollx = max(my(¥,), yxc(Yo)) »

2ol = max(m,(Z,),y.(Z)) -
We also define the spaces

(4.11)

HT = {X = {Xt}tE[O,T] ’ Xt E HfOI‘t e [O,T]} y
Ky = {Y = {Yhepory» Yi€EKforte [O,T]} :

Ly = {z = {Z}sepoay» 2 € Llort e [O,T]} :
with the corresponding norms
[ XNl3, = sup || Xl
te[0,T]

”Y”}CT = Sup ||Yt||xa
t€[o,T)

12llcr = sup |1Z]l, -
te[0,T]
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Finally, we extend the other definitions to the full spaces:

My (X) = sup my(X,),
t€[0,T]

Yo (X) = sup yyu(X,),
t€[0,T]

(4.12)

and similarly for K, L.

4.3. The Integral Equation

Before we state the estimates, we reformulate the problem as an integral equation.
We recall the main equation, written in z-space,

8,8 = 2s+s5-3(1—-q")s—3y1—g2s*—5°
— V1 —¢2n* —2y/1—q2qn— sq* — 2¢qsn — sn° ,

(4.13)
O = don + 20, (

d,s Y 0,s "
V1—g®+s ? V1I—@g*+s .

We define the nonlinearities, written in x-space, by
No(s,m) = =31 —q?s> —s° —/1—@*n* —2gsn —sn”,  (4.14)
N1(3a77) = 2q (

d,s 0,5 0,5
o + 2 i
V1i—-¢2+s /1-¢° 1—g%+s
Note that the overall derivative in the second component has been omitted. It

will be taken care of below. This term will in fact show that the derivative in the

nonlinearity in the second equation of (4.13) is compensated by the semigroup.
Define M by

t
M:Z—MZ; (MZ), = f dre="z, . (4.15)
0

The problem we consider is of the form: Given X, € H,and T > 0, try to find an
X € Hp such that
X=7TX, (4.16)
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where
(TX), = e "Xy + (MDN(X)),, (4.17)

with X € Hp, N = (N, N;) and D defined by

P () ® = ()

in other words, D is the operator we omitted in the operator N .

Recall that P_ and P, denote the operators of multiplication by the charac-
teristic functions of {|k| < 1} and {|k| > 1}. Then we can rewrite the operator 7
in the form

TX =T X+1,X,

where
(I.X), = e P X, + (MDP, N (X)), .

We really work on K = RH (see below) and therefore, we consider instead of 7
the operator i/ = RT R™". We next rewrite U_ as

t
U.Y), = e*P Y, + / dre "DP_RWN(R'Y)),_,, (4.18)
0

where L, = RLR™!. Recall the definition of R, Eq.(4.1). Since the operator A
has an explicit factor of k* by Eq.(4.10), we can write RDP_ = DSP_, where

_.( 1 kB
S_z(A 1), (4.19)

1
k

and hence we shall consider

t
U.Y), = e P Y, + / dr e~ TDSP_(N(R™Y)),_, ,
) (4.20)

U, Y), = e P Yy + (MDP,N(R'Y)), .

Some factors of R and R~! have been omitted in the last equation since R*! P, =
P, (strictly speaking, they should have been replaced by the natural isomorphisms
between H and K). Note that the operators R, S, L, L, and D, butnot A, commute
with multiplication by k. We will control the operator ¢ by studying the operators
as maps between the following spaces:

R:H—K, RY:K-H, N:H—-L, M:L—>K, S:L-L.
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4.4. The Operators R and S

Remark. Here, and in the sequel, K denotes a constant which may vary from
equation to equation, and which is independent of the ingredients of the equation,

except of g, but which is bounded uniformly in g for |q| < g, < 3-1/2,

In this subsection, we bound R, R™*, and S. Since R, and S are nontrivial
only for |k| < 1 and since R and R™' have the same form up to the factor

1/(1 — AB), and signs, it suffices to bound the operators A kYA, Band kB. In
the next two lemmas we bound R, resp. S. Recall that AP, = BP_, = 0.

