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Analyticity and independence on the classical
boundary conditions of the infinite volume
thermal KMS states for a class of continuous
systems.

I. The Maxwell-Boltzmann statistics case.
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Abstract

The method of dual pair of Banach spaces is used to analyze the Kirkwood-
Salsburg equations for the reduced density matrices describing continuous systems
of particles obeying Maxwell-Boltzmann statistics. The existence, analyticity and
equality in the thermodynamic limit of the conditioned (by classical boundary con-
ditions) KMS states is proved for any value of the chemical activity z such that z~!
does not belongs to the spectrum of the corresponding Kirkwood-Salsburg operator.
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1 Introduction

One of the fundamental problem of the quantum statistical mechanics is the problem
of existence of the KMS states corresponding to a (locally) given dynamics [1]. More
interesting and important is the description of the whole set of KMS states provided they
exist.

Our knowledge about the content of the set of Equilibrium Gibbs states describing
continuous systems of quantum-mechanical systems of particles in high density (low tem-
peratures) regime of parameters is still very incomplete. (The same is true for classical
particles as well). The rigorous results which have been obtained up to now for such sys-
tems are confined essentially to low density (high temperature) regime. The basic results
of Ginibre [2] combined with the methods of [3-7] give the existence of Dirichlet infinite
volume KMS states in the above domain of parameters. It is worthwhile to quote the
papers [8- 12] where the existence problem has been solved for a special class of systems
in the wider regime of couplings, see also [45].

The main aim of the present paper is to extend the Ginibre results using different
method of analysis of the corresponding Kirkwood-Salsburg equations. The method of
the dual pair of Banach spaces (invented in [13] and then improved and applied in similar
situations in [14-18]) will be used. This method enables us to generalize slightly the
Ginibre results. In particular the existence of the corresponding Dirichlet KMS states can
be proved for much wider domain of parameters. Additionally the method used gives the
possibility to discuss the eventual dependence of the limiting KMS states on the classical
boundary conditions that have been used to construct them. These results (partially)
solve the problem posed by Bratteli and Robinson in [1]. It should be stressed that the
influence of the particular choice of the boundary conditions on the phase transitions has
been demonstrated explicitly for some toy models [19,20]. This is one of our motivations
to study the influence of boundary conditions on the limiting KMS states. The second
motivation comes from the question concerning the uniqueness of the limiting KMS states.
Results of that kind for continuous systems seem to be very exceptional [1]. So far only the
possible influence of the classical boundary conditions on the infinite volume free energy
density was studied before [21-23].

In the first part of this work we will concentrate ourselves on the exposition of the
method of dual pair of Banach spaces and its applications. The restriction to the Maxwell-
Boltzmann statistics enables us to obtain existence results (modulo the difficult part of
the proof of Lemma 3-4 below) in a rather economic way. The case of quantum statistics is
more complicated and the corresponding results will be presented in the second part of this
work [24], see also [45]. In Section 2 of the present paper the Kirkwood-Salsburg equations
are formulated and some introductory discussion of the classical boundary conditions is
included also. The main result is formulated as Theorem 4-1. It gives the existence and
independence on all classical boundary conditions of the limiting KMS states on the whole
resolvent set of the corresponding Kirkwood-Salsburg operator. The complicated proof of
the difficult part of Lemma 3-4 is referred to another publication [24].
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2 Some preparations

2.1 Admissible boundary conditions

Let —Aj denote the Laplace operator —V? defined on twice-continuously differentiable
functions in L,(A), where A is assumed to have a piecewise C! boundary dA. The class
of self-adjoint extensions of —A, can be described by the condition that ¢ belongs to
the domain of such extension iff 9,¢ = o¢, where & € C*(9A) and J, means the inward
normal derivative. This corresponds to the so called classical boundary conditions and
corresponding extensions will be denoted by —A4. The case of Dirichlet extension corre-
sponds formally to 0 = +00 on A and the case of Neumann extension to o = 0 on 9A.
The corresponding extensions will be denoted by —APX, resp. —AY. The infinite volume
(Friedrichs) Laplacian will be denoted by —A.

