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Abstract : Polchinski's proof of the perturbative renormalizability of massive Euclidean

$4 is considerably simplified, in some respects clarified and extended to general

renormalization conditions and Green's functions with arbitrary external

momenta. $f and $\ are also dealt with. Moreover we show that adding

e.g. $- type interactions to the bare Lagrangian, with coupling constants

vanishing at least as some inverse power of the UV-cutoff, does not alter the

Green's functions in the limit where the UV-cutoff is removed. Establishing

the validity of the action principle in this formalism has not yet been possible,

but some partial results are obtained.
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1. Introduction

The complete proofs of perturbative renormalizability of (a corresponding class of)
relativistic or Euclidean quantum field theories which are currently available [1-5] are complicated

and long. Motivated by Wilson's renormalization group Polchinski [6] has initiated

a search for more digestible proofs which, in particular, would do without analyzing

Zimmermann forests [2] or Gallavotti-Nicolò trees [4].

Polchinski [6] indeed found an elementary (and, as compared to e.g. BPHZ, evidently

simplified) method to prove the perturbative renormalizability of massive Euclidean $J.

However the existence of the Green's functions is proved for small external momenta only

and the renormalization conditions are imposed at an unphysical scale. Filling in the

remaining gaps (as well as clarifying some of the technicalities), then, would be a necessary

step to establish this method as a valid way of treating the renormalizability problem.

Doing precisely this we present in this paper a largely improved version of Polchinski's

proof of the perturbative renormalizability of massive Euclidean $|.
When we had finished our work we learned1 about ref. [8] where a combination of the

continuous renormalization group [6] and of the tree-expansion [4] methods is used to arrive

at a fairly simple proof that the renormalized Green's functions of the massive Euclidean $|
are bounded as the UV-cutoff is removed. However, convergence is not shown; moreover,

in our opinion our proof of perturbative renormalizability is less complicated.

The contents is organized as follows. Section 2 is devoted to a convenient definition of the

flow of effective Lagrangians £A, 0 < A < A0 < oo, where A0 is an UV-cutoff and where

ZA° serves essentially as the bare Lagrangian for the Euclidean massive $|. Some relevant

properties of the effective Lagrangians are investigated in detail. In particular we show that

L at scale A 0 is the generating functional of the (regularized) connected amputated

Green's functions which immediately makes it possible to impose standard renormalization

conditions. The differential form [6] of the flow equation (which is a first order differential

equation for LA with respect to A) as well as a first order differential equation for ZA

with respect to Ao (which is not present in [6]) are derived and estimated using suitable

norms on L Inspired by [6] we want to prove renormalizability by investigating the

1We are grateful to D.Brydges for bringing ref.[8] to our attention.
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estimated differential equations. This is done in section 3. First, an (as compared to [6])

improved induction hypothesis as applied to the estimated flow equation leads easily to the

boundedness of the norm of XA=0 as Ao —* oo. Repeating now the analogous procedure on

the estimated A0-differential equation directly yields the convergence of iA=0 in the limit

Ao —? oo. Compared to [6] our proof constitutes a major short-cut.

In section 4 we continue the investigation of the structure of $|. The first question

we address is to what extent LA° may be changed (e.g. by the addition of irrelevant

terms) in order that it still defines the same field theory in the limit where the cutoff is

removed. After this we prove that if the Green's functions are differentiable with respect

to some parameters for finite A0 then they stay so as A0 —> oo (this property of the Green's

functions is crucial if one wants to prove the validity of the action principle [7]). It is clear

that a priori there is no guarantee that the flow equation method works as well if e.g. the

space-time dimension is not 4. In order to dispel such doubts we briefly indicate what kind

of induction hypotheses (to investigate the estimated differential equations) turn out to be

successful for Euclidean massive $3 and <pf.

2. Flow equation for effective Lagrangians

2.1. Let A, 0 < A < A0 < 00, be a scale parameter, where A0 is meant to play the rôle

of an UV-cutoff which ultimately will be sent to infinity. Let m2 > 0. For x,y £ IR4 2 we

define the regularized covariance, CA°, by

C^X'y):=I^$^^Ao^-R{A^ ¦ (2-1}

There is a large amount of arbitrariness in the choice of the regularizing function, R.

