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Complete sets of compatible non selfadjoint observables

By G. Epifanio,' T. S. Todorov? and C. Trapani'

'Istituto di Fisica, Universita’ di Palermo, Palermo, Italy and Institute of Nuclear Research and
Nuclear Energy Bulgarian Academy of Sciences Sofia, Bulgaria

21. VI. 1991, revised 23. XI. 1991)

Abstract. Compatibility for observables understood as symmetric but not selfadjoint operators is
defined in terms of commutation of the isometry semigroups that they generate. Compatible observables
are shown to admit a joint probability distribution. The completeness of a set of commuting observables
is discussed by means of the generated von Neumann algebra.

1. Introduction

In the usual formalism of Quantum mechanics, the observables are represented
by selfadjoint operators to which is univocally associated a projection-valued (PV)
spectral decomposition. This one-to-one correspondence between spectral families
and selfadjoint observables allows us to answer in rather simple way, not only to
specific problems concerning the probability distribution of an observable A4 in a state
¥, 1.e. CE(AW, y> where E(A) is the spectral family of A4, but gives also a way to a
fully satisfactory solution of the following two questions: (i) when are two observ-
ables 4, and A4, compatible? (ii)) when does a set (4,,..., 4,) of compatible
observables give the maximal informations (in Dirac’s sense) on the physical system?

As is known the answer to the first question is that the spectral families E;(4)
of 4; (i =1,2) commute for any A (in this case the A,’s are said to commute
strongly).

The solution of the second problem, due to Jauch [1], makes use of the von
Neumann algebra 9t generated by (4,,..., 4,). Since (4,, ..., A4,) are strongly
commuting, 9 is abelian (i.e., M = N, the commutant of N). Then (4,,...,4,) is
complete, 1.e. it gives the maximal amount of informations on the system, if 9t = R’
[in this case N is said to be maximal abelian and the set (4,, ..., A,) is said to be
a complete set of compatible observables (CSCO)].

In [2], Antoine and two of us proved that a description of CSCO’s directly in
terms of unbounded operators can be given. This can be done by considering the
SV*-algebra generated by (4,,...,4,). An SV*-algebra is, in some sense, the
unbounded analog of a von Neumann algebra [3]. What was proved in that paper
is essentially that a family (4,, ..., 4,) of strongly commuting self-adjoint opera-
tors generates an abelian SV *-algebra o/ on an appropriate domain £ and the
completeness of the set (4,,..., 4,) is then equivalent to the “maximality” of &/
and also to the existence of a cyclic vector in the domain 2.
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Of course, nothing changes in Jauch’s approach or, to some extent, in the
formulation developed in [2], if we define an observable directly as its associated
spectral measure, due to the one-to-one correspondence mentioned above; many
authors, in fact, call observable either a self-adjoint operator or a PV-measure.
Nevertheless the first choice appears to be much more intuitive, since for systems
having a classical analogous, one can directly connect a classical observable to a
selfadjoint operator.

This one-to-one correspondence between measures and observables is, however,
lost in the recent approach to the quantum theory of measurement based on positive
operator-valued (POV)-measures [Ref. 4—6 or 7, for a review].

The motivation for the choice of POV-measures lies in the fact that the quantum
-mechanical axiom of repeatibility, which forces to represent observables as PV-mea-
sures, has been the object of a large criticism, supported by the existence of quantum
mechanical experiments which are unrepeatable for their own nature [7].

In contrast with what happens for PV-measures, to a POV-measure, which is
not PV, does not correspond necessarily an operator; but when it does, this
operator is symmetric but not self-adjoint.

On the other hand, any symmetric operator gives rise, via Naimark’s theorem
[see, e.g. Ref. 8, appendix] to, at least, one POV-measure.

These facts make evident that to represent an observable as a symmetric
operator is more restrictive than to represent it by a POV-measure.

In this paper we will ask ourselves once again the questions (i) and (i1) posed
above in this different framework.