Let Q3(A) = 0<><<ﬁ A where A is compact region in R2? with the boundary dA being

piecewise C1. Similarly we define 3 = X R? (where the dot means one point com-
B = o<i<p

pactification of R?) to be the space of paths.

Lemma 2-1.

For any classical boundary condition (o, A), any z,y € A there exist uniquely
defined measure yA 2|y (tesp. pi, ) defined on the Borel o-algebra of
Qs(A) (resp. ) such that for any cylindric function ¢(w) = @(w(t1),
w(ts),... ,w(ty)) with 0 <t; <tz <... t, < B we have

B8 = [ igh(dw)s(w)

15(A)

=/dﬂh---dfb"nfﬁ(l‘l,---,En)Pi(fE,hltl)---Pi(mmy{ﬂ“tm)
A

(2-1)
where
Pi(z,ylt) = (exp—tAf)(z,y),

p(zlt) = (ezp —tA)(z)

The corresponding conditioned by Dirichlet (resp. Neumann) boundary condition

Wiener measure will be denoted by pf . (resp. py ., )-

To some extent, the deviation of p‘,’\’,ﬁ ol from "gly is measured by the compensating

Green function Ap}(z,y|t) = p(z — y|t) — p5(z,y|t). Certain fundamental properties of
Ap” have been established in [1,21,22]. For the applications to the present exposmon we
need

(2-2)

Lemma 2-2 [1,22]
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For each > 0 there exist constants C,c,c’ > 0 such that (uniformly in o
andt < f8)

Ap(z,ylt) <C-et. 142

o' (dist(z, DA)? + dist(y, OA)?) (2-3)
- exrp — 4t

for every bounded convex domain A C R?, whose boundary is C3-surface.

It is important to note that the constants in (2-3) depend only on the mean curvature
of JA.

Another, well known lemma expresses the expected fact that the measures %’ A xly and
,ux;y differ on the boundary o-algebra o(9A) = o {w|30 <t < S :w(t) € A} only.

Lemma 2-3 [1,22]
For any Borel set B € Qg(R), where A means the interior of A, the identity

i (an - B) = uly,(an - B) 4
holds, where
1 if w(t)eA forany te (0,5
CIA(LU‘) =
0 otherwise

A (o, A) boundary condition is compatible iff there exists ,ugiy-measurable function €7 ,, :
Qﬁ — Qﬁ(A) that

|

Hxla(B) = ), (hats)  (B): (2-5)
From Lemma 2-3 it follows that if the boundary condition is compatible then (6‘!’\.1:|y) e

id on § [o\) Therefore, the measure pﬁly (ex,xly) " differs from “iiy on o(0A) only. Let us
decompose

W, ()™ (B)) = r38,(B) + 535,(B) (2-6)

where r A.zly denotes the corresponding Radon- leodym derivative and s}’ rly the singular
part of the general decomposmon of the measure p}’ A 2|y» With Tespect to |y|a(6A)

From the inequality sA 2l (1 — aa) < Apg(z,y|PB) it follows that locally ,uA aly ,uz}y in
the weak topology, for (A,)n=1,.. being any monotonic sequence of convex bounded re-
gions whose boundaries are C3-surfaces with mean curvatures uniformly bounded. Taking
into account this observation we support conventional wisdom that only in the strongly
correlated state of the system the boundary condition could influence the thermodynamic
limit. The results presented below support this picture.
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Finally it seems worthwhile to point out that there are many mathematical papers
[25-28] in which great portion of a more detailed information concerning the conditioned
Wiener measure is still to be encoded.

2.2 Interactions

Two classes of interactions will be considered in this paper.
(SSR) superstable and strongly regular interactions defined by V € SSR iff

(SS)
dazo U @E")= 3}, Vl(zi—g;) 2 3 (An”(r,2") = Bn(r,z")) (2-8)
1<i<j<n reZd
with

2(p-1)

P—12£&(2;dl ’ p22 ’ lfd>3v (2___9)
p=2 , if d < 3,

where n(r,z") denotes the number of particles belonging to the configuration z* =
(z1,...,2,) that are located in the unit cubes O, = {m € R r— % <zi<r+ %}, z € 74
and

(SR) there exists a positive decreasing monotonously function ® on (0,00) such that
®(x) ~ z7(%+9) for some € > 2 as z T co and moreover

@M <5 5 e(r—s)
r,scZd
' (2 —10)
.(nz(r,:r") + n2(s,ym))

where

The second class is

RR - purely repulsive, strongly regular interactions defined by: V € RR iff
(R); V is nonnegative measurable function on R? and

(R)y [ V(z)dz < o0.
Rd

We impose also that for both of these cases there exists a closed set F' C R? of
(Newton) capacity 0 such that V' is continous outside F.

