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Abstract

Production cross sections for the inclusive reactions
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are calculated in differential and integrated form. The cross sections depend
on five independent final state lepton momentum variables and parametrically
on the individual quark - gluon momentum fractions of the incident hadrons
and on their center of mass energy ( /s ). Hard processes are calculated
through first order in the strong coupling constant, the scale being set by the
transverse momentum of the lepton pair ( ¢; ). A Sudakov exponentiation
independent of /s is shown to extend smoothly from small ¢ into the hard
scattering domain. Numerical results for /s = .63 and 1.8 TeV are presented.
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1 Introduction and outline

In this paper a systematic analysis of lepton pair production through virtual gauge
bosons ( W *, Z, v ) in proton - antiproton collisions is presented.

Many aspects of Drell-Yan processes have been originally studied in the perturba-
tive region [1] . The evolution of parton densities [2] was related to a systematic
expansion in the strong coupling constant on the level of the associated parton
subprocesses [3] . More recently detailed numerical studies have been carried out
[4] , also calculations complete to second order in « ; have been presented [5] ,
pertaining to this region.

The Sudakov region was systematically studied within QCD, for purely hadronic
processes by Dokshitzer, Dyakonov and Troyan [6] . The extension of the Sudakov
exponentiation to the Sudakov region as appropriate for Drell - Yan processes, in
particular the transformation to impact parameter space, was discussed by Soper

and Collins [7] .

The synthesis of regularizing parton densities in a way consistent with the Sudakov
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form factor for Drell - Yan processes, to first subleading order in QCD, was achieved
by Altarelli, R. K. Ellis, Greco and Martinelli [8] , and applied to subsequent nu-
merical calculations of W - and 7 - production cross sections [9] .

Direct calculations of transverse lepton momentum distributions, complete to next
to leading order, have been performed by Aurenche and Lindfors [1] and recently
extended by Baer and Reno [10]. We compare our distributions with the ones
presented in these papers in the section containing numerical results (figures 7a and
Tb) .

We propose to extend all previous analyses in one central aspect : physical inclusive
production cross sections of virtual gauge bosons from hadron collisions are calcu-
lated in fully differential form with respect to all variables, including hadron and
lepton polarizations , which are defined independently from quark gluon subprocess
variables. QCD corrections are understood to be performed on this level. Quark
gluon subprocesses are calculated and processed in parallel. Partially integrated
subprocess cross sections are explicitely compared with actual integrals over the so
constructed fully differential cross sections. This comparison allows to kinematically
extend complementary approximations: the Sudakov exponentiation, valid for small
transverse gauge boson momenta ( Sudakov region ) , into the perturbative region
and perturbative calculations, limited in this paper to first order in o , , valid
for large transverse momenta towards the Sudakov region . This applies to total
production cross sections [5] , as well as to to the distributions projected on the

transverse momentum or transverse mass of one of the leptons (Jacobian peak)
1], [10] .

The paper is structured in view of implementing the above strategy : In section 1
the kinematic variables and the dimensional regularization procedure including the
interaction of color octet pseudoscalar gluons with quarks are specified. A preview
of our results with respect to the Sudakov region and the associated factorization of
leptonic variables is given. Detailed derivations are presented in section 2. In section
3 numerical results are presented. Computational details concerning fast algorithms
for elliptic integrals and Bessel transforms are described.

1.1 Kinematics of Drell - Yan processes , extension to
4 + 2 ¢ dimensions

The momenta determining the above cross sections are as indicated in the abstract.
The relevant kinematic regions are characterized by

a) the ( 5 ) final state lepton momentum variables, which we consider measurable
in principle :
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T llT,y1,12T,y2,<P(f1Tar2T)

or equivalently (1)

2 3 q2>qT,yqallT1§0(q-‘TﬂllT)

The kinematics in eq. ( 1) is understood in the center of mass of the incident hadron
system, with the z axis of momenta along the proton beam direction. The overall
azimutal angle of the two lepton momenta [,  , is redundant.

Four momenta are considered in the associated light cone basis :

v=(vt,v",0r)
vE =00 & o ® 5 v2=v+v"~v% @)
2
vi = (dr)? ;5 pr(v)? =v’+0v;
vE =pr(v)exp(xy,) ; v?/v! =tan(p.)
Making use of the above azimutal angle redundancy we can set ¢ ;, = 0 without

loss of generality.

Ineq. (2) pr(v), ys, ¢, denote transverse mass, rapidity and azimutal
angle respectively, pertaining to the four momentum v .

We work throughout to lowest order in the electroweak coupling constants. Thus
neglecting electroweak radiative corrections, it follows :

gq=11+12 5 ¢,=90(dr,l17) (3)

Having so defined the final state kinematics and using the second set of independent
variables in eq. ( 1 ) differential cross sections will be of the form :
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dO':dﬂfD 3 de=d4q dllT
diq =dq? dq} dy, dwi(p,)(7/2) (4)
dwi(w) =de/[(27) 5 ¢, 2@

In eq. (4 ) D describes the differential distribution; the volume elements d * ¢, dw 1 (@)
easily generalize to arbitrary dimensions, which we will exploit as infrared regulari-
sation of underlying quark gluon processes :

d =4 - d =4 4+ 2¢ : d4q_)d4+25q
d'*?°q =dq? dq}(gqr)? dysdwitac(p) nt*e/(20(1 +¢))

d =4 + 2¢ - @ = (991,"',991+2e)
(5)

Ineq. (5) ¢ denotes the 1 + 2 ¢ angular variables parametrizing the trans-
verse sphere S 1 4 2. , with volumeelement dw ; 4 2 . (¢ ) normalized such that

/ d Wi1i4+2e = 1 (6)
The kinematic regions are further characterized by

b) initial state parameters upon reduction of the processes outlined in the abstract
to the subprocess level of quarks, antiquarks, gluons and leptons

h +ha—>{W¥+X"%}ﬁ €¥+(;)+X°%]
Zy + Xz e~ + et + be'yJ

~

T1Pp1 + Tapa — q + P x —+ L, + g + P X
(7)



1282 Greub, Bettems and Minkowski H.P.A.

-) =) = =
Ineq. (7) h, stands for quark or antiquark flavors (u) , d (c) , (3) , b and

gluons ¢ respectively, including helicity quantum numbers. A given subprocess in
eq. (7)), denoted R 25X in the following, is thus defined by

haybhpg;li,lagand X5 3 B=W%F,Z,vyeg:

(8)
d+u—e¢e +v+(n)g ; n=0,1,2-.

A complete list and analysis of the reactions R = R B;X is deferred to section 2.
Subprocesses involving the top quark are neglected throughout. The corresponding
cross sections are too small, to be of numerical interest, even though they do not
vanish. In their analysis the top quark mass cannot be neglected. The masses of
the remaining partons h , and leptons are set to zero.

The initial state kinematics is determined by the momentum fractions z ; , z -

()f respective partons h o h Jéi and the a.ssociated subprocess square cnergy
‘_: = X1 T 9S8

With the momentum kinematics thus specified, a given subprocess reaction ineq. ( 7)
further depends on the polarization state of individual incoming and outgoing quanta,
which we characterize by the respective helicities, extended to 4 4+ 2 ¢ dimen-
sions. Fermion spinors, for a lightlike momentum rotated into the (physical) first
four directions, factorize in accordance with the associated Dirac - Clifford algebra :

7/4:7”@ 1(25><25) ; A_—_M:O’...B

ya=t7s @, ; A-3=a=1,2c¢

heq. (9) W 45 denotes the full spinor in 4 + 2 & dimensions with

tr1(22+ x 22+¢) = 4(2°) (10)
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For external momenta p, with vanishing components in the extra dimensions :

(11)

the factorization property shown in eq. ( 9 ) reduces the spinor W to the four
dimensional spinor w multiplied by the spinor v describing redundant spin com-
ponents referring to the extra dimensions :

1 + v5 pf . s =-— ,B8=1,2
’LUA(P,S) ——){
2 0 5 s=+
(12)
l ~ #g P & : 8 =4 o0 =1;32
wA(paS) _){
2 o ; s = -
Ineq. (12 ) s = =+ denotes positive and negative helicity respectively. For

lightlike momenta p, chirality and helicity coincide and the corresponding
righthanded ( p , ) and lefthanded ( p # ), ( complex ) spinors are directly labelled

by the associated momentum for brevity of notation. The relativistic normalizations
are :

PaPjy =Pap = (P° 4+ PF) -
13

2

[ ppol? =|pPpy|% =2pp

[n eq. ( 13 ) standard (four dimensional) spinor notation is used. The second rela-
tion in eq. ( 13 ) provides a powerful tool, which we use systematically to calculate
spin dependent cross sections.

The redundant fermion spin components

vpg(r) ; B,r =1,--,(2)¢ with the normalization: > v vg = 1

(14)
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can be completely eliminated to all orders in a perturbative expansion from external
states and within loops, reducing the trace normalization in eq. ( 10 ) to four
dimensions :

il (32+€ i G9+E8) = &[(2F) —
(15)
irl = 4

keeping external phase space and loop momentum space in 4 + 2¢ dimensions.
Gauge boson couplings and external polarisation vectors extend to components
which are (relatively) pseudoscalar in four dimensional terms, as implied by the
factorized form of the ~ algebra in eq. (9 ). These extended couplings, whence
combined with the couplings of W and 7 bosons, generate nontrivial parity vio-
lating effects in higher orders with respect to the elctroweak interactions. In the
approximation adopted in this work these questions can be omitted.

Ultraviolet regularization and subsequent renormalization is understood to be com-
pleted prior to infrared ( dimensional ) regularization.

1.2 Perturbative expansions within QCD

The relatively pseudoscalar QCD couplings are equivalent to introducing besides the
color octet vector gluon fields ¢ §; a = 1,---, 8 aset of color octet pseudoscalar
gluon fields ¢ 2 ; a = 1,---, 2 e with pseudoscalar coupling to quarks ! :

H1=§SEQ{7MQM+7;75 25:1~a}q
(16)
guzgﬁ(Xa/Q) ’ ga:gg(Xa/z)

The strong coupling constant, §,. in 4 + 2 ¢ dimensions has the dimension of
( mass ) ~ ¢

AT e/ 2

piexp(ye) un

v : FBulers constant (= 0.5772---)

Eq. ( 17 ) defines the dimensionless renormalized) coupling constant ¢ , corre-
sponding to the M S ultraviolet regularization scheme.

lWe propose pseudoscalar gluon interactions as a powerful regularization scheme, especially
suited to include polarization effects [11] , [12] .
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The subprocess cross sections in eq. ( 7 ) can be systematically expanded in powers
of (g,)? orequivalently in powers of the rationalized coupling constant

(g#)z
fpm =,/ (4r) (18)
16 7 2

This perturbative expansion is understood in its own right, irrespective of whether
specific orders generate an actual approximation to the corresponding physical cross
sections.