Moving in the spirit of that we called before an intuitive approach, we confine
ourselves to consider observables to be represented by symmetric operators and to
begin with we will consider only the case where they are maximal (a typical example
of this kind is the momentum operator on the half-line). This choice presents two
advantages: (a) a maximal symmetric operator admits a unique POV-measure and
(b) a maximal symmetric operator is the generator of a one-parameter semigroup of
isometries (which we will consider as generalized symmetries).

In Section 2 we discuss what we mean when we say that two observables of this
kind are compatible. The main result is that the existence of a joint probability
distribution for two maximal symmetric operators is equivalent to the fact that their
generated semigroups of isometries commute. Several possible definitions of com-
patibility for, say, generalized observables have been discussed by one of us in [9];
however, we follow here a different approach.

In Section 3 we define the completeness of such a system of observables in
terms of the generated von Neumann algebra. This latter is in this case non-abelian
but it splits into two abelian parts (which are not von Neumann algebras) for which
a concept of maximality can also be given. '

2. Compatibility of non-selfadjoint observables

As discussed in the Introduction throughout this paper we will consider
observables which are represented by a maximal symmetric (not necessarily
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selfajoint) operators. The first thing we have to do is to define the compatibility of
two observables of this kind. In order to do this we need some mathematical
preliminaries.

Lemma 2.1. Let T(¢), t =0, be a strongly continuous one parameter semigroup
of contractions in Hilbert space by and let A be its generator. Then T(t) consists of
isometries, if, and only if, A = iS where S is a maximal symmetric operator.

Proof. Assume that T(¢) is an isometry for all 1 >0. Let fe D(4) and
g € D(A), then we have

1
CAf, g3 =lim— (T(0) = 1)f, > =lim - (T ~ TOTE 8

1
= llrgl - T@f (1= Te)g> =<, —Ag).

Therefore —A4 < A* and thus 4 =iS for § < §*. The maximality of .S follows from
the fact that the resolvent of S is non-empty, because of the Hille—Yosida theorem
[Ref. 8, n. 143].

On the other hand, let S be maximal symmetric; then 4 = iS has non-empty
resolvent and thus generates a semigroup of contractions 7(7). Let
T =(A+1)(A4 —1)~! be the cogenerator of T'(¢) [10, ITL.8]. As is easy to check T
coincides with the Cayley transform of S, which is an isometric operator. Therefore
T is an isometry and hence T(¢) consists of isometries [10, Ch. III, Prop. 9.2].

Proposition 2.2. For every strongly continuous semigroup V() of isometries
(generated by the maximal symmetric operator S) in Hilbert space by, there exists a
unique subspace b, S by such that V,(t) = V(¢) | b, induces a group of unitary opera-
tors; the generator S, of V(1) is a selfadjoint restriction of S.

Proof. As shown in [10], Proposition 8.3 V(f) can be decomposed as
V(t) = Vy(f) @ V,(t), where V,(¢) is a unitary semigroup and V,(¢) is completely
non-unitary (in the sense that there exist no invariant subspaces where it acts as a
unitary operator). Now, defining V,(—¢) = V¥(¢), we get a unitary group whose
generator is, as is known, self-adjoint. If 7T (i =0, 1) are the cogenerators of V,(7)
we get T=T,® T, where T is the cogenerator of V(). From this it follows that
So = 8.

Remark. If we call generalized symmetries those generated by isometries and
proper symmetries those generated by unitaries, the previous proposition reads in
the following way: each semigroup of generalized symmetries on the physical space
h admits a subspace where they are proper symmetries. For a physical discussion of
generalized symmetries, see [9].

As is known [8], a semigroup of isometries can be extended to a unitary group
on a larger space as well as its generator can be extended to a selfadjoint operator
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in a (in principle) different larger Hilbert space. The next Proposition shows that
the spaces where these extensions live can be chosen to be the same.