Lemma 4.1. One has the following bounds

|kAP_s||, < K||ks|,, (4.21)
IAP_s|l, < K]sll, , (4.22)
IAP 5|l < Kls|loo » (4.23)
IkBP_nll, < K|Q(k)nll, , (4.24)
IBPll, < K|l (4.25)
IBP 7l < Kl[nllo - (4.26)
Lemma 4.2. One has the following bounds

Ik"*AP_fll, < K||PEfll, (4.27)
k2 AP flloo < Klflloo s (4.28)
Ik(kBP_g)|l; < Kllgll, ; (4.29)
“kBP<9”1 < Kilgll (4.30)
IkBP gl < Kllglloo (4.31)

Proof. Since, by Eq.(4.10), we have |[k"24| < K, and B = O(1), the proof is
obvious.

Corollary 4.3. The following linear operators are bounded:

R:H—-K, R':K-H, BFg & L=h i
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Furthermore,

-1 1 (4.32)
My, (BTY) < Kmye (Y), 92, (BTY) < Ky (V) -
Finally,
me (SP.Z) < Km; (Z), y..(SP.Z) < Ky, (Z). (4.33)

Proof. The proof is obvious from the definitions of the spaces, and from (4.21)-
(4.31).

4.5. The Linear Semigroup for |k| <1

Here, we consider the semigroup e“LOtP< acting on K. We denote the matrix
elements of e“"r““'iP< by G;;(t), 4,5 = 0,1. Note that G, = Gy, = 0. From the
definition (4.7) of ), p, we have the bounds, valid for ¢> < 1/3: A > k* + 1 and
p > k*(1 — 3¢%). Therefore,

Goo(t)] < &=, (4.34)
Gl g T R, |
This implies that
1Goo ()], < Ke™ forp=1,2,
”GOO(t)”oo S 1 3
Gl < 1, (4.35)
kG (O]l < K1 +8)73/%,
Gy @l < K(1+8)2 .

The last two inequalities are obtained by bounding the integral over k either by
the sup of the integrand (which leads to an (1) bound since |k| < 1), or by
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integrating over all of k which leads to the inverse powers of {. Using (4.34), we

find
1Goo(t)?llee < I¥llees NG (W]l £ w]lo - (4.36)

Furthermore, we have

IkGoo(t)vlly < eTFllkvlly, [1Goo(t)olly < e™*[vlly

<
(4.37)
||kG11(t)w||2 % 4||P<kw||2, ||G11(t)w||1 < 4“'“’”1 s

Finally, as in Eq.(2.13), we shall need the more interesting bounds where the

integral norms are bounded in terms of the sup norm, which are readily obtained
from (4.35):

kG0 ()]l

1Goo(t)vlly

[kG 11 (t)wl|,

1G11 (t)wl|;

Ke ||| »
Ke ' ||v|loo »
K(t+1)7*w||
K(t+1)""?|w|| -

IA A

(4.38)

IA IA

4.6. The Linear Semigroup for |k| > 1

We next produce the analogous bounds for the case when |k| > 1, i.e., we work on
the space P, H. Using now the form (4.9) for e~ L tP>, we call its matrix elements
H;(t). Recall that A > k% and p > k*(1 — 3¢*) = k?p. Note that p depends on

g, but for fixed ¢> < 1/3, p is a positive (g-dependent) constant. Since K is also
defined to be g-dependent, the estimates in this section are valid for every fixed
g°> < 1/3. We get, using always that |(1 — AB)*!| < K, and |k| > 1,

|Hyo(t)| < KePt=* et

1 _ 2
[Hyy ()] < Kl—k—le e (4.39)

|Hyy (1)) < Kem#t=ret

In order to bound H,,, we need to take into account the cancellation of the
two terms. Recall that H,o(t) = A(l1 — AB)"'(e™* — e™**)P,, and that
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A — p=2A(1 — ¢*). Thus, we can write

—-A
1-AB

We also have A = O(|k|) and A = O(|k|) as k — o0, so that we find a bound of
the form

Hyo(t) = e Ht(1 — e~2A0-)) p

|Hyo(2)| < K|k|6_pt_k2pt(1 — e~ OWIkity
When |k|t > 1, we can bound (1 — e‘o(l)lklt) by 2and get
|Hyo(t)] < KkPte™#t*rt < Keptmkot/2

and when |k|t < 1, we bound (1 — e~ ®MI*Ity < O(|k|t) and hence we find in
all cases,

|H,,(t)] < Ke Pt=Fpt/2 (4.40)
Clearly, for all p > 0, we have bounds of the form

kPH,;(8)| < K t7P/2em Ptk et2
We can now proceed to the analogues of the bounds on G;;. We have
IH;; ()Pl < Ke™ ||| - (4.41)