However, it seems as if for our purposes it is most economical to require that for A > 0

R(A,p):=(l-e-Wm?)-K(£) (2.2)

2The notation is as follows: If a; 6 IR4 then its components are x^, p — 1,... ,4; and

xi,p (xi)tti xixj 2_//i=i xi,nxi,pi xi — xixii L-' Z-rp.=i 'äxTm Also o\ := -Qj^, o\0 :=
-A- d — S-flAo ' "?¦,» — dp,,.
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where K : [0, oo) —> [0,1] is a compactly supported C°° function with

{1
0<a<1

smooth 1 < a < 4 (2.3)

0 4<a

Obviously R(k 0,p) := limA->o R(A,p) 0, so R(A,p) e C°°(IR4) for all A; and

d\R(A,p) converges uniformly in p as A —> 0. Clearly CA°(x,y) is, among other things,

real, Euclidean invariant and C°°(]R4) in x and y.
We introduce an intermediate volume cutoff, V, e.g. V V(l) := [—1,1]* C IR4,

0 < I < oo. Let <f> G <S(IR4) (the Schwartz test function space over IR4) and define the

functional Laplace operator, A(A,Ao), by

A(A,A0):=i J d.xéy^Ci^y)^ (2.4)

which acts on sufficiently regular functionals of d> by the usual rules; e.g. if / G C(IR8)

then

A(A,Ao) / <I^xidix2f(x1,x2)a4>(xi)D4>(x2):=
Jv1

j d.x1dix2f(xi,x2)U2C^(x1,x2)
Jvv

2.2. Let g be a formal variable. The effective Lagrangian at scale A (and regularized by

the volume cutoff V), Ly, is defined as follows. First of all Lv is taken to be a formal

power series (fps) in g, hence L^ := X}£10 gr £A r. Now, if A A0 we set

A„ f ° r 0

where oA°, 6Ao and c^° are some constants which will become uniquely determined functions

of Ao, r, m2, R and of the renormalization conditions once the latter are specified

(see (2.17)). On the other hand, if A £ [0, Ao] then we require that in the sense of fps

e-I$-/£:=eA(A,A„)c-t£°
t (2.6)

where the fps ly, i.e. Iv := J2l*Lo 9r ^vn ln (2-6) ls supposed to collect precisely the <f>-

independent pieces of the r.h.s. of (2.6); in other words we impose that %ylyr 0 and
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jgLyT ^ 0. Expanding both sides of (2.6) as fps in g one notes that Lyr=a 0, that

there is no loss of generality in defining Iyr=0 '•= 0 (hence Iv° 0) and that we obtain a

recursive formula for the nontrivial expansion coefficients of Ly and Iv:

^v,i+4,i eA(A'Ao)iv°i (2-7a)

and if r > 1 then

r
TA 4-TA -pA(A,Ao)rAo V^ t"1)*
LV,t + IV,r - e LV,r + 2^> *!

fc=2

k

e (n(^..+/u-^(A,Ao)n^..)
_ V** »=1 »=1

i r*: 2^i=1 ri=r

(2.7b)

These formulae show by induction that the definition (2.6) has been legitimate in the sense

that Ly r and Iyr are finite quantities and also that Lyr is an even polynomial in <f> of

degree < 4r.

2.3. The physical significance of the flow equation (2.6) is expressed in the following

Proposition.

PROPOSITION 1. Ly is the generating functional of the order r > 1 perturbative amputated

connected Green's functions of the Euclidean quantum field theory defined by the

propagator CA° and by the vertices {Lv°s : s > l}.

PROOF: Let < f,g >:= J d*x f(x)g(x), assume that J £ <S(IR4) and define 6j(x) :=
6JSrxy Notice that due to (2.1)-(2.3) CA° maps <S(IR4) into itself. The basic combinatorie

identity to be proved forms the contents of the following Lemma.

LEMMA 2. Let r; > 1, 1 < i < k. With the above notation we find

(2.8)
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Proof of Lemma 2: Notice, first, that it is sufficient to prove (2.8) in the case where

each of the Lvar., 1 < i < k, is a monomial in the fields. Therefore Ilt=i Ly> (<j>) may be

viewed as a monomial in d> and D<£. Perhaps the most elegant method to verify (2.8) is

to do so by induction in the degree of n»=i -^vV W- We wish to illustrate this procedure

by considering a baby version of (2.8); its extension to (2.8) is straightforward (remember

that because of (2.1), (2.2) one has the symmetry C*°(x,y) CA°(y,x)).
So let us replace <f> and 0<f> by x, x £ IR, and J by y, y £ IR, and show by induction

in n, n £ INo, that e2 rf^2 xn e~ïy j-^ e*y at y x. Clearly this holds for n 0; and

r 1 d2 -i j 1 <*2

now assume that its validity has been checked for n — 1. Because [e2 a*2 ,x\ j£ e2 rf*2