We have verified the correct structure of the pseudoscalar interactions as given in
eq. (18 ), through first order with respect to & , .

Physical quantities are renormalization group invariant, i. e. functionals of the run-

ning coupling constant k , , obtained in a definite renormalization scheme
( MS here):

Ku = K(1) 3 r:(,u/A-—S)z
rd. 8 = (&) ; - B = g2 T2 by & (19)
bo =11 — (2/3)Nygy b1=102_(38/3)Nﬂ;...

The region where, upon the substitution g — ¢ 7 , the perturbative expansion
does approximate the physical cross sections, is determined by the three variables

VS$,9 = vV q?% and q7 . In the following we characterize the perturbative and
nonperturbative (Sudakov) regions by :

perturbative region : ¢, g7 > A 373
(20)
Sudakovregion: 0 < gr < M =4q ; M > Az

The definition of the two regions in eq. ( 20 ) includes the overall condition
g > A g - For the production of real photons at large p r the condition
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M = g can be relaxed. The perturbative region exists also for ¢ — 0 , provided
M > A5
The range of q values considered here is

for /s = 0.63TeV : 20 GeV < ¢ < 140 GeV

<
(21)
for /s = 1.8 TeV : 50 GeV < q < 140 GeV

Subprocess cross section are calculated up to first order with respect to « , . A
given reaction R aBﬁX inegs. (7,8), involving the (polarized) partons h ,, A g,
contributes to the corresponding p p process with the initial state flux factor

dQiwg =dz1dzHopg(z1, z2; scale)
(22)
Hop(z1,29; scale) =ho(z1; scale) hg(z2; scale)

All calculation are done retaining arbitrary polarization states for the incoming
hadrons. The numerical results presented in section 3 are restricted to unpolarized
p, p scattering.

For the unpolarized case h , (x 1; scale) in eq. ( 22 ) denotes the spin averaged,
scale dependent density of parton h , with momentum fraction z ; in the proton.
h g and z o refer to the antiproton.

1.3 Structure of the Sudakov cross section :

In the Sudakov region, a universal Sudakov form factor is induced in impact pa-
rameter space, upon a Fourier - Bessel transformation. Its structure is determined
by the dominant infrared properties of the underlying subprocesses, in conjunction
with well defined corrections. The expressions involving the Sudakov form factor
dominate the physical cross sections. Details of the exponentiation procedure are
discussed in section 1.5 . We denote by d o ° the corresponding contribution to
the respective cross sections.

2This section is a preview. Details of our approach are described in sections 1.5 and 2.3 [11] .
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d o ° contains the following characteristic expressions [11] , upon the differential

substitutions :

S
do g

dq® dq% d@g, dy, dl7

X5, =0do(l1)q?6 [(q¢—11)2]6(l1p —li1) Y5,

1 (23)
dQ(l) = diddy, , @,=9,/(27)
16 =
1
}/asﬁz_ﬁph Zfﬁ ) dim(zfa):[m]_s
3s

[neq. (23 ) ¢ denotes the full four momentum q , and ¥ ,, the characteristic
function of physical momenta q , for given /s ( > m, ):

0 <¢q <\
2t (24)
| < cosh y, < : #T(q):(q2+q%)l/2

2v/spur(q)

W pi is factored out from the definition of Z J 5 ineq. (23 ).

Upon the substitutions in egs. ( 23,24 ) the expression for Z 5 ; becomes :

1

ZS5(q, 01,14, s) :ﬁ/ bdb (5, Jo(qrb)
5 ¢ 0 (25)

(S =C3p(bs g, lir,yy,s)

The quantity ¢35, ineq. ( 25 ),i. e. the (differential) Sudakov cross section in

impact parameter space , exhibits the s and subprocess independent Sudakov form

factor :
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(Js=exp[S(b,q)] 03,
nSs=n3s(biqg,lir,yy,s)
8 o da% q?
S(b,q)=— [ k(qr) |2 log ~3 | J(bqr,q)
§°°0 gZ g2
Jo(grbd) — 1 ;. qr < ¢
J(b,q7r,q) =
Jo(grh) ;g1 > ¢
| (26)

The specific form of the Sudakov form factor as exhibited in eq. ( 26 ) is derived in
sections 1.5 and 2.3 .

The quantity n fﬁ in eq. ( 26 ) exhibits the factorization into lepton momentum
factor, gauge boson propagator and electroweak couplings, according to the four
virtual gauge boson channels in the reactions specified in the abstract :

nSs =nas [B,Q(Q)] ;5 B=W7,2Zx
| (Ww-,Q(0)] {Q COmAE W
e L Q:aff =ad .
_ Nag [W*,Q(0)] {Qzaﬁ:w for w+
nes |B,Q(Q)] =5 Q:af =du
Q:aﬁ~_@_Q
Nap [Z7,RQ(Q)] Q:aBf=QQ  forZ,
y Q =u,d
- (27)

In eq. (27 ) the label @ denotes the subprocesses with a quark out of the proton
and an antiquark out of the antiproton. @ refers to the subprocesses with an
antiquark out of the proton and a quark out of the antiproton. No other initial
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state subprocesses contribute to the Sudakov cross section ( eq. ( 23 ) ) to the
relevant orders considered.

Q is representative for all quark flavors: d = d,s,6 , u = u,c,t .

As stated above, all subprocesses involving the (anti) top flavor either in the initial
or final state are neglected.

The quantities 1 4 g { B,Q(Q) ] in eq. ( 27 ) exhibit the factorization into
lepton variables - gauge boson propagator - quark variables :

Nep [B,Q(Q)] =
Kap [B’Q(Q)52alli“aytl] I [Q(Q);w?,ﬂfg;scale = bo/b]

bo = 2exp(—7g)

cV =qexp(y,)/Vs ;5 zd=qexp(—yq)/Vs
(28)

In eq. ( 28 ) the quantity K, called leptonic factor in the following, contains the
electroweak fermion couplings and the gauge boson propagators but does not depend

on the impact parameter b. The explicit form of K and its dependence on the specific
lepton channel, is given in section 1.6 ( egs. ( 53 - 61 )) .

H depends in a process specific way on the respective (anti) quark densities of the
incoming hadrons, evaluated at the momentum scale b / b :

modulo weak mixing angles
We distinguish here the process specific quark and gluon structure functions

P (Q,Q) , o7(Q,Q)

as they appear in eq. ( 29 ) from universal but scheme dependent parton densities

R =", Q¢!
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The minimally (infrared) subtracted parton densities (A™ )7 ; A =Q, Q, g
of a given hadron H are defined in the next section, where the relation between parton
densities (A ™ ) # and process dependent structure functions o ¥ 1 2Y - (k)
is also outlined ( egs. ( 30 ) - (140 )).

The decomposition of cross sections into infrared regular and infrared singular parts,
the latter defining the Sudakov cross section, is given in detail in section 2.2 . The
structure of the Sudakov part, as outlined in this section, is derived in section 2.3 |
whereby results of sections 1.4 - 1.6 and 2.2 are assembled.

1.4 Cross sections and parton densities, specific definitions
and redundancies of the latter

The quantities o ? (P [ Q(Q) } in eq. ( 29 ) are obtained from the parton
densities of the incoming hadrons (proton and antiproton here), to be defined in a
process independent way, upon a process specific convolution. We denote the pro-
cess dependent quantities for virtual gauge boson production with the label D.Y.

( for Drell - Yan processes ) . They do not depend, to the relevant orders, on the
particular virtual bosons ( B ) :

:qu'Y'*Q__H](mQM)‘*“

DY gH] (25 M)

q9

o PYH(Qiz M) = Q" (z; M) +

: £.Y.*QH] (z; M)+

7B o] (a5 M)

PR (Qiai M) =Q " (23 M) +

fD'Y'hh' = fD'Y'hhf($3M) , h,h =4q,9

H=mp,p

(S« Fl(z)=[ dyly f(z/y)F(y)
(30)

Ineq. (30)
OP.SPvH(h) , h:Q’Q,g
p.sp. = D.Y.,K DI ,---

denotes a process specific, ( Drell - Yan , deep inelastic , --- ) , structure function
of parton h inside the hadron H, evaluated at the scale M , whereas



Vol. 64, 1991 Greub, Bettems and Minkowski 1291

denotes the process independent density of parton h inside H, evaluated at the scale

M.

The quantities o P*P 7 ( h) are measurable in principle and thus no freedom of
choice, exists for them, contrary to the process independent parton densities h o .
The above two quantities are related, for any given process, through the convolution
with the process specific functions f 7" ,,, . We use the shorthand notation

psp. = (o) :
ole)H(hyz; M) - hH(z; M) = [f(g)hh' *th] Lz M)

g(Q)H(h)-—_—(1+f(9))* hH
(31)

With the notation introduced in eq. ( 31 ), the structure function F, M H  for
deep inelastic scattering of electromagnetic currents, as function of the standard
scaling variable 2 = — ¢? / (2 v ) and the (space like) momentum transfer

¢ = +/— q? is of the form :

PRI (e 9] 20}, #f, [e2P2H(Q,) +«? P (D, ) )
(32)

For the quantities o 2P H (h) ineq. (32),eq. (31 ) defines the associated
convolution functions f 207, .

The redundancy in the definition of
fle)and nH
is evident from eq. ( 31 ). Let
hH  fle) and ;LH,f(Q)

be two equivalent choices of parton densities and convolution functions.
Eq. ( 31 ) implies
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o LM (h)y = (14 fC))w A = (14 fCe)) « hH
— (14 fle))y =1l w (14 fCe)) x hH = (1 +6f) * hH

6 f : process independent, otherwise arbitrary

(33)

The convolution functions f(¢), f(e) § f(z; p) are expanded in powers

of ~,

Fled(e;n) =X 7, wpfi)(z) and f(O) » fle) o6
) (34)

To first order in & , eq. ( 33 ) becomes :

§fy = fie) = gio) (35)

Any set of parton densities A ¥ | A H satisfies the renormalization group equation,
dropping the label H for brevity :

0 0
,u2 -}-ﬁ(ﬁ?) h—}-Phh:*h’ = 0

g " d kK (36)
h=h(z; M, p,k,) o Paw=Puw(z;r,)

[neq. (36 ) P denotes the process independent Altarelli - Parisi evolution functions
(2] . M denotes the reference scale, whereas p stands for the dummy scale introduced
through the definition of the strong coupling constant & , . The evolution functions
P> are expanded in powers of k , in the same way as the process specific convolution
lunctions :

P(m;mu)zzzo_lnz})n(w) (37)
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'To match the relevant orders we consider here , terms up to second order in « have
to be retained in the expansion of P (eq. (37 ) )and S .

