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School of Theoretical Physics, Dublin Institute for Advanced Studies,
10 Burlington Road, Dublin 4, Ireland;

J.V. Pulé *

Department of Mathematical Physics, University College,
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(1. V. 1991, revised 3. IX. 1991)

Abstract: We examine the existence of Bose-Einstein condensation in a perturbed meanfield
model of a Bose gas in which the interaction is given by a Gaussian kernel. We find that: for
negative values of the chemical potential i there is never condensation; there is a ft9 > 0 such that

for pu € (0, ,U.Q) there is condensation for all temperatures below a critical temperature Tc( ,u); there
isa flg > 20 such that for p € (,uo, ﬂo) at sufficiently low temperatures, there is no condensation.

8.1 Introduction

The Hamiltonian for a system of bosons interacting through a pair potential
¢(z — z') can be written as

H=T4+U

where T is the kinetic energy operator and U is the potential energy operator,

1 1 * * ! ! !
U =3 [ [ oe = @@ epe dode

where (z) and 1*(x) satisfy the canonical commutation relations. For particles in
a cube A of volume V with periodic boundary conditions, the Hamiltonian can be
written in terms of momentum space operators using

P(z) = %Zakeih and  v(k) = f d(z)e k2 dg
k A

= Z e(k)nk
k
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and

= % Z Z Z v(q)ak 4 Qkr — Ak Ok
g kK

v(O)( —-N)+ —Z Z v(k — k' yngnp

k k'#k
§ :§ : E : v(q)ak+qak’—q k'ak
k! q#0
gk —k!

where ny = afar and N = ), ny. The last term in the righthand side is generally
believed to be of less importance at low densities. The remaining terms are diagonal
in the occupation numbers {ny} and models utilizing these terms have been studied
by many authors ([1, 2] for example).

It is convenient to distinguish four models:

UMF WNz a> 0

a
UHYL _ pMF | W{Nz _ Zni};
k

1
UPMF = W Z Z ’U(k - k')nknkn;
kK

a
UFD =UPMF+W{N2 _Zni}.
k

This paper is one in a series in which we study these models using the techniques of
Varadhan’s Large Deviation Theory. The first of these models, the meanfield model,
has been studied exhaustively; the first rigorous treatment was given by Davies (3].
It was studied in [13] for a more general class of kinetic energy operators and in the
present framework in [4, 5, 6]. The first rigorous treatment of the second model, the
Huang- Yang-Luttinger model [2], was given in [6, 7] as part of the present programme.
The fourth model, the full diagonal model, is the subject of a subsequent paper [8§].
The third model, the perturbed meanfield model, was studied in [4]; in this paper we
expressed the pressure as the infimum of a functional on the space of measures. Qur
aim in the present paper is to study the variational problem in some examples and to
relate it to the existence of Bose-Einstein condensation.

The main object of our study is the variational problem for the Gaussian kernel

v(k, k') = voe IF=F1I7, (1.1)

where vy and é are positive constants. This comes, of course, from a Gaussian pair-
interaction in configuration space. We proceed by comparision with simpler kernels;
v can be written in the form

ok, k') = voe=SIEIP+IKI) 26k-%" (1.2)
First we consider the kernel in which e2®** is replaced by 1:

va(k, B) = voe= RN +HIKI®), (1.3)
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This has the great advantage that it is separable. Next we consider finite sums of
separable kernels:

va(k, k') = voe SURIPHIFIN (1 4 51 k- &), (1.4)

v3(k, k') = vge SMEIPHIRID (1 4 oo k- & + oy (K - K')?). (1.5)

Our final result for the Gaussian kernel (Theorem 8) can be summarized as follows:
for negative values of the chemical potential u there is never condensation; there is
a po(6) > 0 such that for g € (0, uo(8)) there is condensation for all temperatures
below a critical temperature Tc(p); there is a fig(6) > 2uo(6) such that for p €
(po(6), f10(6)), at sufficiently low temperatures, there is no condensation.

The paper is organized as follows:

in §2 we derive the variational expression for the pressure along the lines of [5]

but making modifications necessary to accomodate kernels which are functions on
momentum space;

in §3 we study the simplifications that arise when the model has spherical sym-
metry proving that in this case there exists a unique minimizing measure m* for the
variational problem, m* is absolutely continuous with respect to Lebesgue measure

apart from a possible atom at zero momentum and the amount of condensate is equal
to the weight of the atom;

in §4 we study the model with the Gaussian kernel (1.1) and make some remarks
about other kernels.

§2. Large Deviation results and a variational expression for the pressure.

As in [5] we consider the occupation numbers as random variables rather than
as operators. The probability space on which we define our random variables is the
countable set {2 of terminating sequences of non-negative integers; an element w of {2

is a sequence {w(j) € N:j = 1,2,...} satisfying 3,5, w(j) < co. The basic random
variables are the occupation numbers {o; : 7 = 1,2,...}; they are the evaluation maps

o; : 2 — N defined by ¢;(w) = w(j) for each w in Q. The total number of particles
in the configuration w is defined by

Nw) =Y 0jw) . (2.1)

j21

Let Aj,As,... be a sequence of regions in R? and denote the volume of A; by Vi;

we assume that V; — oo as | — oo. We associate with the region A; the free-gas
Hamiltonian H; given by

Hiw) =Y e(ki(j))oj(w) , (2.2)

j21

where € : R* - R is a continuous positive map having bounded level sets and satisfying
the condition inf, _pe €(k) = 0, and ki(1), ki(2). .. is a sequence in RY.