A1 d2 d2 d2

we find that e2 j.1 xn [e2 ^2 ,x] zn_1 +ze2J-2 xn~l (£ + x) e2**2 zn_1. Inserting

the induction hypothesis immediately yields the required result for n. I
Proof of Proposition 1 continued: We write e~Ly~Tv Er>o Sr (e~^"JM »

with (VLfaJ£) 1, and for r > 1

(.-**-*) =£fcj£ £ e^)(2^W)...^W) -

Jfe=i v-*fc

Hence (2.8) permits a rewriting of e~Ly~lv as follows:

e-L$-I0 I e-\<J,C^J>e-L^(Sj)e\<J,C^J>
\*=c£>j

The generating functional, ZX°V(J), of the perturbative, regularized and unamputated

Green's functions is given by

Z^y(J) J dHc,0(*) e-CW+<^>

where cfyt_A0($) denotes the Gaussian measure with covariance CA° which formally is

given by dpcA0($) ~ d$ efa<*'(cÂ°) *>. Thus we infer that L$ + 1$ - § < J, C£° J >

at 0 CA°.7 generates the corresponding connected Green's functions. Since jily 0

and because < J,CA°J > is 0th order in g the connected, unamputated Green's functions

of order r > 1 are generated by Ly((f>) at <f> CA"J and so the claim follows. ¦
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2.4. Therefore the fps /fa, defined as

/fa := lim Lb (2.9)

exists and has expansion coefficients jDa which obey

ir .n—1 n—1

^ E / ill! fe)'faV.M"Ew) £r>- >P-l) • (2-10)
n=l J i=l j=l

The £An enjoy (among others) the following properties:

a) £r,n 0, n ^ 21N (due to the ZZ2-symmetry <f> h-> -<f>).

b) £An 0, n > 2r + 2 (only connected <P4-graphs contribute). (2-H)

c) Only the totally symmetric part of £An contributes, so henceforth we will assume

that £An(pT(1),... ,pT(n_i)) £An(pi,... ,Pn-l), V7T £ S„, where we have put pn :=

En—1i=i Pi-

d) dA£An, öAo>CA„ and £An are C°°(IR4(n-1)). By Proposition 1 £A=° is the amputated

connected n-point Green's function of order r (with UV-cutoff Ao).

e) £An is invariant under the orthogonal group; in particular £A2(p) depends on p only

through p2. Therefore

aPM£A2(p 0) 0 (2.12a)

and there are functions /A\r, //^\r such that

^9p„ £A2 V, ¦ '(A1)r(p2) + P^ • 'A2),(P2) • (2.12b)

As regards notation, we will set dP/LdPi/ £A2L := 8^v ¦ ivjfap2).

2.5. Because [A(A, A0),öAA(A,A0)j 0 and jjly,r 0 taking the derivative of (2.6)

with respect to A yields the differential form of the flow equation written sloppily as

«a(ì£ + Iv) (0aA(A, Ao)) L$ - \ < 8*L$, (3ACA°) 8^ > (2.13)

Equation (2.13) amounts to (at least) two separate differential equations, namely one for

the ^-dependent and one for the «^-independent parts of (2.13). Discarding the latter we
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may safely take the limit V j IR4 and apply the expansion (2.10). Considering arbitrary

variations <j> i—? A • d>, A £ IR, and <f> h-+ <f> + e, e £ 5(IR4), taking into account the symmetry

and the continuity of C^n, one arrives at [6]

dA£*n(pi,... ,pn_x) -("+2) J *fr *$$$> £Are+2(p, -p,pi,... ,Vn-i)

+ g^K^È)[^A^ (2.14)
a=l i>=2

•£o,i(Pl»"- 'Pi'-l)'Cr-a,n+2-6(_3>P6>--- >Pn-l)
¦1 symm.

where q := — ^i=1 p,, and [• • -Jayrnm. indicates the symmetrization operation

[f(Pi,--- ,Pn-i)}
symm, := ^ Yj f(v*(l),--- ,P*(»-l))

Très«

where again pn := - STJ/ Pi-

2.<?. The boundary conditions (b.c.) imposed on the flow of {£A„} are of mixed type.

Those at A A0 have been given in (2.5); using the convention that d™ stands for any

u>-th order momentum derivative (including all mixed partial derivatives of order w if it

acts on a function whose arguments are several independent momenta) they read:

A A0 : a) £A£ 0 n odd or n > 6,

b)£A»(p1,p2,p3) cAo, (2.15)

c)<°2(p) &A°-p2+aA°,

implying that

0;£A°n O n + w>5 (2.16)

We wish to remind the reader that so far the values of the parameters aA°, 6A° and cA°

have not been prescribed yet. However, these values will be fixed shortly (see the remarks

which follow (2.17)).