Furthermore, we get

[k Hqo(t)s]l, < Ke_pt||k5”2a [ Hoo(t)sll, < Ke™*||s]l; ,

IkBoy (Ol < K™ IPorily, a0l < Ke ks
[Hyo(t)slly, < Ke ™ lkslly . [[Hyo(t)sll, < Ke™|lslly , '

[ Hy (E)nll, < Ke_pt||P>77||2= [ Hy1 (B)nll, < Ke_"tilnlll-

Finally, one can bound the integral norms in terms of the sup norms and one gets

[k Hqo(t)s]l, < Ktw3/4e_pt”5”ooa [ Hoo(t)s]l; < Ktml/ze_pt”*"'”ooa
IkHy, (0)nll, < Kt™ e |nll o, [|Ho (t)nll, < K72 ]| ,
[Hyo(8)sll, < Kthlﬂe_pt”S“ooa [ Hyo(t)s]ly < Kt_l/ze“pt”s”ooa
1Hyy (0)nll, < Kt |nllo ,  [|Hy(@)nlly < Kt 27|l -

(4.43)
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4.7. The Inhomogeneous Term

We combine here the estimates of the last two subsections to formulate the bounds
on the inhomogeneous term e ~* X, for later use.

Proposition 4.4. Let X, € H, Y, € K. There is a constant C, for which the

operators e L, e~ Lot satisfy

mHT({e_Lth}te[o,T]) < COymy(X,) (4.44)
yHT({e_Lth}te[o,T]) < Cryn(Xy) (4.45)
(
(

A

yic(e_LBtP<Yo) pe. y,C(P<Y0) ) 4~46)
yn(e P X)) < Cre 2y, (P, X,) . 4.47)

Finally, there is a t, > 0 such that fort > t,

m’H(e"Lth)
Y (e P Y, + Re M R'PY,)

IA A

Proof. The inequality (4.44) follows from (4.37) and (4.42). The inequality (4.45)
follows from (4.36) and (4.41). Eq.(4.46) follows from (4.36) and Eq.(4.47)
follows from (4.41). Eq.(4.48) follows from (4.38) and (4.43). Finally, choosing
ty > 2log(C,), we see that (4.46), (4.47) and R*' P, = P, imply (4.49).

4.8. The Nonlinearity

We consider the nonlinearity in (4.14) as a map from H, to £,. Note that the
norms have been chosen to make these estimates easy. We need the following
version of the Sobolev inequalities:

Lemmad.5. Letkf € L? and f € L*. Then we have f € L? and

1£ll2 < 322 NkFIIS" - (4.50)
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Proof. Assume for simplicity that f > 0. To prove (4.50), we use
1
113 = [ akpm+ [ deRPR

|k|<ax

k|2 e

1
= 20|l fII% + =5 kI3

Setting « = 1 ||k f||2/%|| £]|2/, the bound (4.50) follows.

Lemma 4.6. There are constants 3, > 0, C; > 1, such that the following is true
ify < By, m < By: Assume that

my(Xy) <m, yH(Xo) <y.

Then one has, in k-space

1Q(R)N, (X0l < Cz(mz +m3/291/2) ) (4.51)
[No(Xo)ll; < Cym?, (4.52)
IV (Xp)lly < Cym?®, (4.53)
[No(Xo)llow < Comy, (4.54)
M (Xo)lloo < C’z(m4/3y2/3 + m3/2y1/2) : (4.55)

Proof. The proof follows by a multiple application of the Young inequality. We
denote convolution by *, and assume X, = (s, 7). For example, in order to prove
(4.52), we observe that

lsxslly < [lslf < m®, llgxnlly < |nll < m*,

and all other terms in N lead to even better bounds. In order to bound the
difference term in N;, we write it as a geometric series, and bound each term
individually. The most dangerous term is, written in z-space,

2 —
g °_3,s, (4.56)
q2

Vi-¢*/1-

and this is bounded by K||s||, ||ks||, < Km?. All other terms are smaller and the
geometric series converges. This proves (4.53). The bounds for the norms in L*°
are obtained similarly. For example, we have