A specific choice of parton densities is realized by specific initial conditions for
M = u,

We choose to define parton densities , denoted h ™* | by minimal subtraction of
dimensionally infrared regluarized expressions. They satisfy the initial conditions :

Ogh™(z; M = p,p,c,)=0 —
h™ (M, p,k,)=HOxexp[E(M,p)] *xho(p)
ho(z;p) =h™(z; M = u,pu) independent of M (38)

E(M )= [U dwriwr P (r(a))

"

In eq. ( 38 ) the scaling variable x, the argument of the evolution functions E, P,
and the densities h, is suppressed. The expression Il * exp * denotes the u'?
path ordered exponentiation of the convolution operation * .

# ( M ) denotes the running coupling constant, satisfying the initial condition
ElM =) =8, .

A general alternative set of parton d&nsities A 7 is evoluted with the same kernel
[I * exp * as the minimal set ( eq. ( 38 ) ), whereas the initial conditions are

modified :

ot

(p) =[14+8f(ru)]*x A™(u)
h(M,p,c,) =T xexp [E(M,p)]*ho(M,pn) (39
h

olz; M, p) =h(z;p,p,c(M))

The explicit dependence of the ’initial’ parton densities ho ( M , ) on M ,
through the running coupling constant % ( M ) can only be eliminated reverting
to the parton densities h ™* . The structure of the Sudakov cross section d o °
(eqgs. (23 -30) ) demands in principle to evolute parton densities and the coupling
constant not only to large M, but (nonperturbatively) to all M. The evolution scale
( M ) independent nature of the initial densities A ™ ( z ; g ) in eq. ( 38 ) thus
considerably simplifies things.

I'or the parton densities A = h ™ | defined in eq. ( 38 ) , the functions
f2PL DY relevant to the precision of the present discussion are :
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1qq
3 2
fEY =1
[ log(1 — z) 3 1
(1+:E2)——_ -
8 1l — x 2 1 — z
) + +
i = e
3 1 + 22 9 2
- logz +3 4+ 2z — — t —— | 6(1 — 2)
I 1 — z 2 3
1 — x
fEF =la*+({l—-2)%)lsg ] — | + 6=l — =)
T

(40)

The convolution functions f PP ineq. ( 40 ), have been calculated first in ref. [3] ,
where an alternative definition of parton densities was adopted, which we denote by
h = h AEM

To the relevant orders here, the specification of gluon densities beyond the leading
order is not necessary. Thus we stick to the gluon densities in the h ™° scheme.

The quantities f (& = f () AEM 416 related to the ms scheme in the following
way :
R e R AT N T (41)
to all orders: h™ = (1 4+ f2PI)~-1 x pAEM

1.5 The Sudakov exponentiation

As stated in the introduction basic features of the Sudakov expnentiation were de-
rived and discussed in references [6] - [9] .

In the context of the Sudakov exponentiation as performed in refs. ( [8] , [9] ),
it was pointed out by two of us [11], that the functional form of the Sudakov form
factor in eq. ( 26 ) is the only consistent distribution which can be exponentiated
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in impact parameter space. This comes about because the infrared regularization
procedure allows for a redundancy in the definition of the distributions

(f(qg%)),,, ; foratest function g (g% )

<(f)+sT1g>=

/;qu%f(q'%)[g(q%) —9(0)] +/:onq%f(q%)g(q%)

log (¢*/q%)
flat) — and — (1/q¢%)

q%

(42)

Dimensional infrared regularization is to all orders exactly independent of the vari-
able s 7 ineq. (42 ), which appears redundantly in the regulated singular distri-
butions together with compensating regular terms. Thus any expression appearing
in the Sudakov cross section satisfies the equation ( to all orders ) :

0 d
des =0 —

aST (95'1‘

5(b,q) =0 (43)

Once the characteristic function delimiting the physical region ¥ ,4ys in egs.
(23), (24 )is factored out, the Sudakov form factor appears, to first order in & ,
in the combined form :
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f;qu%/q%{Qlog(QQ/q%) ~3)}{Jo(bgr) — 1} +

+j:°qu%/q%{zlog(q2/q%) - 3)} Jol(bgr)

8

Risp=—— 5, [log?(s7/q®) +3log(sr/q?)] —
3
]
[SlsT + RlST] = O
88’_}‘

(44)

Eqgs. ( 43 ) and ( 44 ) imply that d o ® can only be a functional of the s 7
independent combination S = S;,, + R1s, . The formof Sineq. ( 26 )
obtains upon choosing s 7 = ¢ 2 . For this choice R » Vvanishes.

‘The exponentiation adopted in refs. [8] and [9] :

14+ S1s, + Ris, — exp S1s, (1 4+ Risy)
(45)

o 2
ST = 47T maz

is analytically incorrect. Numerically this may not be conspicuous, for a limited

range of center of mass energies /s .

We subdivide the ¢, ¢ v plane into the following regions, relative to the definitions
ineq. (20):

&

throughout : ¢ & M, 20 GeV ; A € My = 1GeV

sub-Sudakovregion: 0 < g7 < Mgy (46)
4
proper Sudakov region: My, < qr € M,

perturbative region : M < g7
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The subdivision into sub-Sudakov and proper Sudakov domains in eq. ( 46 ) takes
into account the following :
resummation of the characteristic logarithmic factors

k"(qr)log™(¢q%/q%) ; m<2n-1; n,m=1,2--

(47)

for small ¢ 7 in the perturbative expansion of any given distribution D ( ¢ r ) in
g1t € 8. :

D(Q'T)iq,@q,yq,lleixed =

dolg (48)

dg? dq3 do, dy, diit

to n-th order in & (g v ) relies on the appropriately exact knowledge of the expan-
sion parameter & . Contrary to the case of QED, originally discussed by Sudakov
[13] , the appearance of the running coupling constant, at arbitrarily small scales,
invalidates this condition precisely in the sub-Sudakov region. The full nonperturba-
tive structure of QCD is further necessary to evaluate parton densities at arbitrarily
small scales.

Moreover, the incoherent reduction of the physical distribution to the subprocess
level in terms of partons exactly collinear in momentum with the incoming hadrons,
is invalidated in the sub-Sudakov region, where on the other hand the physical dis-
tributions are dominant.

Ineq. (46 ), My = 1 GeV denotes the minimum scale for which the collinear
parton kinematics, and the running coupling constant are not significantly distorted
by genuine nonperturbative QCD effects.

Any theoretically calculated physical distribution D ( ¢ 7 ) is characterized by
an a priori unknown theoretical error with respect to normalization and resolution
relative to ¢ ¢ in the sub-Sudakov region.

Ioven though the experimental resolution in ¢ 7 as well as the uncertainty in the
cxperimental absolute efficiency for any given ¢ r may well be much smaller than
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the theoretical respective uncertainties, it is only meaningful to compare theoreti-
cal and experimental distributions within the common resolution and normalization
uncertainties. An eventual agreement of ’bare’ theoretical and experimental values
of D(gr = 0),e. g ,is fortuitous.

In the proper Sudakov region the logarithmic factors in eq. ( 47 ) can be resummed
into an asymptotic expansion valid for ¢ 7 <€ ¢, M ;. The theoretical resolution
with respect to ¢ r improves substantially in comparison with the sub-Sudakov
region. Yet we know of no analytical estimate for this quantity.

The estimated theoretical resolution with respect to ¢ 7 is shown in figures 3a and
3b. '

The different ¢ r domains detailed in eq. ( 46 ) do not provide a full covering. The
proper Sudakov region falls short of joining in a theoretically satisfactory way to
the perturbative region for ¢+ T M ; = 20GeV . The onset of the perturbative
region, denoted by M ;| in eq. ( 46 ), does in general depend on the quantities held
fixed in the generic distribution D (g1 ) (eq. (48 )), Le.

9, Pq5Yqi s
For the above parameters in the ranges studied in this work we find
M, =~ 20GeV

except for extreme values, e. g. of the rapidity y , , where the respective differential
cross sections are extremely small.

We denote by transition region the domain

gt < M, ; qr £ M, (49)

In an attempt to estimate total cross sections (of Drell-Yan processes) from the
perturbative regime [14] , it was pointed out, that the natural scale, which governs
the running coupling constant as expansion parameter is g 7 . In this work, all
dependence of cross sections on the strong coupling constant, in the perturbative
region is understood implying the substitution

kK — k(q71) (50)

The Sudakov exponentiated expressions can be extended into the transition region
(eq. (49 )) . However the extrapolated expressions necessarily fail to approxi-
mate physical cross sections, by their incorrect analytic structure outside the proper
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Sudakov region. Also we recall here, that the dominant scale governing the parton
densities, is not necessarily given by the mass of virtual gauge bosons considered. In
fact with increasing center of mass energy /s the dominant contributions to the
total production cross section will involve arbitrarily small scales. In addition the
incoherent reduction of inclusive physical cross sections to subprocess cross sections
will fail to remain an acceptable approximation. These properties are related to the
theoretical uncertainties in the sub-Sudakov region detailed above. The deviations
from perturbative QCD calculation, even when partially resummed, become large
in particular in the limit /s — oo.

Positivity of the Sudakov exponentiated distributions is not guaranteed. This is
illustrated in figure 1. We have sufficient control over the errors arising from our
numerical calculations, to ascertain, that this feature is not an artefact.

All that can be done is to monitor the behaviour of the extrapolated Sudakov ex-
ponentiated distributions by the perturbative ones. This was done systematically,
to first order in & , in the unpublished thesis of one of us [15] . The quality of the
osculation is displayed in figure 1.

The result is, that the two expressions - Sudakov and perturbative - are osculating
to good precision in a definite range of ¢ 7, near M, = 20GeV for both values
of /s and throughout the ¢ regions considered ( eq. ( 21 ) ).

The matching of the two distributions is quite accurate, as illustrated in figure 1.

We note here, that the integrated ¢ r distributions, do not yield the total cross
sections, as obtained by first integrating perturbative expressions over the final state
variables on the subprocess level, with the scale governing parton densities held fixed,
because of the effects inherent to the sub-Sudakov and transition regions. Again,
numerically these two operations may approximately commute, yet the analytic ex-
pressions are necessarily different.

No new contributions are made to the discussion of the perturbative region, in princi-
ple. Nevertheless, the gauge bosons are kept perfectly virtual, the full (perturbative)
multi differential cross sections, including all effects of Z ,v interference, are kept,
whereupon phase space (sub) integrations are performed.

or the extended Sudakov region previous analyses ( [8] , [9] ) apply only (after ap-
propriate modifications) to lepton spectra integrated over the transverse momenum-
tum [, 7
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do do

:/dllT -

gt dqi dp,dy, dlir

(51)

The fully differential cross sections allow us to compute (to the relevant orders) the
(projected) lepton transverse momentum distributions :

dorP—£11£2 dopP—>1t1182
dEr dm 1 (52)
Er =1lr ; mQTZQIlleT[l"COS‘P(TlTaZ;T)]

In principle we could study the effect of the limited experimental acceptance relative
to the angle between the lepton momentum and the beam direction. The limitations
in the numerical processing proved to be prohibitive at the present stage, since dis-
tributions integrated over all angles involve complete elliptic integrals, whereas a re-
stricted angular range involves associated incomplete elliptic integrals. As discussed
in section 3 and in ref. [16] , there exist powerful algorithms for the numerical eval-
uation of complete elliptic integrals, contrary to the situation for incomplete ones.
The extension of our calculations to include angular lepton momentum acceptance
cuts is beeing investigated.