In contrast to (2.15) the b.c. at A 0, i.e. the renormalization conditions, determine

the values of most of the relevant terms, where we call relevant those with n + w < 4:
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A 0 : a) £»)4(pi Pup2 P2,p3 P3) c«,

b) dp^C°rt2(p P4)|^ 2*„„ 6?, (2.17)

c)£»i2(p P5) a?,
"

where Pi, 1 < i < 5, specify the renormalization points, and a^, b^ and c^ are the A0-

independent renormalization constants.3 The freedom in choosing a^, b^ and c* is the

freedom of fixing the renormalization scheme; e.g. Pi P2 P5 0 and c^ 6r<i,

a^ b^ — 0 gives the BPHZ scheme at zero external momentum. Because

k=l v1*
c

where [¦ • -]C)^ indicates that (before the infinite volume limit is taken) the connected and

^-dependent contributions must be extracted, we see, inductively in r, that the parameters

aA°, 6A° and cA° are indeed uniquely determined by A0, r, m2, R and {af,if cf : 1 <

s < r}. Note that it would have been inconsistent to impose b.c. at A 0 also on

the remaining relevant terms as long as we stick to (2.15). Nevertheless, these remaining

relevant terms will be seen to be well under control because of the Euclidean symmetry of

the theory (cf. (2.12)).

2.7. We are primarily interested in showing that limA0->oo £° n exists if the b.c. (2.15),

(2.17) are imposed. For technical reasons it is more convenient to consider a fixed A Ai,
0 < Ai < Ao, and prove that liniA0-.oo<CAn exists. Because of the 1-parameter group

property of eA(A,A ' we see that in particular

ri,— .r*:2_,i=1 r,=r

and so the limit limA0->oo £° n exists if and only if limA0->oo £A^ exists as well. The above

equation also relates the b.c. at A 0 to those at A Ai, and therefore the system which

3Another option would have been to replace b) in (2.17) by the requirement C°r2(p

Pi) b'rR, assuming that P\ ^f P2. But in this case some minor details in the proof of

Propositions 4 and 5 (in section 3) need to be adjusted.
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will be investigated is the following one: The differential equation (2.14) for A € [Ai, Ao]

with b.c. at A Ao given by (2.15) whereas at A Ai we have:

A A! : a) C^fa Pup2 P2,p3 P3) c« + 0(r),
b) dp„dp„£%(p P4)|^ 2«„,„ (if + O(r)), (2.18)

c)£%(p P5) a? + 0(r),

where 0(r) stands for the contribution of a finite number of connected amputated Feynman

graphs of order r whose external momenta are Pi,P2,P3 or P4 or P5, whose propagators

are J+ffi, and which have either one vertex (which is C^n, n > 4 (for a) in (2.18)) or

n > 2 (for b) and c) in (2.18))) or more than one vertex (which, then, are of the type £A^,

1 < 3 < r).

2.8. Let / : IR4n —> C be sufficiently regular such that the following definition of norms

makes sense:

II QU £\\IIe' /ll(o,6) := max max
{ti,... ,tv,}{/ii)... ,iiw}

SUP l9Pû,Mi---aP^,M«, /(Pl»"" 'Pn)l •

{Pii—iP»! |pi|<max{a,6},l<t<n}
(2.19)

We set

/n(p):=(p2 + m2r n>0 (2.20)

and estimate these norms for Ä(A,p) (cf. (2.2), (2.3)) and get

||^AfA^||(a,oo)<c-A—2'1-1 (2.21)

where c does not depend on A. It turns out to be convenient to consider the dimensionless

functions A^n defined as

•AA,n(Pi,---,Pn-i):=A'l-4-£An(pi,...,pn_i) (2.22)

Now we act with w-th order momentum derivatives on the flow equation (2.14), perform

estimates using (2.19)-(2.22) and end up with a slightly improved version of one of the
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inequalities which were of greatest importance in [6]:

i—1 n

||ÖA(A4-nö-^B)||(2Ai1l) < c„lB>P. A3"" ¦ (||ö"^,n+2||(2A,,) + EE
a=li=2

Y a-- • ||aw»<6||(2A„) • ll^3yiA_0,n+2_6||(2A„))

(2.23)

where 77 £ IR+ is arbitrary, and cWtntr is independent of A and rj. Equation (2.23) will be

seen to be sufficient to prove the boundedness of the norms ||.AAJJ|(2A,»i) as Aq -» 00 (cf.

section 3). In order to be able to prove (in section 3) the convergence of -4A^ as well we

are going to derive two inequalities by estimating equations involving dAodp A^n.