We can hardly quote a reference in which (but see Reed & Simon [44]) complete
treatment of the self-adjointness preserving perturbation theory for the operators —A§
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is given. Several partial results can be obtained suitably by adopted standard technique
(presented originally for the operator —AP only). For the following analysis we need to
impose also that the interactions V' leads to the self-adjointness preserving perturbation
of —A¢ for any classical boundary condition ¢. Then we have

Lemma 2-4 ( Feynman-Kac formula) [30]
Let V belongs to SSR U RR and such that —A{ + V is self-adjoint in Ly(A) for any
classical b.c. (¢,A). Then the following formula holds

B
(exp — B(AS + V))(z,y) j IJ'A 2y (dw exp—f dtV(w(t)). (2-12)
Qp(A) 0

Notations and Abbreviations

A T R? means always that we have a countable generated filter (A, ) of convex bounded
regions that tends to R® and such that for any a the boundary dA, is of class C?
and moreover the mean curvatures of the family (0A,), are uniformly bounded (in
a).

WY = (@100 ,wn) = Qﬁ(')®n.
2" = (2505 0500) € e

W™ = (way...,wn)
etc. "
Ulwm) = U = 3 [ dtve(t) - w(t)), (2—13)

m P
Up (w"a™) = U la™) = Y- 3 [ dtV (wi(t) = 35(0). (2-14)

2.3 Reduced density matrices and the Kirkwood-Salsburg equa-
tions

The reduced, m particles, o-conditioned density matrices pJ, 4 are given by

pn@™y™) = [ (@™ R ") (2-15)
Qp(A)8m
where
— zm+n T ~m n ~m n|~m
AW =207 T [ domeap(-Upw™) - Up @) - Up (wrlo™))
n20 ()

(2 —16)
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( z = expPu is the chemical activity) and

g™ = Q) (/ d:c,-pi’ﬁl_lri(d&;)) in the weak sense (2-17)
=1 A
Here .
Z5=5 -Z—T / djw"exp — Up(w™) (2 —18)
n

"20 Tay(n)en

is the o-conditioned, grand canonical ensemble partition function in the finite volume A.
Let By be the space of all sequences ¢ = (¢n(w")) of (dz ® uflx)‘g" measurable func-

tionals ¢, defined on Qﬂg’". Below we define the following linear operators in the space
B()Z

n

(I(A)$)a(w") = J] TI(A)(wi)dn(w™), (2-19)

t=1

where
1 ifforany t€[0,0]:w(t) €A

I{A)(w) = { )

0 otherwise

K (the Kirkwood-Salsburg operator):

(K9), (") =exp{-U'(w")}

2 —20a
> L' f doo@™ k(w|[0™)p(w™1,0™), forn > 1, ( )
mso ™ L |

B
and i
(Ké)i(wr) =) ] / doo@" k(w1 |@™)Pn(@")), forn =1, (2 — 200)
n>1 .Qg@n
where
dooto = [ dapl, (d); (2 - 21)
Rd _
. n ﬁ
Ui(w") = 3 [ dtv(wit) - w;(); (2-22)
I#i
f (w(t)-@i(t))
m — | dtV (w(t)—@(t
k(wl@™)=1] |e ® —1]. (2 —23)

i=1
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K7 - the finite volume o-conditioned Kirkwood-Salsburg operator:

[ exp{-U'(w™)}-

: Z % j di o™ k(w, Id:m)¢(wrn—1’@m)’ forn > 1; (2— 24a)
(Kz@em) = {750, dyon
Z lT f di@™ k(w |@™)p(0"), forn=1. (2-— 24b)

m!
m2l T g(h)em

\

K7 - the finite volume, Dirichlet conditioned Kirkwood-Salsburg operator:

[ ap(w™)ezp {—Ul(w")}-

1
S dD~mk ~m m-1’-vm : f i 1’ 5 _ 95g
(KR ¢)n(w™) = 1 ,,go m! f A" k(wr |0™) plw ™) or n ( )
aA(wl) Z _r% / df@mk(wﬂ&mw(@m)’ for n = 1, (2 — 25b)

m21 T g(A)em
where now
d? w= / dmaA(w)p'g‘z(dw). (2 —26)
A
J - the index juggling operator of Ruelle :
From the stability assumption it follows that Q§™ = U T, where 37" = {w™ €
J=1
;%™ |U/(w™) > —28B}. Let then n; denotes the characteristic function of £ and let
m
O =mn; > " n;. Let Sk be the operator defined on functionals of m-trajectories f(w™)
j=1

as the cyclic permutation of k¥ steps on the arguments of these functionals. Then the
index juggling operator J is defined as:

() (@™ = 3. 8, [Or(w™)é(w™)] (2 - 27)

i=1

If all components of ¢ are symmetric then the operator J reduces to the identity.
From the above definitions we have the following relations, cf. (2-19), (2-25),

KP =TI(A)KTI(A), (2 — 28)

K{ =KP +6K; (2 —29)
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where the operator 6K is defined as (on the symmetric functionals)

CED @) =ean{-0' @M} T £3(}) [ @

n20 Rg(A)®!

j oo™ k(w0 |5™) QA ) (@) II(A) (&™) (2 - 30)
0, 8D

for m > 1, and

ki) =X 53(7) [ ane) [ d

1

Qg(A)8! Q8D
(2 - 31)
k(w!|@")TI(0A) (@")II(A) (@)
¢(a)n)’
here we have introduced the operator II{(GA) by
T1(3A)(#)(w") = [ T(0A)wi)g(e"), (2-52)

=1

where

1 if3te€[0,8]:w(t) € A

0 otherwise.

I(9A)(w) = {

The following decomposition has been also introduced in (2-30): w™ = (wF,w"*) for
k=1,...,n.

If we now proceed with well-known arguments (see [2]) the following identities between
the correlation functionals can be obtained;

pa = zII(A)JKZIL(A)p% + z A
(2 — 34)
= [2II(A)JKPTI(A) + 2II(A)JEKZII(A)] p% + 2Aa,
where
Ap =I(A)a with a = (1,0,...,...). (2 - 35)

We call these identities the Kirkwood-Salsburg equations for the finite volume.
They have to be compared with the following ones

p=z2JKp+z2a (2 - 36)
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that we call the infinite volume Kirkwood-Salsburg equations. In the next section we
provide a rigorous comparison analysis of (2-34) and (2-36).

The generic Kirkwood-Salsburg operator K can be decomposed in the following useful
for us way (see [13,43]):

K = expElok (2—-37)
where the operator k is defined by
(kp)(w") = ¢(w™)
= 1 . . o 2 —38a
+Y — [ demk(@lom)gw,om), ( )
m>1 ‘Q om
B
forn > 1,
1 ~m ~m ~m
(k) = 3 — [ dui™k(r|0™)p(@"), (2 - 380)
m2>1 .Qp@m
for n = 1.

‘The operator exp&! is given by

é(w1), for n=1

(ezpE')(4)(w") = { (2-39)
(exp — U (w"))¢p(w™), for n > 1.

3 Analysis of the Kirkwood-Salsburg equations.

Here the method of the dual pair of the Banach spaces proposed in [13] will be im-
proved and applied to the analysis of the Kirkwood-Salsburg equations for the Maxwell-
Boltzmann statistics. The Kirkwood-Salsburg identities with the Dirichlet boundary con-
dition ¢ = D has been analyzed previously by Ginibre [2]. The work of Ginibre (2,3] is
entirely based on the contraction map principle. Our method reproduces his results as
simple corollaries.