The transverse lepton energy distributions show the characteristic Jacobian peak,
imcluding QCD corrections, and virtual gauge boson effects. These distributions
retain their sensitivity to the gauge boson mass, while the restrictions present in
the sub-Sudakov region do not manifest themselves , 1. e. are considerably reduced,
upon the projection, at the two center of mass energies considered. This feature
confirms previous results stated in refs. [1] , [11] and [15] , where it was noted
that the transverse lepton energy spectra essentially are insensitive to the choice of
parton densities [19] , [20] , contrary to the corresponding behaviour of the ¢ ¢

distributions in the sub-Sudakov region. The above features are demonstrated in
figure 6 , figures 7a and 7b and figure 8 as compared to figures 3a and 3b .

1.6 Factorization of leptonic variables and
electroweak couplings

We return to the leptonic factors ( eqs. (23 - 30 ) )
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Kug [B,Q(Q)ig,l17, ¥4

in eq. ( 28 ) to complete the discussion of the Sudakov cross section.
In the following all parton densities refer to the proton. The label ? will be sup-
pressed. Antiproton densities are related to proton densities by C or CP invariance .

The labels referring to specific channels

af,[B,Q(Q)] (53)

determining

Kug [B,Q(Q)ig,li7,yn|

take the following values :

channel # gauge bosons subchannels « , B

g W - dm, 8n
I,'n.m ﬁ‘nj m

11 5 w5 W+ Un, dm
II7nm iju'n

(54)

I 5 Z o,y w3 B
T, Z, v Un, Unp

I ¢ Z ., dn,d,

¢ Z, 5 dn,dn
n,m=1,2,3

unp = (u,c,t) ; do = (d,s,b)

In eq. ( 53 ) the label Q refers to the channel numbers L, IL, III, Q to I, Il’, IIT’.

The quantities

Nap [BaQ(Q)]
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in eq. ( 28 ) can be reduced to the Drell - Yan specific densities of the proton only
by C or CP invariance. In the following we will use the shorthand notation :

oY P [Qa(Qu)] » 0 [Qa(Qa)]

For the reaction channels in eq. ( 54 ) we obtain :

Mb:-b()/b
naﬁ[B)Q]:

Na(W =) an [ Vam |2 0 (dm; 29 My)o(un; 29 My)| 1w W-

Nia(W+) Z:nmﬂfnml2 c(un,;z%; My)o(dp; 29 My)| 11, WH

NetZyoy) 22, o(ua;aly My)o(uns 295 My) oy z, 5
N*T(Z,~) Zna(dn;mg;Mb)a(dn;xg;Mb) ez, 4
(55)

and similarly for Q@ — Q :

K(W=) 3 | Van|? 0(Ga;2%; My)o(dm;al; My)| Pum W-

KWy 3 WVam|? o(dnsads My)a(@n; a8 My) | I00m WH

KU(Zoy) 3, o(@n; a8 My)o(unsad; My) e z,+
NAZyv) 2, o(daiady My)o(da; g My) nrée z, v

(56)
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In egs. (55 ) and ( 56 ) V., denote the elements of the Kobayashi-Maskawa-
Cabibbo mixing matrix.

For the weak couplings we set

gy = 4v2Gprmi,

A ] A
mz = ——— = 9116 GeV ; A? =
Swew 1 — Ar
T o 1/2 (57)
A = _ = 37.280 GeV
V2G Fp
cd 3m?IGF
1 + Ap 8722

In eq. ( 57 ) we follow the conventions given in ref. [21] .
The leptonic factors K in egs. ( 55 ), ( 56 ) involve the kinematic decomposition

Ke=K?*L,+ Kz?1L,

1 1
Ly :7{(”)2“,\;)2} : L2=7{(A;)2+(A;)2}

(58)

Ineq. (58 ) £, . denote the four momenta of lepton 1 , 2 respectively. We
(arbitrarily) singled out lepton 1 in the respective reactions. Below we also list

the quark or antiquark flavor inside the incoming proton, which takes part in the
reaction subprocesses :
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. (anti)lepton 1 (anti)quark type
reaction gauge boson

E F
lnm W - e~ d
[wm W - e” i
I, . W + et u

i (59)

LI e e W+ et d
I Z e~ u
1 @ . e- @
10084 A e d
1y ¢ Z, 5 g - d

The factors K ¥ , ineq. ( 58 ) can be expressed by the left - and right handed
electroweak couplings of the (anti)fermion pair E , F as specified for the different
reactions in eq. ( 59 ) :

I(l‘r = [I{LL(E, F) + I{RR(E, F)]

Ry = [I{LR(E, F) + ]X’RL(E, F)]

1

2

Kxy(E,F)= |3 ,veg%(B)gf(B)
g —m% +impl 5,

X,Y =L,R
B = W forreactions I, I', II, II" ; B = Z ,y forreactions [II, III'
9

z/W:gEV/Z;uZ: y V4 = €
= 2
Cw

(60)

Since the combined couplings
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G(B;E,F;XY)=g%(B)gy(B) (61)

enter only in the modulus of the expression in eq. ( 60 ) , an overall sign related to
CP conjugation can be reversed.

The couplings associated to K § , for the reactions in eq. ( 59 ) are listed below
for virtual W production :

reaction B; F F K{f -G K - G

1 W-5e,d 1 0
r W-:1e”,u 0 1 (62)
II WHti,et, u 0 1

S
yumiy
o

1r Wt,et,

The extension to v ,Z production is straightforward. 3

The following CP relations hold :
K?:z —-1,II,---,1II" ; r=1,2
K¢ = K K = K¢ (63)
J =T JIF, Il

The leptonic kinematic factors L ; o in eq. ( 58 ) arise from the chiral couplings
of virtual gauge bosons to leptons :

g =4, 4+ £, s

—

gﬁ: - ; E'rT -

)\i: 3 ArTz ) A1"T:|/\'PT ) T=172
q* pr(q)

cos(Ag) =q/pur(q) ; sin(Ay) =qr/pr(q)

(64)

3For a complete list of coupling constants we refer to the extended version of this paper [17] .



1306 Greub, Bettems and Minkowski H.P.ks

Momentum conservation implies :

AP+ 25 =1 Xyr+Xer=4dr/pr

cos?(A,) +2A,rsin(Ag)cosp, =S1 ; A2p = P,
AT+ A7 =81 5 AT AT =P,y (65)
S1=2XAircosh(By) 5 Ay =ye, — Ygq

Mf =Mirexp(+Ay)

The final states variables ¢ * , E 1+ = £, 1 specify the actual configuration only
up to a twofold degeneracy, which is characterized by

(A) S Yey, 2 Yg

1
—(s1-st-4P))
2

>
.
b
I
FE,
n
e
193]
Lot %]
I
NS
L-U
[
N—
>
=1
b
Il

(66)

The total Sudakov cross sections, differential with respect to the variables ¢ # , E ¢
involves the sum over the discrete cases (A) and (B) in eq. ( 66 ) , whereas the lepton
directional asymmetry involves the difference. The corresponding leptonic factors
are :

Sudakov cross section : ( K ¥ + K§)(Ly, + L2)
lepton asymmetry : ( K¥ — K3 )(Lq1 — L3)

67
L+ L,=S8}~-S,4+1-2P; ; independentofy, (67)

Ly—L;=sign(ye, —y,)y/ S — 4P,

The leptonic factors for the Sudakov cross section ( egs. ( 58 - 67 ) ) are the starting
point to the following steps :
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(1) they set the stage for the determination of the additional terms, which make up
the full approximation to the differential cross section in the (extended) Sudakov
region, to be completed in section 2.

(ii) they allow to extend the present calculations to include asymmetries from po-
larized incoming hadrons, and in principle from the observation of the polarization
of final state leptons.

The rest of the paper is organized as follows :

Starting from eq. ( 23 ) we implement the Sudakov cross section to the complete ex-
pressions in section 2. These expressions are valid in the (extended) Sudakov region,
and can readily be interpreted, upon appropriate simplifications, in the perturbative

region (eq. (46 ) ).
doag=dol, +dolty

S R (68)
Zﬂﬁ :Zcxﬁ +Zorﬁ

The separate entries in eq. ( 68 ) are described in detail in section 2.
A selection of numerical results is presented in the final section 3 :

(1) total cross sections for the virtual gauge boson reactions, specified in the abstract,
including an error analysis of the theoretical expressions

(i1) various projections of the differential cross sections, obtained from the partially
integrated ¢% , E7 = £,7 or ¢% , m r distributions.

2 Construction of specific polarization projected
differential cross sections *

As outlined in the discussion of dimensional infrared regularization in 4 + 2 ¢
dimensions in (loew) approximation, ( eqs. ( 9- 17 ) ), we extend the QCD gauge
couplings to include 2 & pseudoscalar gluon fields [12]

%= ¥

g 1 b= 1 geen, 28

4For a complete discussion of all polarization dependence we refer to the extended version of
this paper [17] .
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with the (fourdimensionally reduced) couplings :

2¢

He =g, 0 Qfivsil : (69)

We label the different reactions, starting with virtual W ~ production, suppressing
the flavor mixing indices :

lom, ', —r (1) ; 17— (af) :

T o« B T« B

1 d + a - W~ 4+ ¢ T d 4+ ©u - W~ 4+ g

2 4 +d - W- + g 8 @ +d - wW- + g (19
3 d + g - W~ 4+ u 9 d + g - W~ 4+ u

4 @+ g - W- + d 10 2 + § - W- 4+ d

5 ¢ + a4 — W- 4+ d 11 § + a - W- 4+ d

6 g + - W~ + u 12 ¢ + d - W~ + u

The reactions in eq. ( 70 ) are readily extended to virtual W * and Z ,«v
production :

T — I, I, — III, IIl,

nm

(71)
r(I) — r(Il) — r(III* %)

We do not give the associated reactions here. We refer to the extended version of
this paper [17] for a complete discussion of all reactions and the associated cross
sections.

The dimensionally regularized contributions of the processes in eq. ( 70 ) to the
quantities Z o 5 in eq. ( 68 ) are of the form :
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1 q7 1

&t =iFs8 k,Y}!