Apply d™ on (2.14), integrate it now from A, A < Ao, up to Ao, assume that n+w > 5,

remember the b.c. (2.16), apply now 9Ao and estimate the resulting equation. One obtains

i—1 n

||A*-ôAoô»^iB||(2A,,) < c'Wi„iP ¦ A3- • \\dwA*°n+2\\{2Ao,v) + E E
a=l b=2

Y A0-- • ||ö-Mft||(aA„„) • ||ö-^.,»+a-»||(2A„.,))
wi)W2,W3 : tui + u>2 + u>3=ty

+ <n,r t° ds ss-n • \\dAod»A'Ttn+2\\(2ttri) + YYJ* V
a=l 6=2

Y ^1 • l|OA„ö"'^,ill(2.,,) • \\dW3A'r_atn+2_b\\(2StV))

(2.24)

for A < Ao and n + w > 5, and where c'w n r and c'^ n r are independent of A0, A and 77.

On the other hand one may integrate (2.14) from Ai up to some A, A < Ao, apply dp and

dAo which yields the estimate

|A4-»0Ao0;MAn(pi,... ,pn_i)| < |A4-"aAoa;^A;n(pi,... ,Pn_!)|

+ «£,„,, J ds S*- ¦ ||öAo5-^n+2||(2ä,M) + ]T E
•'A> o=l b=2

Y s-wi ¦ ii9a„^2<j(2,,m) • ii^3^_ain+2_6ii(24,M))

(2.25)

for Ai < A < Ao and M > max{|pi| : 1 < i < n — 1}.
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3. Proof of perturbative renormalizability

We have now prepared enough information to prove the

THEOREM 3. The Euclidean massive $| theory, defined by (2.6), (2.15) and (2.17), is

perturbatively renormalizable, i.e. the limit lirn^,,-,,*, £A„°(pi,... ,pn-i) exists for all

r,n. Moreover, limAo_,oo £A=°(pi,... ,p„-i) is a C°° and polynomially bounded function

ofpi,... ,p„-i.

The proof of this well known fact can be deduced from the statements of the three Propositions

below.

Let us add one word about notation. The symbol Plog(z), z £ {-^, |" : A£ [Ai, A0]}

and thus z £ [l,oo), will be used quite frequently in what follows. Each time it appears

it stands for some possibly new polynomial in log(z) whose coefficients depend neither on

A nor on A0 and which are taken to be nonnegative whenever Plog(z) takes part in an

inequality.

PROPOSITION 4. (Boundedness) For any fixed r\ > 0 and for A £ [Ai, A0] we have

IK<n||(2A,„) < A- ¦ {Plog(t) + t ¦ Pl°9(t)} ¦ t3'1)

PROOF: We proceed along the natural induction scheme which was set up in ref. [6].

The induction hypothesis is that (3.1) holds true for {(r,n) : ((r < ro) A (n £

IN)) V ((r r0) A (n > n0))}, for all w > 0. The induction step consists in proving (3.1)

for dpA^ono, w > 0. In other words, for fixed ro we move inductively downwards in no.

Once one has dealt with (ro,no 1) the induction hypothesis automatically becomes true

for the pair (r'0 := r0 + l,n'0 := 2r0 + 2), because £A,
u

0 if u > 2r'0 + 2 (cf. (2.11)), and

in this way one reaches any £A
no starting from £A4 (remember that £A,n 0, n € IN,

and £An 0, n > 5). Due to the E2-invariance (3.1) comes for free for n — odd, and so

we only will worry about the even n.
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Given no, we show first how to prove (3.1) for all w obeying w + no > 5. Using these

results we investigate the case w + no < 4 later on.

In order to deal with the irrelevant vertices, i.e. with dpA^ono with w + n0 > 5, we

employ the b.c. at Ao (cf. (2.16)) to write

u
<-L

A.

Ao

^4-no^Aji^ ||(a4—a-<>B0 - A4-"°ö-^AoOno)||(2A,

< /Ao^||ô.(«4-B°o','^0,no)||(2.,,) •

Ja.

Using (2.23) and the induction hypothesis to express the r.h.s. of (2.23) in terms of (3.1)

we obtain
l|A4-n°a<MA0,no||(2A,„) <

/¦Ao r (3.2)
/a dss^o^.{piog(t)+t.piog(^)}

Since /A°dS ,- • PW(t) A_a+1 • {P1°9(t) + E^i (£)' • AM^))' if (ffl >

2) A (a £ IN), we can easily compute the integral on the r.h.s. of (3.2), estimate the result

and arrive at (3.1).

We are left with verifying (3.1) for the relevant vertices, i.e. for w with w + n0 < 4.

On three of these vertices we have imposed "by hand" a "finiteness condition", i.e. the b.c.

(2.18) at Ai and at an arbitrarily selected set of momenta. What regards the remaining two

relevant vertices one observes that, due to the form of LA° and the Euclidean invariance of

the regularized theory, they are constrained by the "implicit finiteness condition (2.12) at

p 0", for all A. We can profit from this situation in the sense that integrating (2.23) now

over the interval [Ai,A] and using power series expansions with respect to the momenta

will lead to (3.1) for the relevant terms. Let us start with no 4.