Before going forth, let us recall that a symmetric operator (resp., a semigroup
of contractions) admits a minimal extension to a selfadjoint operator (resp., to a
unitary group) in a larger Hilbert space $ and this minimal extension is unique (up
to unitary equivalence) [8, 10].

Proposition 2.3. Let T(t) be a semigroup of isometries in Hilbert space b and S
the maximal symmetric operator such that A =iS generates T(t). Let U(t) be the
minimal unitary extension of T(t) to a larger Hilbert space $ 2 1) and B the selfadjoint
operator in § which generates U(t). Let 8’ be the minimal selfadjoint extension of S
to a larger Hilbert space $. Then one can choose = $' and U(t) is generated by S’
(i.e. B=LS8", up to unitary transformations).

Conversely, the unitary group V(i) generated by S’ is a minimal extension of T(t)
and V(t) and U(t) coincide (up to a unitary transformation).

Proof. As is known [8] T(r) admits an extension U(z) to be a larger Hilbert
space $ with the property T(r) < U(¢) t = 0. Let B be the self-adjoint operator in §
generating U(r) and S’ the minimal self-adjoint extension of S to a larger Hilbert
space . If fe D(S) < b then

lim L (T(e) — 1)f
0 &

exists in §; but 1/e(T(e) — 1)f = 1/e(U(e) — 1)f Vf € b. This implies that f € D(B) nb
and Sf = Bf Vf € D(S). Therefore B is an extension of S. Let us now assume that B
is not a minimal extension of S and let E(1) be the spectral family of B. Then the
linear span ®, of the set E(4)h, 4 € R is not dense in §. Let §, be its closure. From
the definition itself B | D, is essentially self-adjoint. Let us call B, its closure. The
unitary group U,(7) generated by B, coincides with the restriction of U(f) to .
Then we have U()h < U, (1)H, = O, and this contradicts the minimality of U(¥).

Conversely, let E’(A) be the spectral resolution of §’, the minimal extension of
S to the larger space §', and V(¢) = j e* dE’(A) the unitary group generated by S".
Then we have

span (E'(A)b, 4 € R} = span {V(1)h, 1 > 0} = &

The first equality follows from the fact that the Stiltjes integral which gives V(¢)f
can be approximated by finite linear combinations of elements of the form E’(4)f.
Since minimal extensions are unique (up to unitary equivalence), the statement is
completely proved.

Remark. If b, $, T(¢), U(t), S and B are defined as above and T and U are,
respectively, the cogenerators of T(¢) and U(¢) then from the previous proposition
and from Eq. 9.6 Ch. III of [10] we get the equivalence of the following statements

(1) U(¢) is a minimal extension of 7(¢)

(i1) B is a minimal extension of S
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(i) U is a minimal extension of T (in the sense that the linear span of U"b,
n € N is dense in §).

We have now at our disposal enough information for discussing the compati-
bility of two generalized observables.

Definition 2.4. Two maximal symmetric operators are said to commute
strongly if the isometry semigroups that they, respectively, generate commute.

There is another possibility of defining the compatibility of two maximal
symmetric operators which has a more direct physical meaning. It is, in fact,
natural to call compatible two observables which admit a joint probability
distribution. The following definition, which is due to Davies [4], has this
sense (we remark that it can be given also for observables defined as
POV-measures)

Definition 2.5. Let S, and S, be two maximal symmetric operators and B,
and B, their respective generalized spectral families. S; and S, are said to be
operationally compatible if there exists a positive operator valued measure B on
the Borel sets of the plane such that for every pair A, A" of Borel sets on the line
one has

B,(A) = B(A x R)
B,(A) = B(R x A)

Proposition 2.6. Let S, and S, be two operationally compatible maximal sym-
metric operators. Then S, and S, admit self-adjoint extension S, and S, in the same
larger Hilbert space 9. Moreover S, and S, commute strongly.