F,(1 4 ¢) p? q?

g
" ’M(r) redl
vi= [de(s1,22)H,(21,23)
8x1xT9s
97
dg(ﬂ?l,.’EQ)—d:BldCCz(S (xl—a+)($2—a )—
s

(72)

In eq. ( 72 ) the label ! denotes processes first order in x , . The ¢ function
includes the spectral condition

.1:1+a:2>a++a"

and M (;) ;.4 denotes the invariant matrix element of the subprocess r, whereby
the strong coupling constant as well as the color flow is suppressed. The latter gives
rise to the color factors C, :

8
— for » =1,2,7,8
C, = 3 (73)
1 otherwise
In the case of emission or absorption of pseudoscalar gluons ( r = 7,--- , 12 ),

M (;) red does not take into account the sum over pseudoscalar gluons

gt s t=1,-,2¢

This sum gives rise to the factor s, ineq. (72):

(74)

Fg =
1 otherwise

{26 for r=7,---,12
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I'y(z) ineq. ( 72 ) denotes the rationalized Gamma function :

€
F7(1+s)=exp(7Es)F(1+s)=H:°=1 ] s | g- /0
n
7w 2gd
Fry(l4+4e)=14——+4+0(e?)
12
(75)
Upon the substitution d — d,, ; u — u,

in the reaction tablein eq. ( 70 ) , the KMC matrix elements V ,,,, can be transferred
from the reduced matrix element M (,) ,.s to the combination of parton densities
described by the quantities H, (z,, 2 ) ineq. (72):

Hel1; 2a) =
(dp(z1, M) u,(z2, M) for r=1,17
Upo(z:, M) dp(z2, M) for r =2,8
_— dm(z1, M) g(z2, M) for r =3 (76)
bn(z1, M) g(z2, M) fof P e=d
g(z.1, M) Un(T2, M) for r =25
L 9g(z.,, M) dm(z2, M) for r =6

The scale M of the parton densities in eq. ( 76 ) is at present unspecified. The
structure of H , in eq. ( 76 ) goes over into the characteristic expressions in egs.
(55 ), (56 ) upon the appropriate substitutions of the reactions

r(l) — r(Il) — r(1IT*%)

2
FFor the full set of square moduli | M ) vl \ we refer to the extended version

of this paper [17] .

2.1 Inclusion of the reactions r o (I ) = 1, 2

We turn to the contributions of processes denoted by
oy (I) = 1,2 ,whichinvolve only virtual gluons and no gluons at all, extending

-1
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the list of reactions in eq. ( 70 ) :
InmaI’nm"""*T(O)(I) ) r(O)_)(aﬂ):

T () «@ B T ) B

(77)

1 d + 2 - W- 2 4 4+ d - W-

The reactions in eq. ( 77 ) yield additional contributions to the reduced cross sections
denoted by Z , 5 ineq. (72 ):

Zoap = Zr = Z, +Z7 5 7 or@(l)

1 1
Z; = 6(q7) Y, —
P'v(l‘*‘e) q° (78)
lM?r) red ’
Y? =(1-Vpr)H](27,2%)
45%% 0 s

In eq. (78 ) Vpy denotes the vertex correction ( to first order in «, ),
dimensionally (infrared) regularized for ¢ 2 > 0 , as appropriate for Drell - Yan
processes :

8 g2 \ " [ 2 3
e b8 — g ? (79)
2

€ )

VDY ot — K M
3 Iz

(80)
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Infrared regularization involves appropriate combinations of square moduli for reac-
tions :

rog(l)=1, r(I)=1,3,5,7,9,11 and

(81)

ro(I) =2, r(I)=2,4,6,8,10, 12

For the full set of square moduli for the reactions r (o) (I, II, I i = 1,2
we refer to the extended version of this paper [17] .

2.2 Decomposition of cross sections into infrared finite and
singular parts

The square moduli of the reduced amplitudes in eqs. ( 72 ) , ( 78 ) are further
processed as follows :

2

M (r) red q 2 I M (()r)

. . red —(r) i
= - O L q2"—"(()) (82)
8T,T 28 97 4x%29s

In eq. ( 82 ) the label * specifies polarizations of the quark and lepton pairs as
well as gluons involved respectively in the reactions r = 1 + 6 .

Polarization dependent cross sections are decomposed according to the chain

Z, =24+ 20
(83)

(1]

70 Yo L =0i ozl Ly, =

starting from the quantities Z !, Z? ineqs. ( 72 ) and ( 78 ) and substituting
the square moduli ="', ™7 (eq. (82))][17].

The square moduli , = E)r) * Z )i can be represented as sums of a factorizable

and a nonfactorizable part with respect to the leptonic factors K xy ( E, F)
ineq. (60 ):

r) = G (r) ¢ = (r) i =G (r)i = A (r)i
e = 2¢O T(Mi = =GMi 4 A

(1

)

(84)

&

c =do% 4+ do?
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Ineq. (84) = 2 (¢ denote the nonfactorizable parts, which are infrared safe, i.e.
integrable with respect to g7 for ¢ — 0 .
=6 i =80 denote the factorizable parts, which contain all infrared singu-

larities.

The factorizable quantities =6 (i =& ()¢ are of the form :

(r) ¢

EG(r)i —= kXYLkKXY

f—
—
e

G (r)i
] 0

(85)

Ineq. (85 ) Li, k = 1, 2 denote the leptonic variables given in eq. ( 58 ),
K xy stand for the appropriate leptonic factors defined in eq. ( 60 ).

The factorizable and nonfactorizable parts in the decomposition
do = do% + do® are not uniquely determined by the structure of infrared
singularities.

The coefficients G (", and the quantities ¢ M7 Z§ ¥ ineq. (85) are
given in the extended version of this paper [17] . °

We specify the substitutions to be made in all terms forming d o © ineq. (84 ):
€ — 0

Ky -+ R‘(QT)

(86)
HT(:I:]_,IQ;M) — H,-(l'l,-r‘z;QT)

r=1-=26

With the substitutions in eq. (86 ) d o # can be constructed in the entire domain
of tranverse momenta ¢ r . Of course for small momenta the expansionin & ( ¢ 7 )

becomes untractable. This will develop into an interesting problem at very large
values of /s . For /s = 0.63 and 1.8 TeV the relative magnitude of d o

turns out to be small. The small scale contributions are well stabilized by freezing
the strong coupling constant below a scale of 0.7 +1 GeV .

The contributions d o 2 are nevertheless essential in guaranteeing a smooth tran-
sition from the (extended) Sudakov domain to the perturbative region.
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Redefining the quantities (egs. ( 72 ) and ( 78 ) ) :

e ZET (1he) st (28)" 4 (22)°

{1forr=1+6

5y =
e for r = 7 + 12
(87)
0’ -
the factorizable parts , (z?) ' ,in eq. ( 87 ) are of the form :
270 =6(g3)(1 = Vpy)y?Z®
1 g% ‘
291: IcuC,.g,.yf;}
et \ »’
yP0 = H(2p,28) 250
?JTGI = /dQ(icl,sz)Hr(fEuiEz) ESW
d.’E] d.'L'2 q% .’L‘?.'L'g
dol(zy,z3) = 6 |(1—R*)(1 —-R~) -
T Z 2 q2 T1Z2
R+:Of+/$1 . R_Za-/l’z
(88)

The square moduli £ ¢ (0 =& ™) in eq. ( 88 ) denote specific polarization sums of
the quantities = ¢ (i = & ()i

b

ineq. (85). A complete list is given in ref. [17] .

With the terms labelled A out of the way, the remaining contributions in
eq. ( 88 ) take the form :
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K, for r =1

K_ for r = 2

89
K, for r = odd (39)

K _ for r = even

In eq. ( 89 ) the separation of leptonic factors, including the resonance denomina-
tors, is evident.

The quantities J, in eq. ( 89 ) involve the characteristic integrals, which are
identical for all reactions I to III :

(90)

All dependence of the factorizable cross section d o © on the specific gauge boson
and lepton channel

Wt Z v o et (z;e)a,eJre"

is contained in the products of parton densities on one hand
H,(z1,22) , H)(zi,z3)

and in the leptonic factors K ., K _ (eq. ( 89 ) ) on the other hand.

The functions G (R*, R~) ineq. (90)donot depend on the specific gauge
boson and lepton channel, i.e. they are identical for reactions I , IT, III %+ ¢ .
For a complete list we refer to ref. [17] .

The factorizable quantities y ¥ °, y ¢! in eq. ( 89 ) are further decomposed into

r

infrared singular and regular parts :
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yi% =yl , yPl=ylt 4yl , J.=J7+ 07
(91)

The decomposition in eq. ( 91 ) is the result of an asymptotic expansion of the
integrals

Jo(z3,25,9%7/4¢%)
for g7 — 0 ,with ¢?, 29, 29 held fixed :
Jr($?,$g,q%/q2) = Jf+‘]1§

2

q
J5 = log A (2,23)+1 By (2],23)
q% (92)
q2
Ji(z9,29,9%2/q%) = 0 | log - q%
9T

The specific form of J ! is given in ref. [17] .

The decomposition d 0 ¢ = do ¥ + do? as specified in eq. ( 91 ) is unique.
J 5 determines the Sudakov cross section.

The distributions corresponding to d ¢ ¢ (eq. (91) ), as is the case for d o 2,
are integrable with respect to ¢ 7 , and thus do not need infrared regularization.
With the substitutions in eq. ( 86 ) d ¢ ® can be constructed in the (extended)
Sudakov region. For small transverse momenta the same comments apply as for
d o & . In the perturbative region , d o ¢ , even though it can be computed without
problems, has no physical meaning. This is a consequence of the infrared expansion,
which fails to correctly reassemble d ¢ © from d o ° and d o ? for large values
of g7.

The coefficients A, , B, ineq. ( 92 ) are of the form :
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A, =GO (1,1) H,.(29,z29)

(1 -23)(1 —z3)

0
1

z 3

{ 2 Ik =1,2

0 otherwise

The specific form of the integrals 1?2 (z 9, 29 ) is given in ref. [17] .

B . involves the universal evolution of parton densities. The coefficients A , , B,
in eq. (93 ) are unique. They can be calculated for the simpler case of on shell gauge
boson production, neglecting polarization effects. The full strength of the partial
factorisation properties appears in the discussion of the polarized cross sections

do®,dof,do?
2.3 The Sudakov cross sections proper

We finally focus on d o © . With the terms labelled § (and A ) out of the way,
we sum the contributions from

S1 51 &
< 'lyr "]T

i

over even and odd values of r respectively, to match the two values ro = 1, 2 .
We drop the subscript 0 on the reaction channels in the following :
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1 q%
Lo ) PR il | iy
zZ, = - ; Ky Yy, , 7 =1,2 (94)
qT M
" odd for »r =1
glzz,,cf’gf"]s

r even for r = 2

For the parton density products we use the notation, generic for all reactions :

G (z?) q1(z3) for r =2 (95)

KMC mixing angles and the specific flavor dependence are readily inserted in
eq. (95).
Furthermore we set :

Dpq(q)(z, M) =[P 1g*xq(d)+ Pig*xgl(z,M)

Dyq(q)(z, M) =[fR% *a(a)+ fR% *g] (2, M) (96)

In eq. ( 96 ) we translated the convolution functions inherent to B, into the
equivalent Altarelli - Parisi evolution functions P 5 and the Drell - Yan process
specific convolution functions f DY discussed in

section 1 (eqs. (37 ) and (40) ).