Obviously

|«,4-<l,4)(A,Pa,PS)|< / ds\d.(A'ro<i(Pl,P2>P3))\

< f ds ||95^0)4||(2SiM)
./Ai
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if M > max{|Pi| : 1 < i < 3}. The induction hypothesis states that (3.1) holds in

particular for {-AAln : n > 6} and for {-4A^ : (r < r0) A (n £ IN)}. Applying this

knowledge to bound the 0(r) term in part a) of (2.18) one arrives at the conclusion

that there is a Ao-independent constant, c, such that -Ar14(Pi,P2,Ps) < c. Therefore

L4A0)4(Pi,P2,P3) <c+/A ds \\d,A*oi\\(2:M)- (2.23) and the induction hypothesis now

give UA0,4(Pi,P2,P3)| < Plog(^) + £ • Plog(^). Using Taylor's formula

m 4 .1

f(Pl,--- ,Pm) f(qi,-.. >fa)+EEf?"^'" / d>i 9*<.*/(fcl>-'- >k™)

._, .._i Joi=l /1=1

kj := qj + X(pj - qj) 1 < j < m

(3.3)

for / -4.A0j4, rn 3 and qj Pj, and the bound (3.1) for dpA^oi, one finally gets (3.1)

for ||.4A0)4||(2A)7;) with n M, and hence for all n > 0.

If n0 =2 we begin by repeating the analogous steps for 9p.4A>2: One shows that

\d2pA^i2(Pt) \e„\ < c', and (3.3) for / d2-4Al)2, m 1, p P4, q 0, together with

(2.12b) and \\d3A^\2\\(2AuPi) now yields |ô2.4Al|2(P4)| < c", where dAoc" 0. Therefore

|a202.AaO)2(P4)| < A2-c" + /Aid5 \\d,(s2d2A'rot2)\\(2a,M),M > |P4|, and so one obtains the

Plog-type bound for ô2^4A 2(P4) Applying (3.3) once more, with / — d2A^0t2, and using

the known bound for ||53>1A0)2||(2A^), we arrive at the desired bound for ||d2-4A0)2ll(2A,7;)-

Because of (2.12a) we may consider (3.3) for / dpA^0i2, m 1, q 0 and use

l|ô2<,2||(2A,,) to bound ||ÔUA i2||(2A,,).

The case n0 2, w — 0, finally, can be treated in complete analogy to no 4, w 0.

So far we have not said anything about the degrees, as well as about the 77-dependence

of the coefficients, of the polynomials Plog(z) which appear on the r.h.s. of (3.1). What

concerns the ^-dependence of the coefficients, the extensive use which is made of the Taylor

formula to prove (3.1) suggests that it should be possible to establish polynomial bounds;

and one should not expect to get better bounds with this method. Let Prj resp. P'log(z) be

polynomials in -?- resp. log(z) with coefficients which are nonnegative whenever required

and which depend neither on n nor on A nor on Ao. It is not difficult to prove the following
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facts by tracing the degrees of the polynomials which are involved through our inductive

proof of Proposition 4.

PROPOSITION 4'. Instead of (3.1) one can prove the bounds

II^JkaA.,) < A- • Pn ¦ {P'log(A-) + A- ¦ P'log(^)} (3.4)

The degrees of the polynomials in (3.4) obey:

deg(p'%(z))<{^ n 2

/ \ f 6r - 4 -deg(P^U-2-;
n>4
n 2

In the literature where (discrete or continuous) renormalization group methods are applied

to prove the perturbative renormalizability it is not uncommon [5,8] to consider Theorem

3 to be proved once the boundedness of the norms is shown, because it seems to be thought

trivial to prove the convergence of £An, Ao —? oo, as well. Nevertheless we also present

explicitly a convergence proof. One of its virtues is that it is much more direct and simple

than the one given in [6].

PROPOSITION 5. (Convergence) Assume that for n > 0 and A £ [Ai, A0]

ll«"<.ll<*A.,)<A-.PMfr) • (3-5)

Then one finds the following bounds:

||Ôa.ô"^A,„||(Ja,,) < Ao"2 ¦ A-+1 - Plog(JZ) (3.6)

PROOF: The method is induction, and the induction scheme is precisely as in the proof

of Proposition 4; it works because obviously (3.6) is true for {(r,n) : ((r 0) A (n £

IN)) V ((r > 1) A (n > 2r + 2))}, for all w > 0.
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So we wish to prove the validity of (3.6) for dAodpAA0 no
under the assumption that

it has been proven for {(r,n) : ((r < rg) A (n £ IN)) V((r ro) A (n > no))}, for all w > 0.