Proof. Let B(®), © € (R?) (the family of Borel sets in the plane) be the
positive operator valued measure of Definition 2. Then [8, App. 2] there exists in
a larger Hilbert space § a family E(®) of projection operators with the properties
(P denotes the projection of § onto b)

(i) B(®) = PE(®) | hVO € #(R?)

(i) E(¢) =0; E(R?) =1

(iii) E(®,n0O,) = E(0,)E(®,) VO,, 0, c Z(R?)

(iv) E(®,u0,) =E09,) + E(0,) VO,, 0, c Z(R?) with ©,n0, =¢
Set E;(A)=EAxR); E,(A)=ERxA’) then we get B,=PE [} and
B,=PE, ['h. Let §, and S, be the self-adjoint operators defined respectively by
E, and E, on $. As is easy to see, S, and S, extend, respectively, S, and S, By
theorem 2.1 of [4], E, and E, commute, i.e. §; and S, commute strongly.

We will now exploit the following generalization of theorem IV of [8],
Appendix.
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Proposition 2.7. If T(¢,,...,t,), t;,=0 is a weakly continuous, n-parameter
contraction semigroup in Hilbert space by, then there exists in a larger Hilbert space
b a n-parameter unitary group U(t,, . ..,t,), t; € R such that

T(tls---stn)ZPU(lla---atn)

where P is the projection of § onto . If T(t,, ..., t,) s, for every (t,,...,1t,) ER"
an isometry then we get, in particular

T(t,...,t) < U¢,...,t,) b

Proof. The first part is proved in [10], Ch. I, Proposition 6.2. The second part
can be shown exactly as in [8], Appendix, Remark 4.

Proposition 2.8. Let S,, S, be strongly commuting maximal symmetric opera-
tors. Then there exist selfadjoint extensions A,, A, of, respectively, S, and S,, acting
on the same larger Hilbert space $ which commute strongly

Proof. Let V (1), V,(s) be the semigroups generated respectively by S,, S,. Set
V(t, s) = Vi (0)V1(s)

Since V,(7), V,(s) commute, then V(z, s) is a semigroup of isometries; by proposi-
tion 6, there exists a unitary group U(t, s) in a larger Hilbert space $ such that

Vit,s) < U(t, s)

Clearly, V,(¢t) = U(t,0) [ b and V,(s) = U(0, s) [ bh. Let 4, A, be the generators of
U(t, 0) and U(0, s), respectively. By Proposition 2.3, 4,, 4, extend S, and S,,
respectively. By the construction, A,, A, act on the same Hilbert space and
commute strongly.

We conclude now this Section with the following

Proposition 2.9. Let S, and S, be maximal symmetric operators. Then the
following statements are equivalent

(1) S, and S, commute strongly (i.e. the generated semigroups commute)

(11) S, and S, are operationally compatible.

Proof. (1) = (ii) From Proposition 2.8 there exist self-adjoint extensions 4, 4,
of, respectively, S,, S, acting in the same Hilbert space which commute strongly.
Let E,(-), E,(-) be, respectively, the spectral families of 4, and 4,. Since E, () and
E, (1) commute E(A x A") = E,(A)E,(A’) defines a spectral family on the Borel sets
of the plane. Set

B(A x A') = PE(A x A')

then the marginal distributions defined by B(A x A”), B,(A) = PE(A xR) and
B,(A”) = PE(R x A’) are, as is easily seen, generalized spectral families of S, S,
respectively.
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(1) = (1) If S, and S, are operationally compatible they admit a joint general-
ized spectral family B(A x A’) whose marginal distributions exactly coincide with
the generalized spectral families B,(©) and B,(-) of, respectively, S, and S,.
Proposition 2.6 then implies that there exist self-adjoint extensions A,, 4, of,
respectively, S, S, acting in the same Hilbert space which commute strongly. Let
U(t, s) = exp (it4,) exp (isA,); then, by application of Proposition 2.3, for the
semigroups of isometries ¥, (¢) and V,(s) generated, respectively, by S,, S, we get
V() = U(t,0) and V,(s) = U(0, 5). Therefore V,(r) and V,(s) commute.