With the notation introduced in eqgs. ( 95 ) and ( 96 ) , the quantities 2 , ¢!
ineq. (94 ) can be reducedto r = 1 :
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a = — |2 log
2

-3+ ¢ (8 —17?%)
3 gL (97)

g1(z1, M) [Dp+eDyslqgs (22, M)+
[(Dp+eDyslgqr (21, M) g2(2:1, M)

r=1—=r=2 & 4¢1,q92 = ¢z, 71

The factor a in eq. ( 97 ) matches in its structure the vertex correction.

We next combine egs. ( 94 ) and ( 97 ) :

=Ky —| le(e®/a2) ¢1(21, M)q2(2z2, M) + B]

(98)

Once the leptonic factors and nonleading contributions d 0 ¢ and d o # are out of
the way, the structure of infrared and collinear singularities determines the expres-
sions in eq. ( 98 ) exactly. They indeed coincide with the corresponding expressions
in refs. [8] and [9] . The Sudakov exponentiation and the reconstruction of the
differential cross section differs in the following from previous analyses.

For finite center of mass energy, the range of ¢ r values is limited by ¢ 7 mes -
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The universal structure of the expressions in eq. ( 98 ) is maintained provided the
characteristic function 9 (¢ 7 mez — ¢ 1)

is factored out, together with the leptonic factors.

Next we consider the Fouriertransformation F : F — F of functions (distri-
butions) to impact parameter space :

F:F — F
o ) 1 L
F:———/dquexp(ibth)F y & = /d2bexp(—ib§'T)F
i1 4
for axially invariant distributions :
-~ 1 ~
Fo=[detdolbyr)F | F=— [db*To(bqr)F
[ 4
(99)
In impact parameter space eq. ( 98 ) becomes :
20 - z0 o 21 —» 31! . 20 =(1—-Vpy)HY,
] X 5 N
EIZ—I‘CH [2F3+(—3+E(8—71'2))F2]H12+fiuBFg
3

. q* 1
Fq = — F
'l €
) g? \° 1 1
I = + —lgp| B¢
p? €% £
b2q2
ﬁ: ’ bO‘_‘ze_q‘E
b3

(100)
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By means of the distributions

X i ¢* \ " 1
v, e F, — _ — — log S
pw? £
X ) ¢* " 1
VU, = Fg = - —(log )2 /2
E &2
(101)
which have a well fefined limit for ¢ = 0 , and modulo higher orders in « , , eq.
( 100 ) can be cast to the form :
EOZHQQ'—VDY H12
4 8 i i hY
Vpyr + —«, (2‘1’3”3‘1’2) Hi +
3 (102)
g1 = >
1 b2
+ Kk, | — 4 log { —— B
e (bp)?® J

It follows from eq. ( 102 ) that, modulo higher orders in « , , the terms propor-

tional to V py cancelin thesum 2 = 290 4+ 21

This is due to cancellation of infrared divergencies on one hand and the appropriate
choice of identity parts of the evolution functions P4, f4  on theother hand.

Then eq. ( 102 ) becomes :
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8
z= |14 —=x, (21113—3\112) c(q1;21)0(q2; 22)
3
( 1 bl )
— 4+ log Dp
oc(q;2)=4q%(2) + &, { € (bu)? b g (2, M)
\ +Df /
(103)
Eq. (103 ) is as far as one can go to first order in &, . £ 1is to be rendered

renormalization group invariant and the scale M in the respective parton densities
in eq. ( 103 ) remains to be determined.

This is achieved by the following substitutions in eq. ( 103 ) :

bo
M — yu

¢°(z) = q(z,p) —&k,s—Dp q(z,n) (104)

In the expression for o PY in eq. ( 104 ) the specific parton densities correspond to

minimal (dimensional infrared) subtraction, as discussed in section 1.4 . We recall
that the process dependent distributions ¢ PY are independent of the specific
definition of parton densities.

The Sudakov form factor, appearing in the expression for Z ineq. ( 103 ), remains
to be rendered renormalization group invariant. Upon the substitution M — M,
we obtain :
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Z=[1+5(b,q?)] Hy,

8 8
S(b,q?) = Ly (20, -30,] = L [(log B)2 —3 log A]

H}y = 0P (q1;21,My) 0P (qa; 22, M) + 0(x2)

(105)
The Fouriertransform of (only) S (b, ¢?) backto ¢gr space yields:
—~ 8 o~ ~
S(gr,q?)=— S5, S =k, (2¥3 -3V¥,)
3

5= &, 2 log -3

2 2

QT qT +q’2

The scale dependence and specific form of the term H }, ineq. ( 105 ) is determined
exactly by the definite choice of the infrared finite cross sections d 0 ® and d o &
as discussed in section 2.2 . Infrared singularities determine the distribution S in
eq. ( 106 ) uniquely, in particular the subtraction point ¢ 2 .

The structure of the leading multiple gluon emission amplitudes in the Sudakov
approximation implies the following completion of eq. ( 106 ) [11] , [22] :

Ky — R(‘IT)

_ 8 q? 1
S = —k(qr) ZIOg{ }—3 (107)
3

The expression for S in eq. ( 107 ) is the final form which can be obtained from
a renormalization group improved first order calculation. Although arbitrarily high

orders are resummed, a second order calculation indeed modifies the subleading
logarithmic terms [27] .

Let S denote the Fouriertransform of 5 in eq. ( 107 ) . The replacement
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(14 S) — exp S (108)

yields the structure of the Sudakov form factor, and of the distribution 2z
(egs. (105 ), (107 ) ) discussed in section 1.5 (eq. (44 ) ) :

z - exp[S(b,q%)] H

8
S(b,q?) =~3—qu%~/% E(gr) |2log

[Jo(bgr) — 1] for q% < ¢?
Jo(bgr) for ¢% > ¢?

HY = 0P (q1521, My) 0P (ga522,My) + O (k2)
(109)

3 Numerical Results

One objective of this work is to obtain a reference set of projected cross-sections
for the three inclusive reactions discussed in this paper, our interest being mainly
focused on distributions directly useful for the W and Z mass determination at the
Fermilab Tevatron. The results presented in this chapter are derived without taking
any experimental constraint (detector resolution, cuts, ...) into account®. This
prevents their direct utilization for a precise determination of the weak vector boson
masses; however they do provide a clean way to test the theoretical approximations
on which the Monte-Carlo programs used for the data analysis are based. For this
purpose, the numerical treatment involved in our evaluation of the projected cross-
sections is here extensively described.

A summary of our input parameters choice is given in table 1; let us first discuss it.
Our treatment of the QCD running coupling constant «, is taken from the pa-
per by G.Altarelli et al. [8]; it is a leading order parametrization with charm and
beauty thresholds and with freezing in the low momentum region (controlled by
some parameter a). We took a = 10, m. = 1.35GeV and m, = 5.3GeV. This

51t turns out that the implementation of these constraints would result in a prohibitive increase
of the CPU time required by the numerical integration of the differential cross-section.
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<, parametrization is unambiguously fixed by the requirement that it matches at a
scale of 5 GeV the a, parametrization of the chosen set of parton densities.

All results in this paper are derived with parton densities from M.Diemoz et al. [18].
We used three density sets corresponding to three different values of A,¢1,,000 375
namely 160 MeV, 260 MeV and 360 MeV (these sets will be referred to as DFLM
gl60,...), in order to test the sensitivity of the result with respect to A2°? and to
the choice of densities. The latter are mainly extracted from neutrino deep inelastic
scattering data at a reference scale g = /10 GeV; all next-to-leading corrections
in a, are included both in extracting them and in calculating their evolution; a
numerical form of these densities is provided for z € (5-107%,1) and Q? € (10,5 -
10°) GeV?. For these parametrizations, regularized quark densities are defined by
demanding that the structure function F, of deep inelastic scattering maintains the
same form as in the naive parton model. This regularization scheme differs from
the minimal subtraction scheme we used [eq.(38)]; however, equation (41) gives the
explicit relation between the densities obtained from both definitions, so that we
were able to take this difference into account when deriving our numerical results.
This difference is illustrated for the up quark density in figure 2.

The complete expression for the fully differential cross-section do, for any of the
three inclusive reactions described in the abstract, is [ do'® = do©(e = 0)]:

do = 0(¢¥™ — qr) - (do® + do® + do®) + 0(qr — ¢&™) - (do'™® + do®) (110)

The quantities do'"?,do® and do® (pure perturbative parts of do) contain the strong
coupling and the parton densities evaluated at a scale which is not determined on the
level of our calculations. As discussed in sections 1.5 and 2.2 we chose to identify
this scale with ¢r in order to obtain a smooth transition between the resummed
(do® + do® + do®) and the pure perturbative (do'™® + do®) forms of the cross-
section. As a consequence, the explicit value of ¢™ is of little importance, as long
as it lies in the intermediate gr-region where both these forms are valid and nearly
coincide (for example, at /s = 630 GeV, a value of ¢%™ running from 16 to 25 GeV
induces a relative variation of ¢}¥, which is not larger than a few per mille — o7, is
the total inclusive cross-section for ev pairs production through W).

The three quantities o (1/137.036), GF (1.16639 - 10~ GeV~?) and mz being well
measured, we chose them, as well as the top mass (m;) and the Higgs mass (mp), as
a set of independant electroweak parameters. From this set, for a specific choice of
m;: and mpy and for three fermion generations, we obtain the values shown in table 1:

e The Weinberg angle sin? fy = 3%,, according to the definition of W.Hollik [21]
[see also eq.(57)]; the leading order electroweak corrections are included. We
point out that the neutral current couplings we used are expressed in terms of
=2
Sy -

e The total Z width I'z, including leading order electroweak and QCD correc-
tions (with a;(M%) = 0.12). From Ref. [23].



1326 Greub, Bettems and Minkowski H.P.A.

e The W mass mw, including leading order electroweak corrections. From

Ref. [24].

e The total W width 'y, including leading order QCD corrections. Calculated
by one of us (C.Greub [12]).

In fact our numerical results are practically not sensitive to the value of my. More-
over, sensitivity to the choice of m; is weak, but for the results which explicitly

depend on the W mass; for instance, the relative variation of )Y, for m; going from
90 GeV to 200 GeV is about 2%.

Obtaining integrated distributions — such as l — from the fully differential cross-
section do, defined by equation (110), turned out to be a non trivial numerical
problem. For this purpose we developed a set of FORTRAN routines for use on the
CRAY-2 machine of the EPFL in Lausanne; the task of these routines was divided
into two steps:

1. The distributions "T'T;"Tf( d3oy), for f € (li,lar,m7), are worked out in

some (g, qr, f)-region Dy and for some specific choice of the input parameters
(produced weak vector boson, parton densities parametrization — in a analytic
or numerical form, /s, ... ). The values of weak vector boson mass and width,
as well as electroweak couplings, enter as free parameters in the expression of
d3c; so obtained. For the results presented in this paper:

Vs € {0.63,1.8} TeV

c (20,140) GeV for /s = 0.63 TeV
(50,140) GeV for /s = 1.8 TeV

Lir, a1, g7 € (0,100) GeV ; mr € (0,140) GeV
2. Numerical integration of d®>cs over some subset D' of Dy.