Let B¢ be the Banach space defined as in [2], i.e.,B; consists of sequence of essentially
bounded (with respect to the measure [ dmpfiz ) functionals ¢,, of m trajectories w™
equipped with the norm

[6lle = sup&™™ess sup |dm(w™)], 3-1)
m wmengm

where £ > 0 will be chosen later. The space By = (*Bg)* is the dual to the Banach
space *B, which is defined as follows. It consists of sequences of L;(f d"’-“gix) -integrable
functionals equipped with the norm

Pele= Y ém [ o lpm@m)] (3-2)

Qﬂ
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From the definition of B, and p§ we get

| 'm+s

s
1 o0
™ & L 3 BB o a3 B](ﬂ df'w)
' Z 220 ﬁ{\) !

(3-3)
- —ZI—X- [Iz]eﬂB]m erp (C'GB 2| - C - lAD

uniformly in o. Here the monotonicity of the kernels p§ (2-2) have been used. The best
possible value for the constant C is given by

C-lAl= [du [ du) y.(dw) (3-4)

A Qp(A)

as it follows from the mean value theorem.

Similarly one can show that Z¢ is an entire analytic function ( of order at most 1) of
z and is uniformly in ¢ bounded:

|Z3] < exp (2¢PC - |A]) (3-5)

It follows from estimate (3-3) that p§ € Bg for any £ such that |z| - ezpfB < € with the

norimm
leglle < 12517 exp (|zle”E - |A] - C) (3-6)

Now we show that the operators JK, J (as defined in §2¢) are bounded operators in
the space B;.
From the stability of V and definitions (2-24) and (2-27) we get

(JEZ9), (™) < [I#ll €27 -6

<> Siezor,

n>0

[ezp

< Be*PB ||V, - sup 1P (z,z|B)|

where

Ci(8) = sup / do [ dpgh,(d)

Qg(A)

B
_ / V(w(t) -—G;(t))} _ 1}

< Be

NEXEIE
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The quantity
sup sup py (<, 2(8) = C(B) < co. (3-9)

Therefore, we have
ITKZlle < € exp(28B + ¢ - Be*P - |[V[.C(B)) (3-10)

uniformly in the boundary data ¢ and the constant C'(#) may be chosen to be equal to
(7r . ﬂ)ljz_

We shall concentrate on the Dirichlet-conditioned Kirkwood-Salsburg equations (2-34)
which will be compared to the infinite volume one (2-36). The following theorem gener-
alizes some of Ginibre’s results [2].

Theorem 3-1
Let us denote the spectrum of the operator JK in the space B as o¢(JK). There
exists £ > 0 such that for any 27! ¢ o¢(JK) there exists a unique solution pe, of (2-36)
and moreover p, tends to p,, component-wise and locally uniformly as A T R®.
Comparing with Ginibre’s results included in [2] the novelty of Theorem 3-1 is in the
absence of an a priori restriction to the small values of the chemical activity z, cf. [13].
The proof of Theorem 3-1 is based on the following sequence of lemmas.

Lemma 3-2.
There exist bounded linear operator *J, *K in the space *B; the duals of which are
equal to J, resp. K i.e. (*J)* = J, resp. (*K)* = K in the dual pair (*Be, Be).

Lemma 3-3.
Let *II(A) denotes the corresponding predual of the operator II(A). Then the strong
convergence in *B;

*II(A) *K*J *TI(A) - *K *J (3-11)
takes place as A T R4.

Lemma 3-4.

Let V € SSRU RR. There exists a number ¢ > 0 such that, uniformly in o, the net
(PRa)a C Bg (where all A, are as in Lemma 2-3) is pre-compact in the weak-* topology
of the space B;.

Note, that for V € RR we immediately get the estimate sup|p$_(w")| < |z|*, uniformly
in o and a, to our disposal. As a consequence one gets ||p3.lle < 1 providing |z| < &.
Then application of the Banach-Alaoglu theorem gives the proof of Lemma 3-4. For a
general V' € SSR the proof is more complicated [24], cf. [13] and [12,45].