Given n0, and considering separately the cases w + n0 > 6 and w + n0 5, the bound

(3.6) follows easily from applying (3.5) and (3.6) to the r.h.s. of (2.24), for all A G [Ai, Ao),

thus by continuity also if A —* A0.

Turning our attention to the relevant vertices one notes that (2.12b), (2.18) and (3.6)

imply that |dAo^Ali4(Pi,P2,P3)|, |dAod2.4Ali2(P4)| and |ôAo-4Al)2(P5)| do not exceed AQ-2 ¦

Plog(jSL), because dAoaR dAob^ dAoc^ 0. Equation (2.25) now provides the bounds

for \dAoA$oA(Pi,P2,P3)\, |dAod2.4A|2(P4)| and |öAo^A>2(Ps)|. A (repeated, if n0 2)

application of (3.3) together with ||öAoöUA0i4||(2A,,), \\dAod3AA0i2\\{2AtV) and (2.12a) yields

(3.6) for no 4, w 0 and n0 2, w 2, now also for no 2, w 1 which in turn gives

the bound (3.6) for no 2, w 0. H

4. Further results

4-1. It is of some interest to know whether the b.c. (2.15) are stable in the sense that

shifting them slightly would not affect the field theory in the limit Ao —> 00.

In order to investigate this question we introduce two sets of functions, {£r,n '• i

l,2;n > 1, r > 0;A £ [Ai,A0]}, each of which obeys the flow equation (2.6) in the

interval [Ai,Ao] with boundary conditions specified below. In particular, the boundary

conditions will be regular enough to assert the existence and sufficient regularity of the

functions £r'tU and again it follows that both sets of functions satisfy the differential flow

equation (2.14); moreover these b.c. will ensure that £r,n 0 if n is larger than some

finite N(r,i) or if r 0.

The b.c. imposed on {£r,n } are as follows (cf. also (2.15), (2.18)):

a) £r,n °=0 r 0orn odd or n > 6

4:4)A°(Pl,P2,P3) ci1)A° (4.1)

£l]lA°(p) bPA°.p2+ai1)A°
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where, for r > 1, a\. °, br ° and cr ° are uniquely determined by

b) 4^Ai(p1,p2,p3) cr

öP,^4|2)Al(P4)[ =2S,,vbr (4.2)

CÌ¥1(Ps) ar
l«„

Here the parameters ar, br and cr are only supposed to be sufficiently well-behaved such

that the following bounds hold:

c) ||Ö'»^A||(2A,,) < A— • Plog(^) n > 0, w > 0 (4.3)

The b.c. for {£r,n } are small variations of (4.1), (4.2):

a) £$Ao =0 r 0 or n odd or n > n'(r)
4%Ao(p1,...,pn_i) /Ao(p1,...,pn_i) n>6 (4.4)

4?4)Ao(Pi,P2,P3) c(r2)Ao + f%(pi,P2,p3)

4f°(p) 6r2)Ao-p2 + a^A°+/A2o(p)

where 1 < n'(r) < oo, and {/A£(pi,... ,pn_i)} is a set of sufficiently smooth (e.g. C°°),

polynomially bounded, Sn-symmetric functions invariant under the orthogonal group with

b) l|0"7A»||(2Ao,,) < AJ-"- • Plog(J£) " > 0, n + w > 5 (4.5)

The "renormalization conditions" for £).tl r > 1, read:

c) 4^)Al(Pi,P2,P3) cr + Cr

dp^p^W^
v

26^ (K + Br) (4.6)

£%Al(P5) ar-rAr

assuming that
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d) \Ar\ < A? - A* ¦ Plog(ft)

\Br\<A^.A1-Plog(^i) (4.7)

\Cr\ < A^ - Al Plog(^)

PROPOSITION 6. Under the hypotheses (4.1)-(4.7) we find that, for any fixed n > 0 and

for A £ [Ai,A0],

ll«w(4Uà-4îi1)ll(»A,,)<A.-1-A-+1.PM!î) • (4-8)

PROOF: Define DAn := A(r,lA - A{^lA. Subtracting the differential equation (2.14) for

£r,n from the one for £r>n and performing estimates one easily gets (in analogy to the

inequality (2.23))

||aA(A4-"ô-2?An)||(2A„) < const ¦ A3"" • \\d™VAn+2\\{2Atn) + YY
a=l 6=2

Y A— • ||a-22?A6||(2A,,) (4-9)

W\ ,IÜ2»W3 î T01 + W2+ 1Ü3 tt;

• {ll^32>A-a,n+2-t|l(2A,„) + !|ô"'341_)An+2_6||(2A„)})