Is*slloe < lIsll1lIs]lee < my,
In*1llee < lInll1l7)lee < my .
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Again, for N, we use the geometric series, and get, for example for the term
(4.56), a bound of the form

K||(ks) % slloo < Kllksllyllsll, < Kllks|ly|sI2° < Km*/*y*/* , (4.57)

by Eq.(4.50). Similarly,

1/2
K||(ks) 1l < Kllksllalinlly < Kllksllsllnlly/ Inl%* < Km3/2yl(/z 58)
These bounds prove (4.53)—(4.55).
Finally, we prove Eq.(4.51). We have

kP (s % 5)ll5 = 2P ((ks) * )l < 2l|(ks) * 5]l < 2[|ks]5]ls]l, < m®.

Similarly,

3/2 |1/2 3/2y1/2 .

IEP (n*n)lly < [P<(nxmlly < [mllzllnlly < llnlly"" =]

For |k| > 1, we have

1P (s % )l < IPsk(s*s)lly < 2[(ks) *slly < 2[ksllallsll; < m®,

and
3/2
1Py < Inllalimlly < 32 ml22 < m®/2yt/2 .

All other terms are smaller, and hence (4.51) follows.
We finally bound the tangent map.

Corollary 4.7. There are constants 3, > 0, C, > 1, such that the following holds
wheny < 8, and m < 3,: Assume that X, € H and that

my(Xo) <m, || Xolly <z.

Assume V, € H, and let m' = m,,(V,), ||V,|l, = #’. Then the tangent map DN
satisfies

||Q(k)DNo,X0V0”2 < Cz(m+mllzzl/2)m’ ) (4.59)
||DN0,X0V0”1 < C2mm', (4.60)
||DN1,X0V0”2 < szm', (4.61)
”‘DNO,XO%HOO < szz’s (4-62)

IDN; x,Vollew < Co(mz"*m/*® 4+ m/3223m!) . (4.63)

(VAN
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Proof. Note that | X,|;, = max(y;(X,), my(Xy)). The proof follows by
polarization from the proof of Lemma 4.6. The critical case in (4.63) is handled
as follows: Let X, = (s,7), V, = (s',n'). To prove (4.63), we have to bound a
term of the form ||(ks) * s'|| .. Using (4.57), (4.58), we see that

1/3

(ks) % s'|| o < K|ks|ollks' 57311511223,
2

1(ks) * 0|l < KKsllolln' 57210 152 .

Similarly,

(ks") * 5|l < K|ks|l5"|Is1223||%s"]l ,
2
(ks") * nll, < Kl nlI2L2 ks, -

Other such terms are handled analogously and, using m’ < z’, these bounds prove
(4.63).

Without loss of generality, we assume the constants in Lemma 4.6 and
Corollary 4.7 are the same.

4.9. The Operator M

In this subsection, we bound the operator M as a map from £ to H (or X, which
is the same).

The bounds are divided into two groups, one for P and one for P,. We

begin by estimating the matrix elements of [ dre®™. These estimates are all
based on the following type of inequality:

t t
Ik [ dr Guo(r)erlle < [ drliGon(r)le sup 1K1l
0 0 0<r<t

We shall henceforth write sup.. instead of SUPg<r<¢- We Will use various norms
and powers of k, but the principle will always remain the same.
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We have the bounds, using (4.34), (4.35),

t
[ 47 [Goo()llee < K

0
t
dr ||kG 1 (7)]l < Kt1/47

0

t
[ a6 ()l < Klog1+1).
0

i
[ kG ()l < K2,
0

The bounds on G';; which we need below are:

t
”k-/o dr Goo(7) fi_rllo
¢
< [ arlGu(r)lwsup P11l < Ksup QLN (464

t t
I [ dr Goo il < [ @I Goo(llsup Ifll < K sup |l

T

Similarly,

i
Ik [ dr Gy (r)ka,. I
t
< [ dr B G (Dl supla, Iy < Ke*sup g,

t t
“/; dr Gy (T)kg,_. |11 §f0 dr ||kG 11 (7))l S‘ip lg- Il < K¢/t S‘:_P”g-r”z-

(4.65)
We obtain similar bounds for the L norms:
t
I [ drGoo(D)fecrlloe < K supifylc
t
IIf0 dr Gyy(T)kg,_,|leo < Kt'*sup|lg, ||y , (4.66)