Before formulating the next lemma we need some preparations. It is well-known that
the iteration of the Kirkwood-Salsburg equations leads to the Mayer-Montroll equations
[31]. Therefore, if p§ (resp. pso) fulfills (2-34) (resp. (2-36)) it fulfills also the following
identities

pa = T(A)M(2)Z3T1(A)pg + AR (2) (3-12)
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and
Poo = M(2)pos + za. (3 —13)
Here the Mayer-Montroll operator M(z) is defined by the formulae

(M(2)$)m(w™) = z™exp — Up(w™)

x|1+ % — j o™ M (™™ g (0™ ™) |
"2l ag(Reen
where the Mayer-Montroll kernels are given by
fd V{wi(t)-(@);(1))
m n - tV(w(t)—(@ ;(t
M o™ =] |IIe ® -1 (3—15)
7=1 li=1
and A, = (II(A)=,0,...,0,...).
The operator M(z)= is defined by
(M(2)Z3)(@)m(w™) = 2™ exp — Up(w™)
(3 —16)

1 ~n mj|~n mj|~n
|1+ — j &%G™ M (™5™ g (™5

Standard application [3] of the Mayer-Montroll equations gives.

Lemma 3-5.
Let assume that p? — pe, as A T R?, in the weak-* topology of the space Be. Then
pR — po component-wise and locally uniformly.

Having postponed proofs of the listed sequence of lemmas we outline the proof of
Theorem 3-1.

Proof of Theorem 3-1.

Let (As)o be an arbitrary net as described above. Then from Lemma 3-4 it follows
that the set of accumulation points of (p{ ), is non-empty. Let p2 be any of them. It
follows from Lemma 3-3 that p2 fulfills the equality (2-36). By the assumption about z
it follows that equation (2-36) has a unique solution pe,. Therefore, it must be p2 = po,.
Additionally from the very definition of p2 it follows that p§ — p., in the weak-*
topology on B,. Application of Lemma 3-5 concludes the proof.

Now, we show the validity of those lemmas. The proof of Lemma 3-4 for the case
V € SSSR as the most technical, lenghtly and complicated will be presented in [24]. It
is based on the adaptation of the probability estimates of Ruelle [31, 32] (see also [33])
with the fluctuation estimates of Park [12]. For d < 3 and ¢ = D the proof of the Lemma
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3-4 is contained in [45].

Proof of Lemma 3-2.

The explicite calculation done in [13] gives the following expression for the predual
operator *k in *Bg:

CEn@™) =37 [ do [ dil @k im i@V (@™ =) (3-17)

=0 Rd Qp

which is bounded by

Il <3 5 C @) miral,
=0 "'

fel
ezp {— ] V(w(t) — (Z;(t))} —1

“II"klle < exptC(B). (3 —18).
The existence, boundedness and the explicite form of *J follows from the definition of J
and the dualisation in (*Bg, Be). The chain rule for pre-dualisation, cf. [13], and formula
(2-27) proves the existence of *J*K € L(*B;) providing V is stable and integrable.

.

C(B) = sgp/dffo@

Therefore,

Proof of Lemma 3-3.
It is application of 2 — € argument. The finite-length sequences forms a dense subset in
* B¢ and moreover for any n we have L; (23", d5 w") = lim L (Q8™(A), dhwn) as it follows
ATR

from Lemma 2-2 and Lemma 2-3. Therefore, for any 1 € *B, and any € > 0 there exists
a bounded A, C R? such that *||¢) — II(A.)¥||¢ < e. Then we get the result by estimate,
cf. [13],

“NCITEA) = (I Keo))dlle
=*(TI(Ae) (“k exp &' *NIL(A) — *k exp £ *T)|¢
(3—-19)
< lklle "li(exp £ "I)II(A) — exp ' ")hlle + (1 — TL(A)) "k exp &’ “ T
< 2 klle 17 exp Ele *I(1 — TI(A)sblle
because by definitions of *|| ||¢ and the operator II(A) we have: II(A) — 1 strongly.