Because for each r there is a finite N(r) such that Ar,l VAn 0, for n > N(r), the by

now standard induction procedure may be employed.

n0 + w > 5: Due to the obvious equality

||(A4-»o9-DA)no - Aj-"°Ö-PAV0)||(2A„) || (£°ds fc(*4—ö"2?;U))lbA„)
/•Ao

/A

and because ||fl-P& ||<aA,,) < ||ô»2?*» ||(2Aoilj) we find that

H^-n.g-pA „(2Ajj|) < ||aî—o"2^iBO||(2AoiIï) + fAods \\d.(,*-'»tr'vrotno)\\i,.,ni
Ja

Use (4.1), (4.4) and (4.5) to bound d™£>A°no, and insert (4.3), (4.8) into (4.9) to verify

(4.8) for ||fl«l£iB0||(2A„).
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n0 + w < 4: If n0 4 we plug (4.2), (4.6) and (4.3), (4.8), (4.9) into

\KApi>p»M £ \KApi>p»p*)\ A I ds ||0.p;oi4||(2.,m)
1 ' ' ' JAi

in order to check (4.8) with the help of (3.3). If n0 =2 one bounds successively w 2,

w 1 and w 0, just as in the proof of Proposition 4. I

4-2. The action principle [7] plays a prominent rôle in the derivation of some characteristic

properties (such as the Callan-Symanzik- and renormalization group-equations)

of renormalized Lagrangian quantum field theories. It would, therefore, be desirable to

prove its validity also within our approach to renormalization. The following analysis of

the behaviour of partial derivatives of the Euclidean Green's functions is one step in this

direction.

Assume that the mass, to, as well as the renormalization constants off, bR and c^ (cf.

(2.17)) are Ck functions of parameters Aj £ IR, 1 < i < N; the regularizing function K( ¦

(cf. (2.2)) is supposed to be independent of the Aj. It is not difficult to see that this means

that also £An is Ck, at least as long as Ao < oo. We will write (as usual) d\t := ött.

Proposition 7. Alsolim^^^£fn is a Ck function ofXi,... ,XN.

PROOF: Apply d\i on (2.14) and repeat the procedure which was employed to prove the

validity of Propositions 4 and 5. Using ||ö'">^;n||(2Ai,) < A~w • Plog(^) we find uniform

convergence on compact subsets of (\\,... Ajv)-space:

\\dWdx,AAJ(2AtV) < A- • Plog(^) (4.10)

\\dAod™dXiAAJ(2A<v) < A0-2 • A-+1 • Plog(J£) (4.11)

Instead of the sufficient bound (4.10) also a (3.1)-type bound could have been proved. ¦

4-3. We have found simple Ansätze (namely (3.1) and (3.6)) for the norms of dpAAn resp.

of dAodp AAn exhibiting the satisfactory property that they are preserved by the induction
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procedure and that they enable us to prove convergence as Ao —? oo. This might be a

fortunate coincidence happening in D 4 only, and if so the flow equation method would

loose some of its undeniable attractivity. In order to help to clarify the situation we have

investigated also the perturbative $£, in D 2,3; the results confirm the hope that D 4

is not an exceptional case. To be explicit, define AAn := A™^-1)--0 £An and derive the

analogues of (2.23)-(2.25) for D 2,3. The b.c. are imposed as follows, for D 2, 3:

A A0 : £A°n 0 n odd or n > 6,

<°4(Pi.P2,P3) cA°, (4.12)

<3(j») aA° •

A 0 : £°,4(pi Pi,P2 P2.P3 Ps) c*

Cl,2(p P5) a? (4.13)

It can be shown that the usual inductive proof works with the Ansätze described below.

PROPOSITION 8. For the Euclidean massive §| we find, for n > 0 and A £ [Ai, A0], that

where C,C',C" and C" depend neither on A nor on Ao. In particular we see that

limAo_,oo>Cr4 is finite, for all r.

PROPOSITION 9. For the Euclidean massive $2 one obtains, for r/ > 0 and A £ [Aj, Ao],

(A—.(^)*.C n>6
ll^-<nll(2A,„) < I A-y.(^.y.C' n 4 (4.16)

lA-.(^)a.(l+l05(^)).C" n 2
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Ao"2 • A-w+1 • (Al) • C" n>6
pAod-AAJ(2AtV) < \ A"2 • A-+1 • (^)2 • C"» n 4 (4.17)

A-2 A-w+i (Al) cm» n 2

and C, C",... depend neither on A nor on A0; again limA.,,-»,» £r\ is finite, for edl r.

We think that it is quite remarkable that for D 2,3 and 4 the bounds (4.16), (4.14)

and (3.1) for £A^ predicted by this relatively simple method actually agree with the true

behaviour of £A°n when Ao —? oo.
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