Remark. Of course, the equivalence stated in the previous proposition does not
imply that the generalized spectral families of two strongly commuting maximal
symmetric operators commute.

3. Complete sets of compatible observables

After the discussion in the previous section, it is now clear what we mean when
we say that two observables are compatible: either they admit a joint generalized
spectral family or, equivalently, the generated semigroups of isometries commute.
Now, following Jauch’s approach [1], we will try to discuss the notion of complete-
ness of a system of observables having a look at the von Neumann algebra
generated by them.

In the usual approach the situation is quite clear: if two self-adjoint observ-
ables are compatible, the von Neumann algebra generated by them (i.e. generated
by their commuting spectral families) is abelian and then the notion of completeness
of a set of a self-adjoint observables can be discussed in terms of maximality of the
generated von Neumann algebra.

For non self-adjoint observables the situation changes drastically. Let us first
sketch what happens for the von Neumann algebra generated by one maximal
symmetric operator. This question has been discussed in detail by one of us in [11].

If S is a maximal symmetric operator we can consider, at least, three objects:
the von Neumann algebra {B(4), 1 e R}” generated by the unique generalized
spectral family B(-) of S; the von Neumann algebra {¥V(¢), V*(t), t > 0}" generated
by the contraction semigroup V(f) generated by S; finally, the smallest von
Neumann algebra to which S is affiliated, i.e. {U, U*, E(1)}" where U is the partial
isometry appearing in the polar decomposition S = UH of S and E() is the spectral
family of the self-adjoint operator H. As shown in Ref. 11 the two latter von
Neumann algebras are the same as well as in the case of a self-adjoint operator. So,
we define {V(#), V*(¢) t > 0}" to be the von Neumann algebra generated by S.

Definition 3.1. Let I be a von Neumann algebra; we say that 9t is semi-abe-
lian 1f 9 contains two subalgebras A and B with the following properties

(a) A and B are abelian

(b) AU B generates I

(c) A=1B*

We shall call % and B the two component algebras of IN.
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Notice that the above decomposition is not unique. In fact if UeIM is
a unitary operator, also UAU ' and UBU ' are component algebras. We
leave open the problem whether any two decompositions of 9t are unitarily
equivalent.

Now if S is a maximal symmetric operator with generated isometry semigroup
V(t), the above discussion leads immediately to the following conclusion

Proposition 3.2. The von Neumann algebra generated by a maximal symmetric
operator S is semi-abelian.

Proof. Let V(t), t =20, be the isometry semigroup generated by S. Let U denote
the algebra generated by V(f), t =0 and B the algebra generated by the adjoints
V*(t), t 20. It is evident that both 2 and B are abelian algebras generating the
whole von Neumann algebra {V(z), V*(r); t = 0}".

A completely analogous reasoning shows that if S, and S, are strongly
commuting maximal symmetric operators, the von Neumann algebra generated by
them, i.e. the von Neumann algebra generated by the isometry semigroups they,
respectively, generate, is also semi-abelian. The contrary is, however, not true, in
general: two maximal symmetric operators affiliated with a semi-abelian von
Neumann algebra might be not compatible.

Remark. As a simple example of the situation described above, let us consider
a physical system consisting of a particle constrained to move in the half-space
x=20, —oo<y,z<+ow. In this case the Hilbert space of states is
L*(0, c0) x L*(R?). The component p, of the momentum operator p is then
(represented by) a maximal symmetric, but not self-adjoint, operator whereas p,
and p, are self-adjoint. The von Neumann algebra generated by {V;(t;), V¥ (t,);
i=1,2,3 t,20,1,t;€R}, where V,(¢)), t, =0, is the semigroup of isometries
generated by p, and V,(t,), V,(t;) are, respectively the unitary groups generated by
p> and p,, 1s semi-abelian. Its components are