Proof of Lemma 3-5.
For each fixed w" € (14 € the map

w" — [-]}:T M(w"]cbk)] . (3—20)
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takes values in the space *B;. It is consequence of the previous estimates. From

n k B
IM(le*)] < 8 T T ( [ dtvia) - a:.f(t)) (3-21)

1=1;=1
it follows
[ daatu (o)
o, o (3 —22)
< BV 1, - p(018)*
Therefore,

*

1/kIM (w"|@*) ||6
(3-23)
< e exp (B|V2p(018) - £) -
uniformly in w" € (g !
Straithforward comparison of the both sides of Mayer-Montroll equations (3-12) and
(3-13) gives the final argument.

We proceed to the general case of an arbitrary classical boundary condition. The
result is formulated as follows.

Theorem 3-6.

Let o be an arbitrary classical boundary condition and we take £ > maz{|z|expSB, £}
where £ is given by Lemma 3-4. Then, for any value of 2~! which do not belongs to the
spectrum (in the space B; ) of the operator JK we have p§ — po, as A T R? where the
convergence is component-wise and locally uniform.

The new additional arguments necessary to supply the proof in the spirit of the proof
of Theorem 3-1 are listed now.

Lemma 3-7.
Let A T R%. Then for any classical boundary condition ¢ and any £ > 0

lim [|J6K?||, = 3—-24
AlTRd | alle=0 ( )
Lemma 3-8.

For any £ > 0 and any classical boundary condition the operators JOKY{ are weakly
continuous on the space Be.

Proof of Theorem 3-6.

According to Bourbaki [34] the weak continuity of § K on B¢, given by Lemma 3-8,
is a sufficient condition to assure the existence of the pre-dual bounded operator *(6 KY)
€ L(*B¢). Then by Lemma 3-7 it follows that *(§ K{) — 0 in the uniform topology and,
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thus, strongly on *B¢ as A T RY. The remaining arguments for supplying the complete
proof can be given as before.

Proof of Lemma 3-7.
From the stability assumption it follows that

B
lezp {—/dtV(w(t) - J;(t))} —1]

B

<P [ V(w(t) - o(t)ld.

0

(3-25)

Using the shift transformation, together with Fubini theorem, we get

Qp(A)

j dﬁd;H(@A)K(w@)}w

B
< sup e / d5OTI(OA) (@) f [V (w(t) — &(2))|dt (3 — 26)

Q5(A) 0
< B Vil - [ dui gpl(@)T1(04)(@)

< Op(1)Ap3(0,08).

Therefore,

(JEK)(B)m(w™)] < [Iglle - €™ - 2P

S

n>0

(3-27)

n—k
xVIIi* (%) < |llle - € e - DYexptOp(1),

where
DR = Apj(0,0]8). (3-128)
Thus
||J’5K"||6 < 0p(1) - D} (3-29)
Application of Lemma 2-2 gives lim D¢ = 0 uniformly in the boundary data.

ATRd
Proof of Lemma 3-8.
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Let M, be the space of all countable additive set functions on Q%" which have

bounded variation and vanish on the zero sets of the measure ( ] dmpflx)e". Then the

space ®¢ M, = B; equipped with the norm
lullf = > € Var(pn) (3 - 30)

n<0

is the dual space of the space B; (see [35]). Let ¢ be an arbitrary sequence in B
converging weakly to ¢. We have to show that for any u € Bg, u(6 KZ(¢")) converges to

r(6KZ(4))- .
To this end, let M,, be the space of all countable additive set functions on Q?" which

have bounded variation. Then the space @M, = f?g is the Banach space in the norm
el = X €*Var(p.) and moreover B is the closed subspace of Bf. For a given p = (st
n<0

let us define

(O () nm (@™, &™) = pn(dw™) (%K(wl I‘:’m)
xemp{-—Ul(wn)} (2(7’?) Hk(aA)) -

|
A

From the stability assumption it follows that ©%(u) € Bg‘ for any p € Bg and, moreover,
we have the following estimate

ICAD]

B; & ”ﬂ”é; -expte’ POL(B), (3-32)

where now

Oa(8) = Api(0,018)(1 + Op(1)). (3-33)
Finite length sequences form a dense subset in BE‘ Taking p € f)’g‘ of the form g =
(6nm * pn) and noting that

(T8 K)($)N — (JEKZ)(#))|

= |03 (1) (@") — O3 (1) (8)]| = O,
as N T oo, we finish the proof.