Mean CRAY-2 CPU time used to obtain d®cy, for one set of parameters, was about
90 minutes (this time is understood with full vectorization, which increases the speed
by a factor of 9 with respect to scalar mode); the time used by the second step is
negligible. The relative error on the total cross-section introduced by the above
numerical procedure was estimated to be at most 1% (this value does not include
the effect of phase space truncation induced by the constraint ¢ € Dy); an error of
the same magnitude is expected on d®c; evaluated at any point of the region where
the bulk of the cross-section lies.

Let us now briefly describe the way d3c; is obtained (to fix the notation f = l;7 and
a reaction with W production is considered). The fully differential cross-section do
[eq.(110)] contains the kinematic factor §(¢2—2¢l;); from that we integrate out y; and
obtain the factorized form (111) in which ¢, and y, integrations are disentangled.
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This is an important numerical simplification which is no more valid if the additional
phase space constraints derived from experimental cuts are taken into account.

dBoW

dq? dg dli 7 ™~ Z Fi(Mw,Tw,Gr;q*) - Lept;(qr, ¢°, lir) - Hadri(gr,¢%)  (111)

1

The weak vector boson propagator and the electroweak couplings enter in F;. The
quantities Lept; are p,-integrals which can be analytically worked out. Hadr; are
parton densities and strong coupling dependant quantities which can be expressed in
terms of double integrals over (y,, z1) and of the backward Fourier transformation:

= [ bdb expl (b, )] Jo(bar) S(b,a,a7) (12)

- b - _
2= [ dy,- > 1Hop(@: %5, 2)+ Hap(@Q, )

(Jo is the Bessel function of order 0, S(b,q) is the Sudakov form factor [eq.(26)], P.S.
means phase space and H,g is defined by €q.(29)). (y,, z1)-integrations are worked
out over the whole allowed phase space region with the help of the adaptative NAG
routine DO1ATF; b-integration, restricted to the interval (107%,20) GeV™', as well
as the Sudakov form factor S(b,q), are evaluated with the adaptative NAG routine
DOIAUF (especially suited for oscillating integrands). Because parton densities eval-
nated at a scale by/b enter in the expression of H,g, and the form of these densities
is only known above some scale @, £(b, ¢,¢r) has to be extrapolated with respect
to b from the value b.;; = bo/Qo up to bpar = 20 GeV~! (for DFLM parametriza-
tion b, =~ 0.35 GeV_l). As a first step we built a smooth extrapolating function
(b, ¢, qr) which is linear in log(b). However, when the sea partons dominate the ¥
evolution, this extrapolating function may become smaller than £,,, ¥,, being the
valence parton contribution to ¥. In such a case our final function ¥ is a smooth
interpolation between X(b < b.rir, q,qr) and E,,(b > b, q,qr), for some b > b,;;. We
checked that the details of the above procedure are of little numerical importance
for any results, but for the g7 non integrated distributions evaluated at small ¢r and
at small ¢ — typically, for ¢ around 50 GeV, the sensitive ¢gr region is below 2 GeV
and then slowly grows when q becomes smaller. In any case, in this latter region,
our calculations become less reliable because of the lack of theoretical informations
about phenomena such as the intrinsic transverse momentum of partons inside the
nucleon, the low scale behaviour of the strong coupling or higher twist effects. Note
finally that some brutal solution, such as setting bn.. equal to %9; or, to a lesser
measure, freezing the partons scale below @y, results in some artificial oscillation of
the ¢p-distribution.

From the previously described formalism and input we obtain the normalized distri-
butions for the transverse momentum of the W (i.e. W* or W) and of the (Z,v)
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bosons y
dR B /100 do? do \ do
iz~ \b g dg?

which are plotted in figures 3a and 3b. The dependence on parton densities and
A was studied by using the three parton density sets DFLM g160,g260 and g360;
it is specially strong in the small gr region, as indicated by the error bars in fig-
ure 3a, but then decreases to reach the level of a few per cent in the hard ¢r
region (gr > 30GeV). In this latter region, the O(a?) calculations of Arnold and
Reno [5], with their stated uncertainties, are displayed®. Together with the above
discussed dependence they give a good idea of the theoretical uncertainty of our
gr-distribution.

In table 2 our values of the total cross-section for the inclusive lepton pair produc-
tion (ev, ee) through virtual W (¢/¥* | ¢¥%7) and Z (¢Z,), produced in pp collisions,
are compared with the experimental results obtained by the UA2 collaboration at
0.63 TeV [25] and the preliminary results from the CDF collaboration at 1.8 TeV [26].
Our theoretical values are obtained by integration over the phase space region de-
fined by 1/q? € (50,140) GeV. Moreover, the photon coupling is set to zero when
deriving ¢Z,: even though the measured cross-section for charged lepton pair pro-
duction includes the v exchange and the Z+ interference contribution, the published
experimental results have been corrected, so that they do not contain these terms
any longer. Their importance can be read off from figure 4 where the relative contri-

bution of these terms to the quantity f;ﬂfodq d‘;‘;’ is plotted (do?” is the cross-section

for the process pp — Z(v)X — ete™ X).

The theoretical errors quoted in table 2 take neither the A9¢? and parton density
ambiguity nor the phase space truncation with respect to q into account; they are
rough estimates based on the following list of possible sources of uncertainties :

1. The numerical integration procedure (+1%).

2. The ambiguity of the top mass value (£1% on o[¥,).

3. The contribution of O(a?) terms to the perturbative tail of the g7 distribu-
tion (between +0.5% and +1.5% at 1/5=0.63 TeV, between +1% and +3% at
V$=1.8TeV). This evaluation is based on the work of Arnold and Reno [5]
and on the fact that the contribution of the ¢r tail (g7 > 20 GeV) to o4y is
about 5% at 0.63 TeV and about 10% at 1.8 TeV.

4. The contribution of terms which are beyond the leading double logarithmic
approximation — i.e. O[a"(¢?)In**"%(¢%/¢%)] terms — (£4% at 0.63 TeV,
+2% at 1.8 TeV); this rough estimate is based on a study of the Kodaira-
Trentadue [27] nonleading contribution performed by Altarelli et al. [8]; these

®Results from this reference are obtained with the same parton densities set as ours; on the
other hand, only on shell W and Z are considered and a different choice of weak parameters is used
(Mw = 81.8GeV, Mz = 92.6 GeV). However, in this context, this choice is not crucial, because

the normalized distribution %@r 1s poorly sensitive to it.
T
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authors claimed that the Kodaira-Trentadue correction produces an effect of
the same magnitude as the one produced by changing A by a factor of about
1.,

5. The contribution of diagrams with initial photon Bremstrahlung (between
+0.5% and +1%); this number is obtained by translating the contribution
of initial gluon Bremstrahlung to the photon case.

6. Other higher order corrections. Even though we have no estimates for this
contribution, we would be surprised if it is larger than a few per cent.

7. Other sources (< 1%); for instance, it is by now settled that initial interactions
between active and spectator quarks do not affect o;,; [28].

We have obtained our estimate for the relative error on the total cross-sections from
the quadratic mean of the errors stated above, taken for granted that the items 3
and 5 lead to a shift of the overall relative error. For the error on the ratio R we
only took items 1,2 and 7 into account.

For contact with previous work, we show the predictions of Arnold and Reno [5]
for oZ, and o¥;", calculated to first non-leading order and for the two scales q and
< gr > in O(a;) terms (see the footnote at page 51); in brackets are the results we
have obtained with the same weak parameters as these authors:

at /s =0.63TeV : oZ, = 60.5 — 87(65.7) pB o' =308 — 418 (329) pB
at /s = 1.8 TeV : oZ, =206 —208(207)pB ol =1065 —1050(1092) pB

We end this chapter with the presentation of cross-sections projected on the leptonic
variable Iy (transverse momentum of one of the final lepton) or mz (transverse mass
of the final lepton pair; m#% = 2li7lyr[1 — cos Lp(l_;T, TQT)] with the kinematics defined
by eq.(1) ). The figure 5 shows the shape of the Jacobian peak at fixed values of ¢r;
what is displayed is the quantity

d*o 100 d*o
w0 (g /Lo g
agdr|! |l T g o fixed

The Jacobian peak c‘i% is displayed in figure 6 , while figure 8 shows the my¢ distri-

bution fT". All these curves are for /s = 1.8 TeV and are obtained from the

fully differential cross-section integrated over the phase space region defined by
V¢? € (70,120) GeV for Z,y production and by 1/¢Z € (50,140) GeV for W pro-
duction. A common feature of these distributions is their high sensitivity to the
weak vector boson mass, whilst their sensitivity to the choice of AP and parton
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densities is low; for this reason they form an important tool for the de termination
of mw and my.

We compare our distributions ;z" for virtual W * production for m w = 80 GeV
with direct calculations of the same quantity [1] , [10] in figures 7a and Tb:

In figure 7a our distribution is taken from ref. [11] (adapted to mw = 80 GeV). It is
calculated for /s = 630 GeV using the methods described in this work. As structure
functions the set DO1 from ref. [19] is used. The comparison is with the transverse
electron distribution (Jacobian peak) calculated by Aurenche and Lindfors [1], for
V8 =540 GeV , my = 80 GeV , using structure functions of ref. [29].

In figure 7b our distribution is calculated the same way as those displayed in figure 6
(adapterd to m w = 80 GeV) , with the structure function set DFLM g260 [18] .
The common center of mass energy is /s = 1.8 TeV . The comparison is with the
Jacobian peak calculated by Baer and Reno [10] , for m w = 80 GeV , using set 1
of the EHLQ structure functions [30] .

We also emphasize that the highly non trivial structure shown in figure 5 could be
used for a consistency check of the data analysis.

Finally, from CP invariance of the processes under consideration one derives the
1dentities:

daW+ _ dd" dUW+ _dd" . do? _  do?
dip(et) — dip(e™) ? dip(v) — dip(v) * dip(e*) — dip(e™)
doW+ doW

dmrp dmyp

(113)

Moreover, the relative difference (% —~ d—%%}) / -12— (,ﬁ—;(% + ﬁ—i%) was calculated;

its value is between -1% and 0% when I7 is smaller than 40 GeV and then linearly
grows to reach nearly +9% for Ir = 60 GeV.
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QCD running coupling constant

leading order form [from G.Altarelli et al. [8]]

Parton densities

3 parametrization sets from M.Diemoz et al. [18]
(next-to-leading corrections included):
g160 with A = 160 MeV (— a,(M2) = 0.107)
g260 with A = 260 MeV (— a,(M2%) = 0.115)
£360 with A = 360 MeV (— a,(M3) = 0.122)
where A stands for A,j,,0., 375
These sets will be refered as DFLM g160,...