W=alg {V,(1,), Va(t2), V5(t3) 1, 20, 1,, t; € R}
B =alg {V¥(1,), Va(ty), Va(ts) 1,20, 1,, t; € R}

If M is a semi-abelian von Neumann algebra and A and B are its component
algebras then A < A’ (notice that A’ is not a von Neumann algebra, but it is
weakly-closed) and also for the weak-closure [],, we have [U],, < W'. The same
holds true, evidently, for B. These facts suggest the following

Definition 3.3. Let 9t be a semi-abelian von Neumann algebra and denote with
A anyone of its component algebras. We say that 9t is a maximal semi-abelian von
Neumann algebra if [U], =W,

Proposition 3.4. Let I be a maximal semi-abelian von Neumann algebra then
WM is an abelian von Neumann algebra, and I is discrete and semi-finite.
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Proof. Let A be any component algebra of 9. By assumption,
P < W =[NA], =€ IM. Therefore M’ is abelian. For the remaining part of the
satement see, e.g., [12, Ch. I §8].

If M is the von Neumann algebra generated by a set of maximal symmetrlc
operators, 9 cannot be finite, because, otherwise, these operators would be
self-adjoint by Segal’s theorem [13].

The next proposition shows that to call maximal a semi-abelian von Neumann
algebra fulfilling the requirements of Definition 3.3 is reasonable.

Proposition 3.5. A semi-abelian von Neumann algebra M is maximal if, and only
if, M is not properly contained in any other semi-abelian von Neumann algebra.

Proof. Let us assume that 9t < 9, where 9 is a semi-abelian von Neumann
algebra and let A and B be component algebras of N; then A ~IM and B ~ I are
components of 9. Hence [ANM], =W and [BnWi],, =B’. This implies that
M =9

Conversely, let us assume that 9 is not properly contained in any other
semi-abelian von Neumann algebra and suppose that for one component algebra 2
of M, we have [A],, = WA and let X be a non-normal element of A’ not belonging
to [U],, (such elements do necessarily exist). Set 2, = [, X],, be the weak closure
of the algebra generated by U and X, B, be the set of its adjoints. Then these two
algebras are the components of a semi-abelian von Neumann algebra 9t containing
properly 9. This is a contradiction.

Definition 3.6. Let R={S,,...,S,} be a set of strongly commuting maximal
symmetric operators. We say that R is a complete set of commuting operators
(CSCO) if the semi-abelian von Neumann algebra generated by R is maximal.

Remark. It is known that, in a separable Hilbert space, maximal abelian von
Neumann algebras are characterized by the existence of a cyclic vector. For
maximal semi-abelian von Neumann algebras we can say that they admit a cyclic
vector (this follows from the fact that if 9 is maximal semi-abelian, then the
commutant 9" is abelian, therefore it has a separating vector, which is cyclic for
M). The converse is, however, not true.

n [1] §6, Jauch proved that any CSCO, in the usual sense, described via a
maximal abelian von Neumann algebra IR, gives rise to a direct integral decompo-
sition of the Hilbert space into coherent subspaces where the whole algebra M of
observables of the system acts in irreducible way. This is the meaning that can be
given to Dirac’s statement that a CSCO provides the maximal possible amount of
informations about the system.

Jauch’s argument relies on the following two facts

(a) M’ is an abelian von Neumann algebra
(b) the center £ =N AN of N exactly coincides with It'.
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An analogous statement holds in the case the CSCO consists of maximal

symmetric operators.

In fact, let M denote the von Neumann algebra generated by all observables
(supposed to be represented here by maximal symmetric operators) of the physical
system and R denote a CSCO. Let Mt be the von Neumann algebra generated by
‘R. By definition, M is a maximal semi-abelian von Neumann algebra; thus, as
shown before, M’ is abelian. This, in turn, implies that the center £ = NI of N
coincides with .
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