t
l / dr Gy (T)k2g, |0 < Klog(1+t)sup g,|l., -
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We next handle the momenta |k| > 1. Then, by Eq.(4.39), (4.40), we have
t t
| arlieti(nle < K, [ ar i Ha ()l < K.
t t
/; dr ||kHy (7)|l; < K, [0 dr ||kHyo(T)||oo < K,

t t
/0 dr [kH,, (), < K, [ dr [kHyy ()]l < K -

All these inequalities follow by straightforward integration. Using these inequali-
ties, we find

t
Ik / dr Hoo(7)f,—. |1

IA

t
K [ arkHoo(r) oo sup P, 1,
< Ksup ||P, f ||z,

1 i
I [ dr Hoo(r)foc el < K | dr o)l sup 1l < K sup £,

(4.67)
Next,

t t
”]"f0 dr Hyy (7)kgy . ||2 < fo dTl|k2H01(T)”ooS‘iP lg-llz < K sup||g[l2

T

t t
I [ dr t(m)kg, I < [ dr ko, (7l sup g, < K sup

(4.68)
For H,,, we get

i t
I [ dr ()l < | 4 (Ol sup 1P, £,y < K sup 1P, £ 1

t t
|| j dr Hyo(r)fy_s < j 47 || Hyo (7)o sup £,y < K sup £, .

T

(4.69)
Finally,

t t
I [ ar Barka, s < [ dr ikt ()lsup gl < K supllol

T

t t
I [ dr kol < [ dr ko)l suplols < & supllo,ll
(4.70)
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The L°° bounds are easy, and we get, for 7,7 € {0,1},

4
I [ dr Hy ()bl < sup o (4.71)
0 T

4.10. The Completion of the Proof of Theorem 1.1

In this section, we combine the various terms to show, first, that the map U, defined
in Eq.(4.20) is a contraction of a small ball in K. Then, we shall show that the
estimates on my_ can be iterated and lead to the convergence of the solution to
Zero.

Let T' > 0 be given. This is the time interval during which we control the
solution of Eq.(4.16). We shall fix it below. Let Y € K,. We start by giving
bounds on the nonlinear contribution to ¢, which, at fixed time ¢, is given by

(RMDN(RT'Y)),
= (MDP_N(RT'Y)), + /0 t dre ""DSP_(N(R'Y)),_,
= (MDP_N(R7'Y)), + (M,DSP_N(R'Y)), .
By Corollary 4.3, the operator R™! is bounded. Therefore, there is a constant

B, > 0 such that if
1Yk, < By, (4.72)

then |[R™Y||,,.. < B, so that Lemma 4.6 applies. Henceforth, we assume (4.72)
holds. In fact, we shall make increasingly stronger assumptions throughout the
proof, which guarantee that at every step of the proof all quantities are sufficiently
small for the various bounds to apply. Using (4.51)—(4.55), we find that

In fact, while this estimate is very suggestive, we will use directly the bounds
obtained from Corollary 4.7 to control the tangent map, because (4.73) is not a
good enough bound to prove convergence in time. We start by estimating the
tangent map of the nonlinearity.



Vol. 65, 1992 Collet, Eckmann and Epstein 87

Proposition 4.8. Let 3, be the constant defined above. There is a constant D,
with1 < D; < oo, such that if |Y ||, < B, then the derivative of the nonlinear
term is bounded by

my, (DRMDN (R YY) <D (1+T)1/4

X (M, (V) + mye, VN2V me, (Y),  (4.74)
Yicp (DRMDN(RIY)Y') < Dy (1+ 1) *mye, (V) IV ||,
+D,(1+ 1) Py (V)12 V][R my, (¥))  (4.75)

+D, (1 + T)my (V) Y152 e, (V)3

Proof. We start by considering DA. We have from (4.62), (4.63), the bounds

Yer (DNy xVo) <Comay (X) - [Vollres »
yr (DN, x Vo) < Comyy (X) -y (V)2 - Vo132 (4.76)
+Cymagy (X)Y2 - | X502 - magy, (V) -

Similarly, taking the worst bound among (4.59)—(4.61), we get
me,. (D'N‘XVI)) < C, (mHT(X) + m'HT( )1/2 “X“l/z) My (Vo) - (4.77)

We next combine these bounds with those on M. By (4.67)-(4.71), we see
that

my, (MDP,Z) < Km, _(Z), yx,(MDP,Z) < Ky, _(Z).
By (4.64)—(4.65), we see that
my, (MDSP_Z) < K(1+T)"*m,_(Z).

