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Abstract

For second quantized fermionic systems with static first quantized hamiltonian

we proof that existence of a Schrôdinger picture is not equivalent to the
condition defining the regular external field problem.

Fermionic many particle systems may be investigated efficiently within the C*-
algebraic framework [1,2]. The primary concept is the CAR-algebra A [3,4], associated
with the one particle Hilbert space Ti and the canonical anticommutation relations.
A is generated by the image of Ti under an antilinear injection o of W into A. The
anticommutation relations in A state that for any /, g in li holds:

{a(f),a(9y} (f,g)e, {«(/),a(g)} 0

Here e denotes the unit of A and • • is the scalar product in Ti. An orthogonal
decomposition of Ti Ti+ © Ti" induces a quasi-free, pure, gauge invariant state up
on A:

uP(a(fn)...a(f1)a(g1)*...a(gmy) := 8nm det ((/,-, P 9j))

Here P is the orthogonal projection of Ti onto Ti+. The GNS-construction associates

with up an up to isometrical equivalence unique representation np : A —> £(Tp)
of A by linear bounded operators on a representation space Tp. We denote ^p(f) :=
ILp(a(f)). \tp(/) is the tested time zero quantum field. Inspection of wup„«, with u
being a unitary operator on Ti, shows that the representation lip : a(f) i—> $p(u*/)
is isometrically equivalent with n„pu., i.e. there exists an isometric isomorphism T :

Tp —> TuPu. such that r*P(u*/) *uPu'(/)r holds for all / in Ti.
Two representations typ, and <Jp2 are isometrically equivalent if and only if (iff)

Pi — P2tHS [5]. Here HS is the algebra of Hilbert Schmidt operators on Ti. We
denote the associated equivalence relation as Pi ~ P2 •*=>• Pi — P2 eHS). Now,
due to the isometrical equivalence between the representations Tip and Tlupn*, the C*-
automorphism a(f) i—> o(u*/) is unitarily implemented in a representation Tip iff
P ~ uPu" holds. Unitary implementability means that there exists a unitary Tp(u)
on Tp such that the intertwining relation typ^'f) Tp(u)*$p(f)Tp(u) holds for all

fin Ti.
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This unitary implementability criterion can be employed in order to see, whether

an algebraic time evolution automorphism a(f) i—> a(u(t)*f) has an associated

Schrôdinger picture in a chosen representation: The algebraic time evolution is uni-

tarily implemented in a representation Hp iff the first quantized dynamics {u(t) | teR]
obeys

P ~ u(t)Pu(ty for all t in R. (1)

For the case of a static dynamics, i.e. u(t) := e~'th with h being self-adjoint in Ti, it
has been claimed [6] that the condition (1) is equivalent with

P ~ Q(h). (2)

Here 0(h) denotes the positive spectral projection of the hamiltonian h. Klaus and
Scharf [7] have pointed out that there was no proof known for this statement. While
being able to infer condition (1) from (2), these authors left it open whether (2) indeed
follows from (1), though they considered it as very likely to be true. Condition (2) is

taken in [7] as defining the regular external field problem, when P is identified with
the postive spectral projection of the free Dirac hamiltonian.

Since the question still seems unsettled, we should like to demonstrate in this little
note that (2) is stronger than (1) and not equivalent to it. We do so by constructing
examples, which obey (1), but violate (2).

A trivial example is this: Let h := h0 + cl, with h0 being the free Dirac hamiltonian
on the Hilbert space of Cauchy data to the Dirac equation with mass m and a real

constant c > 2m. Thus the spectrum of h is purely continuous and is given by

spec(/i) (—oo, —ra + c] U [m + c, oo)

Let P := Q(h0). Obviously condition (1) is obeyed, since u(t) commutes with
P. On the other hand, since Q(h)Q(h0) Q(hQ), we obtain Q(h) — Q(h0)
Q(h) (1 — Q(h0)) Q(h)Q(—h0). This operator, however, projects onto the sub-

space spanned by the improper eigenvectors of h0 with eigenvalue E in the interval
(m — c, —m). Since the Hilbert Schmidt norm of an orthogonal projection is given by
the dimension of its range, Q(h)Q(h0) has divergent HS norm. Thus condition (2) is

not realized while (1) is. This demonstrates that (2) does not follow from (1).
More interesting examples can be easily constructed for the case of chiral (zero mass)

Dirac fermions in two-dimensional space-time, which are exposed to an external static
electromagnetic potential. This amounts to choosing the one particle space Ti := L2(R)
with the usual scalar product and as hamiltonian in Ti:

h(A) := -ij- - A(Q).

Here AeC™(R : R) (compact support) is assumed. Q denotes the multiplication operator.

Observe that with ho := h(Q) and a(x) := f£ d(A(£) holds:

h(A) e'a(Q)hQe-a{Q).

Thus the time evolution operators read with f(Q,t) := a(Q) — a(Q — tl)
u(t) := e~ithW e*rW.«>e-«»o.
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In order to see, whether a certain A defines a regular external field problem, we have

to check Q(h(A)) ~ Q(h0). According to a theorem by Hermaszewski and Streater
[8], the equivalence 9(h0) ~ e*a,W>0(Äo)e~''o(Q) holds, iff a(oo) - a(-oo) e2wl. The
theorem's assumption ^eC£°(R : R) is realized due to AeC£°(R : R). Thus the condition
(2), with P := Q(h0), is valid, iff A obeys

/oo dxA(x) e2irl.
—oo

In contrast to this, condition (1) holds for any AeC^(R : R). This can be seen as follows:

u(t)Pu(t)" c'tW^Pc-'^W'*) since eith" commutes with P. Now j( ¦ ,t) eQ°(R : R) for
any t. Thus, according to the criterion by Hermaszewski and Streater, P ~ u(t)Pu(t)*
is trivially fulfilled.

Thus we have shown that the conditions (1) and (2) are inequivalent on the very
general set of all pairs (P, h) of arbitrary projections P and self-adjoint hamiltonians
h (on a given Hilbert space). Obviously, this result does not rule out a possible
equivalence between (1) and (2) on smaller sets of pairs (P, h). For instance, the following
subset of pairs is of physical interest. Assume P := Q(h0) with h0 being the free mass

m Dirac hamiltonian. Let h := h0 + V(Q) with V(Q) being a self-adjoint multiplication

operator, which is bounded relative to h0. Now let Hm denote the set of all such

pairs (P, h) with m being kept fixed. For m > 0 we do not know whether (1) and (2)
are equivalent on Hm. For m 0 and two-dimensional space-time our chiral example
rules out such an equivalence, since A(Q) is bounded for AeC™(R : R).
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