4 Existence and properties of the KMS states

Let Ly(A) be the building space for the associated Fock space F(A) describing states

of the system in a bounded region A C R®. The total hamiltonian H{ = @ Hy*
n>0
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given in terms of n-particle hamiltonians Hy” = —1 > A7 +U(z") defines then a local
i=1

dynamics on the local C* algebra R(A). For deﬁning R(A) let a(f) and a*(f) be the
annihilation and respectively creation operators defined on F(A). Then operator ®(f) =
715 (a(f) + a*(f)) for real f has a self-adjoint extension which is ®( f). The Weyl operators
W(f) = expi®(f), f € La(A) then generate C*-algebra and let R = | R(A) be the

ACR4
corresponding quasi-local algebra of observables. The finite volume Gibbs state wf is

given by .
(=) = (207 Tr g g (-)e PP, (4-1)

Z3 = Trp(pye P, (4 —2)

where IV, is the particles number operator.
The finite-volume Gibbs state wf on the local algebra R(A) is fully determined by the
corresponding finite-volume o-conditioned Green functions G%:

G5 (Ao, Aty - - -y Anitay - -y En) = Wi (A0l (Ar) ... a7 (AR)), (4-3)
where A, Ay,..., A, € R(A) and the local dynamics is given by
o (4) = explit(H — uNp)] A expl—it(HS — uNy)]. (1-4)

Using the arguments and the methods of refs. [4-6] and the result of the Theorem
3.6 one gets the existence and the independence of the classical boundary condition o

of the limiting Green functions G, = limd G4. The limiting Green functions determine
ATR

the infinite-volume state wy, on the quasilocal algebra R. Using the GNS construction
we define finally the physical Hilbert space Hoo, the limiting unitary dynamics U; acting
on He., and the cyclic vector {2, € Ho, which defines a vector state &, that appears to
be KMS state with respect of the dynamics &; implemented by U; as a group of autor-
morphisms of (7;_(R))”. (For an instructive discussion of the problem of the existence
of the infinite-volume dynamics (in the weak sense) on the quasilocal algebra R see [46]
and references therein).

Let us denote by A°(z,/) the set of all possible limiting KMS states that can be
obtained from {wf}a, as o varies over all possible classical boundary conditions and
A T R4, via construction outlined above. The set of all limiting KMS states describing
the systems under consideration will be denoted by A(z, ). The results obtained in this
paper can be summarized as the following statement

Theorem 4-1.

Consider the interacting particles for which V € SSR|J RE. There exists £ > 0 such
that #A%(z,8) = 1 for any value of z = exzp(—fu) such that z7! ¢ o¢(JK). Moreover
this unique KM S state, denoted as wy(2) is (weakly) analytic in z, entire analytic and
locally normal state over the algebra R.
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5 Concluding remarks.

To apply effectively the results obtained in the previous sections the spectral analysis
of the (Ruelle)-Kirkwood-Salsburg operator is necessary. In the classical statistical me-
chanics some spectral properties of the operator II(A)JKTI(A) are known [36, 37]. It is
rather straightforward to extend the arguments of those papers to the case with Maxwell-
Boltzmann statistics. However, the actual problems are: the extension of these results
to the case of particles obeying Bose-Einstein or Fermi-Dirac statistics and the control of
the flow of the finite volume spectral set as we pass to the thermodynamic limit. These
problems are now under consideration [38].

The next intriguing question concerns the uniqueness of the corresponding infinite vol-
ume K M S state i.e. the question whether A°(z, 3) = A(z, 3). In the classical statistical
mechanics a constructive description of the set of all equilibrium states is given by the
celebrated DLR equation [39, 40]. From the general theory [39, 40] then follows that
any solution of the corresponding DLR equation can be obtained manipulating suitably
(allowed) boundary conditions. This fact enables us to prove certain uniqueness theorems
known as Dobrushin uniqueness theorems. Only for a class of lattice systems similar
constructive description of the limiting KM S states has been given [41, 42]. Uniqueness
of the KM S states is known sometimes for the lattice systems [1] but the corresponding
proofs are based entirely on the intrinsic operator algebras methods.
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