The case of the bounds on y for |k| < 1 is more complicated, because the two
components have different growth behavior in time, but also different powers of
the norms. We handle this in the following

Lemma 4.9. Let Z = (f,g) € L and let

W, = (M,DSP_Z),.
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There is a constant K such that one has the bound

ye(Wy) < K(t+1)Y* sup ||f |l + K(t+1)!/% sup |lg, /o -
0<r<Lt 0<r<t

Proof. For the first component of W, these bounds are obvious, and in fact better,
as is easily seen from (4.66) and from the bounds (4.33) on .S in Corollary 4.3. For
the second component, we note that S maps ( f, g) to

i(k"YAf +g) = i(kkT2Af +g).

By the last two inequalities of (4.66) and since k™2 A is bounded, this leads to a
bound of the form

|| f dr Gy (T)k(k k2AS + g)|l.,

t t
< K [ a6k Sl + K [ drlGu (ol
0 0

from which the assertion follows.

Returning to the proof of Proposition 4.8 we observe that by Corollary 4.3,
we have that R~' and R are bounded linear operators in the various norms. We
can now combine the various estimates, in particular, by setting Z = DN p_.1y Y’
in Lemma 4.9, and the assertion of Proposition 4.8 follows at once.

We can now proceed to the proof of existence of solutions for a time span 7'.
We need to define the subspace of X of functions with the same initial condition.
Let U, € K. Then we define

Kp(U)) = {Y €Kp: ¥, =U,}. (4.78)

All norms below will be on the space K, and we shall omit the corresponding
index from the norms, i.e., we write

m(Y) = my,. (Y), y(Y) =y, (Y).

We consider initial data U, € K. By Proposition 4.4, and Corollary 4.3, we
conclude that there is a constant D,,, such that the inhomogeneous term

U = {Re ™R 'Up}iepom (4.79)



Vol. 65, 1992 Collet, Eckmann and Epstein 89

satisfies

Ui (U) < vie, (7P UY) + yep (€M P, Uy) < Dyyy, (Ug) - (4.80)

Similarly,

My, (U) < Dymyc(Uy) - (4.81)
In principle, we would like to apply the contraction mapping theorem to show
that the equation /(Y') = Y has a solution, and to bound it for a time T" of order

(1/my(Uy))?. However, the nonlinear nature of Eq.(4.75) does not allow this,
and we need a direct control of convergence to provide the necessary bounds. Let
U, and T be given, and define U by (4.79). Then we construct a solution Y in
K1(U,) by iteration, setting

vy — @y . Yyt = U(y(n)) )
We shall show that the Y™ form a Cauchy sequence by using the identity

y(ntl) _ y(n) _ Uy ™y —yy -

1
= / daDuY(ﬂw1)+a(Y(n)—Y(n—l))(Y(n) ~yty).
0

(4.82)

The difference between (4.82) and the general contraction principle is the availabil-
ity of some relation between the tangent vector and the point at which the derivative
is evaluated. This will allow to overcome the nonlinear bound in Proposition 4.8.
We shall apply the inequalities of Proposition 4.8 not directly to the norms,

but instead to upper bounds on these norms. We assume Y (©) is given and we set

Y= = 0. We assume
m(Y(O)) < mg , y(Y(O)) & Yo » mé/3 < Yo -
(It is the last inequality which may only hold for the bounds, but not for the

norms themselves, and this is the reason for introducing the bounds.) We define
Amy = m, and Ay, = y,, and

n n
mn:ZAmj, yn:Zij.
j=0 =0

We shall show by induction that

Am, < 8 "Am,, Ay, < 27"Ay,, (4.83)

n



90 Collet, Eckmann and Epstein H.P.As

and
m¥ Yy < Am,, y(YW YY) < Ay, (484)
By (4.82), this implies

m(Y™) < m,, y(¥Y™) <y,. (4.85)
Note also that the bounds (4.83) imply that
m, < 2my, Y, < 29 -