Scale in pure perturbative terms

qT

Switch from resummed to
pure perturbative gr-distribution

gim =20GeV  for /s = 630 GeV
¢im = 14 GeV for /5 = 1.8TeV

Parton active flavors

for Z production: u,d,s,c,b
for W production: u,d,s,c

Electroweak parameters:
Kobayashi-Maskawa matrix el.

Weinberg angle

Vector bosons masses and widths

[Via| = 0.9755 , |Vao| = |Vag| = 0.22 , |Viy| = 0.9743
Vsl = [Vas| = [Vl = [Visl = 0

as defined in [21]:

sin O = 34, = 0.231 t

mz =91.16GeV |, 'z = 2.49GeV {

mw = 80.2GeV t , 'w =2.08GeV {

t mw, Tw,'z,sin? Oy values are calculated
from a,Grp,mz,m; = 150 GeV,my = 100 GeV
(refer to the text for a full discussion).

Table 1: Summary of the input parameters which, unless stated otherwise, are used

in calculating our numerical res

ults.

I l oZ, [pb] I gt‘:/: + a% [pb] I R = (Uzvg: + Ufff)/ Ufﬂ
Vs = 630 GeV
theory:
DFLM gl60 | 67.6%44 695153 10.3 £0.3
DFLM g260 | 65.7133 679134 10.3 £0.3
DFLM g360 | 63.8742 661133 10.4 £ 0.3
UAZ2 result [25] 70.4 + 6.8 660 + 40 9.38 + 0.84
Vs = 1.8TeV
theory:
DFLM gi60 | 202+1° 2184110 10.8 £0.3
DFLM g260 205420 22261 5" 10.94+0.3
DFLM g360 | 205*1° e 10.9+0.3
CDF prel. result [26] | 197 £ 34 2060 + 340 10.5 £ 0.7

Table 2: Total cross-sections for the
(ot o) and pp— ZX — et

inclusive reactions pp —» W*X — et (;) X
e~ X (cZ,), for pp collisions at 0.63 TeV and

1.8TeV, calculated over the restricted phase space /g? € (50,140) GeV and
with three different sets of parton densities (DFLM gl60, g260, g360). The

corresponding experimental resu

Its are reported; the quoted errors on these

latter values result from the quadratic mean of statistical and systematic er-

rors.
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Scale choice in pure first order
perturbative terms.

60 1‘ n I i 1 i i i i 1 i i i i 1
‘\ —— with Sudakov exponentiation r
4 \ 3
5071 \\ ---. pertwbative form with scale q, [
I ‘\\ ------- pertwbative form with scale q
S 407
% 3.0-:
T, 201
3
3 10]
0.0
]
-1.0 "Y—Fmm—mr————————————————r————r
10 20 30 40 50

q, [GeV)

Figure 1: The transition region between the expression of d—‘i"; obtained by resum-
mation of the soft gluons (Sudakov exponentiation) and the O(a,) perturbative
form, for two scale choices in the latter distribution. The plotted quantities
are calculated for pp — WX — e X at /s = 630 GeV with the set DFLM

g260 of parton densities (described in section 3). Similar curves can be drawn
for Z production and at 1.8 TeV.
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Comparison of two renormalization
schemes for u, density.

0.6 A L PO W U W W | i A d o aal

] — our renormalization scheme [
i ren. s. used by Diemoz et al. /.-
0.5 L
0.4-'_ b : ‘“\\ -~
3 ] -
o -1 :
3 os Y\ \g |
X 0.31 \) y i
5, A C
x -1 .
0.21 ) %L C
01d ;
OIO T Ll v Ll LI l‘[ T L) T L Trvryp
1072 10-2 10
x

Comparison of two renormalization
schemes for u, density.

1.6_ 1 L i s 3 a3l i 1 A ol e
: —— our renormalization scheme

8 ——— ren. s. used by Diemoz et al.

xu_ {x,scale)

107 1072 10

Figure 2: Comparison of two regularization schemes for the definition of parton
densities. We show the up valence (u,) and the up sea (u,) densities (from
DFLM g260) evaluated at scales of 10 GeV and 10° GeV.
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Comparison of Z and W transverse
momentum distributions.
'l i i L 1 i A I 1 n A i 1 1
- Q4{Z,y} distribution
— q{W) distribution
I dependence on choice
of parton density set

107'7

T

F‘ r
> L
8
Yy
g 1073 3
107? = Con S e | T T T v
0 2 4 6 8 10

q, [GeV]

Figure 3a: This figure shows the normalized distribution

dR _ [ w06V dg\7' [ do
e mg) (=

for the transverse momentum squared of the vector boson produced in the
reaction pp — Z(v)X — ete X or pp —» WEX — et (1;) X at /s = .63TeV
and 1.8 TeV. The set DFLM g260 of parton densities is used. The distributions
for Z(y) are obtained by integration over the restricted phase space /g2 €
(70,120) GeV. The dependence on the choice of the parton density set shown
in this figure is evaluated by using the three sets DFLM gl160, g260 and g360.

Comparison of Z and W transverse
momentum distributions.

s e b e b e g ta gl gt el laa ol il

o™ a,{Z.y) distribution [
] — a/w) distribution |
1073 o 1
3 I qW) values from
- 10"1: Arnold et Reno ;
> 3 F
.(3, 1073 1
% ; S S 181, i
; Sqrp i, E
1077+ Qr((S)Q T F
3 63 o 3
3 e =T i

DT R — . -

1
o} 10 20 30 40 50 60 70 80 9 100 110

q, [GeV]

Figure 3b: Same as the figure 3a, but for the displayed points which give the values
of diq%, for W production, obtained from the O(a?) perturbative calculation
performed by Arnold and Reno [5]; the error bars on these latter values include
the effects of scale and AQCP choice.
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Relative contribution from - and
Z—y mixing to o _(Zy).

Tot

— Sart(s)=.63 TeV
e, e Sart(s)= 1.8 TeV

q, [GeV]

Figure 4: The relative contribution r from « exchange and Zv mixing to the quan-
tity f::o GeVdg %%(pp — Z(7)X — ete” X) is plotted versus gnm.

Shape of the Jacobian peak
for different values of q,

10 WSS SRS N (N SON] (NEST MY UUNS: CHUN [N [SSTSS S (SUCH TIUEE | NS R D CNS W S SIS VRN TNS TR [N W Ty S )

] PP = WX —> e vX
1 Sartls)=1.8 TeVv
84 B
]l — q,=0Gev [
= gl = a,=5GeV .
> 1 — a=20GeVv i
g ] J
T 4 7 -
1 7N,
o ‘\\
21 R
0 e B s e e e S S B S S e T
(0] 10 20 30 60

L.le”) [GeV]
Figure 5: The shape of the Jacobian peak obtained at fixed values of g7

o 100 GeV 4o
dgidiy) ! /0 Tdddir]) g

is plotted versus Iy (transverse momentum of the electron). The set DFLM
g260 is used and (d%o/dg4dlr) is obtained by integration over the restricted
phase space \/q? € (50, 140) GeV.
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Electron transverse momentum.

100 llllll | W WA A Las o 33 3 31 Lo 3 3 3 3313 La s s 3 a3 213 La s a3 113144
] pp — Z(IX — e'e"X

1 Sartis)=18 TeV I
8.0 B

i — DFLM g260
607 . DFLM g160 i

4.0 [

do/dl, [pBarn/GeV]

0.0 “—rrrrrrr T T T Ty e
0 10 20 30 40 50 60
[, le) [GeV]
Electron transverse momentum.
60 nnnnnnnnn 13 03 0323 La s s a s iag Laaa a4 133 La s s aa s a2y la s o aa
: pp —> WX —> e vX Y i
504 Sartls}=18 TeV —
Y j [
3 40| — DFLM g260 -
€ s - DFLM g160 ‘
‘ﬁ 301 -
___{- 4
kel 1 L
':é 20— »-.
10-: N
o' ..... N e e T N
0 10 20 30 40 50 60

{.(e”) [GeV]

Figure 6: The Jacobian peak, dii,i’;, calculated for e*e™ and e~ production at

Vs = 1.8 TeV (I stands for the transverse momentum of the electron). The
distributions for e*e~ production are obtained by integration over the phase
space region /g2 € (70,120) GeV, whilst the distributions for e~ 7 are obtained
with /q? € (50,140) GeV.
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Comparison of transverse lepton momentum distributions
A L ; Aurenche and Lindfors , ref. [1] , G M : ref. [11]

LA LA S S S A A S R SN SO SRR SR S M SN SN SIS S NENE BN SR S A M A B SN B S

1.25 | ~ === AL sqgit(s) = 540 Gev J2s
[ G M sqrt(s) = 630 GeV 1
—_ m_W = 80 GeV
L
=
g [
o [
o : 4
-_'g 0.75 .— 7] 0.75
=
8 [ ]
5 [ ]
™~ [
[
E [
o [ ]
5 0.25 [ 4025
oY1 ) S E I L S EF U B BTN U Y
15 20 25 30 35 40 45 50 55
‘ electron transverse momentum [GeV]
Figure 7a: Comparison of the Jacobian peak for virtual W #* production form w =
80 GeV, inref. [11], at /s = 630 GeV , using the structure functions of Duke
and Owens (set 1) [19] , with the calculation of the same quantity by Aurenche
and Lindfors [1] at /s = 540 GeV , with the structure functions of ref. [29].
Comparison of transverse lepton momentum distributions
sqrt(s) = 1.8 TeV¥ B R : Baer ond Reno , ref. [10] , B G M : this work
35 ] 35
30 [ — 4 30
[ BGM 1
_ 55 b m_W = 80 Gev 1 25
2 L 1
= [ ]
3 -
> 20 4 20
o] T
= r
5 15 F 115
e
5 b
} 10 - = 10
E
ey
0 5
° 5 L =45
0 {0
5'..1.l....1...11....l.,..ll.,.l...,ll...'s
15 20 25 30 35 40 45 50 55

electron transverse momentum [GeV]

Figure 7b: Comparison of the Jacobian peak for virtual W * production for m 1y =
80 GeV, at \/s = 1.8 TeV in this work , using the structure functions DFLM
g260 , with the calculation of the same quantity by Baer and Reno [10], with
structure functions of ref. [30].
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e"yv transverse mass.

60 Addd b d L i las s o100y a4 1 | T U U U0 U0 W0 0 W00 O WO U T W W 0 W 0 G O T S W O O 0
pp —> WX —> e vX

50] Sqrtls)=18 TeV | -

407 — DFLM g260
= DFLM g160

T T T T T

do/dm, [pBarr/GeV]

TTT T T

Figure 8: The distributions d:;’T , where m7 stands for the transverse mass of the
produced leptons pair, calculated for ete™ and e~ 7 production at /s =
1.8 TeV with the same phase space restrictions as those quoted in the cap-
tion of the figure 6.
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