Throughout, we assume that m, and y, are sufficiently small; this will give
conditions for the applicability range of Theorem 1.1.
We now prove (4.83) and (4.84) by using Proposition 4.8 and (4.82). Note

that (1 4+ T')'/* < (1 + T)*/%. Using the inductive assumption for n, we get the
bounds

m(Y (D) _y (")) < Am_(1 4+ T)Y*D,(m, + mL/?yL/?)
< Am,(1+T)"*2D, (mq + my'55")
YY) _ Y)Y < Ay (1+T)V4Dym,
+(1+T)'2D, (Am, m 32/ + (Am, )3 (Ay, ) *m,)
< Ay, (1 +T)*2Dym,
+(1+T)"?2D, (Am,mg*y3* + (Am,,)/* (Ay,)*/*my)
< Ay, (14 T)*2D,m, + (Am,)Y/*(1 + T)'/24D, (m0y§/3 + yg/?' alis

Therefore, if (1 + T)l/ 4mé/ 2 is sufficiently small, we see that the inductive
hypothesis follows for (n + 1) if it was valid for 0, ..., n. We have thus shown

Proposition 4.10. There are constants D* > 0, 3 > 0 such that if the initial data
satisfy

mlC(UO) S m Sﬁa y}C(UO) S Yo S)B')

with "

my < Yo,
the problem U (Y) Y has aunique solutionY withY € K.(U,) forT satisfying
(14 T)Y* < D*mg""%. Furthermore, this solution satisfies

mK:T (Y) S 2m0’ yK:T(Y) S 2y0 ¢
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Remark. The above statement says that solutions exist for time 7' and bounds on
their norms double at most during this time.

We finally want to show the convergence to O of the solution as ¢ — oo.
As in the earlier examples, we do not expect convergence in the norm y,(+), but
only of the integral norms m (-). In fact, the bounds on the y-norms will be seen
to grow to a finite multiple of their initial value. We therefore will assume that
the initial value has been chosen small enough to offset this growth. We divide
the time into segments whose length T is of the order of the value of m™? at the
beginning of the considered time span.

Assume U, and T are given, and letY € K,(U,). Assume furthermore that

m(U,) < m, y(U,) < v, and assume y < ¢, m'/® < y. If & > 0 is sufficiently
small, then the constant ¢, of Proposition 4.4 will satisfy (1 4 2t,)'/*m'/? < D*.

We define T by (1 + T)/*m!/? = D*. By Proposition 4.10, the solution
Y € K (Uy) of U(Y) =Y satisfies

my (V) < 2m, y (V) < 2y.
Since T' > t,, we have by Eqs.(4.48), (4.49), the bounds, valid for t, < ¢t < T,
m,(Y,) < Coy(1+16)"2% 48D, (1 + t)/4m3/2yt/?
Y (Y,) < y+ 8D, (1+t)*my+8D,(1+ t)1/2m4/3y2/3 _

This implies

1 *
my(Y;) < (Cl-,;y+8D1D 1/4y1/2)m < 5(y+y"*)m,
ue(Y,) < y+8D,D*' /*ym/? 4 4D y*/* D*/2m1/3 (4.86)
< y+8(y+y*)m',

with 6 as small as we like if ¢ is sufficiently small. (We have also used m < 1.)
Taking now Y7 as the new initial data, we find from the above bounds that for

m' = §(y+y'/2)m, Yy =y+6(y+y*P)m'/3,

we have
my(Yr) < m’, y}C(YT) <y.

1f8 < y we see that

Since m

m'1/3 < 61/3(y+y1/2)1/3m1/3 <y<y,
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provided ¢ is sufficiently small. So Y7, satisfies the same bounds as U, but with
m and y replaced by m’ and y'. Therefore we can iterate the argument. If we call

Y, the k*2 jterate of the bound above, and determine always T from the preceding
bound on m, then, if ¢ is sufficiently small we can achieve

5y, +ui* + 2% <

1 1
g Mg Sﬁmk—la

and therefore, by induction,

k .
g < yoe Dt LMD <y o8

D,
Therefore y,, is bounded for all k if ¢ is sufficiently small, and m,, tends to 0.
Furthermore, T' — oo as k — oo and hence the proof of Theorem 1.1 is complete.

In fact, the construction of (1 + ¢,)/* = D*m}"/? shows that m,.(Y;) <
O(t_l/ ?), in other words, the convergence to zero is of diffusive type.
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