The Hamiltonian, H 1, of the perturbed mean-field model considered in this paper
given by

) = H@) + 552 3 o(kiG) hi())os(@)ay (). (2.3)

33’21
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The free-gas pressure, p;(p), is defined for x < 0 by

eBVipi(n) Z ePluN(w)-H(w)} . (2.4)
w€eQ

it is given in terms of ki(j) by

p() = [ P, (2.5)

where v; is the measure on R? defined by

v(A) = (V)7{i « ki) € 4} (2.6)

and p(u|k) is the partial pressure given by

p(ulk) =p'1n (1 - 8'8(”-‘("))) - . (2.7)

The pressure $;(¢) in the perturbed mean-field model is given by

~ 1 w)—Hi(w
pi(p) = mln Z eB{rN(w)—Hi(w)} (2.8)
wER

Proceeding as in [5] we shall rewrite it as an integral over E, the space of bounded

positive measures on R? equipped with the narrow topology. First we need some
definitions:

the free-gas canonical measure is defined for o < 0 by

P{w] = eflaN W) -Hi(w)-Vip(a)}, (2.9)
the occupation measure L; is defined for each Borel subset A of R? and w in Q,
by
1
Lifw; A] = v > 0j(w)br(5)lAl; (2.10)

i>1

for each w in ©, Ljw;-] is an element of E. For each m € E define

(m,Vm) = ,//R"xﬂ‘ v(k, k" Ym(dk)m(dk'") (2.11)
and put
G¥fm] = pllml| = 5 (m, V), (2.12)
where
]| = fR m(dk). (2.13)

We let Kj' be the probability measure induced on F by L; :

f=PfoL;; (2.14)
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and rewrite (2.8) as

~ 1 B m]pea
(k) = pa) + - In [E PYIC"~ ImIKE [ drm). (2.15)

We impose conditions on {ki(j)} to ensure the existence of the limit p(a) = limj— o pi(a)
and that the large deviation principle holds for the induced measures.

(T1) There exists a measure v on R? such that, for 8 > 0,
,[R" e Pk y(dk) < oo (2.16)

and the sequence {e~#<(F)y(dk)} converges to e #<(¥)y(dk) in the narrow topology.
(T2) v is absolutely continuous with respect to Lebesgue measure with a density
which is strictly positive almost everywhere.

The condition (T1) implies that p(a) = lim p;(a) exists for & < 0 and is given by

) = [, plalkw(d) (2.17)

In the case in which e(ki(j)), 7 = 1,2,... are the eigenvalues of the Laplacian

with periodic boundary conditions on the cube of side V,ll ¢ condition (T1) is eas-
ily checked: here e(k) = ||k||2, ki(5) = ﬁ?n(ﬂ, n(j) € 7%, and % Zj>1 e—Bekhi(i) _,
: >

fRa 6_’66(k)‘(’2'—d:7,;'; it follows that for each bounded continuous function f on R? we
have
oo A0 Ouar) - [ f0e s Puar)
Sly X SaG)e e - ] N (paC e
" Ik G)I<R) (R <) (2m)

j21

—er? [ 1 —1Be(ki(5) ] —3pecky _dk
+ e” 2 — E e~ PR L e~ 3Pelk) 1

Fix R such that the second term in the righthand side is less than e for all [ and

then the first term can be made less than %e by choosing [ sufficiently large since on
a compact set the Riemann sum converges to the integral.

Theorem 1. Suppose that (T1) and (T2) hold; then, for each a < 0 the sequence of
probability measures {K['} satisfies the large deviation principle with constants {3V}
and rate function I* : E — [0, 00] given by

I[m] = f[m] + p(a) — a|m|| (2.18)

where
dm

i) = [ cBmany -7 [ o (420 ) stan) (219)
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and

s(z)=1+2)ln(14+z)—zlnz (z>0). (2.20)

The proof of this theorem is exactly parallel with that of Theorem 3 of [5] and we
shall omit it.

Next we use Varadhan’s theorem to establish a variational expression for the
pressure as in [5]. To include the special potentials mentioned in the introduction we
make the following assumptions on v:

(P) v:R%xR? > R is a bounded, continuous, positive definite function; there exists

a continuous, strictly positive, symmetric function v, : R¢ x R? — R such that for all
me k,

(m,Vm) > (m,V,m)
where (m,V,m) = [ fR"xR" vo(k, K"Ym(dk)m(dk").
The form of Varadhan'’s theorem given in [5] cannot be applied here since clearly
G*~% is not bounded above; we use the following version which is also used in [9]:

Varadhan’s Theorem [10]. Let {K;} be a sequence of Radon probability measures
on a regular Hausdorff space E satisfying the large deviation principle with rate
function I and constants {a;}. Suppose G : E — R is continuous and satisfies

lim lim sup & ln/ e*CPK [dz] = —c0 . (2.21)
A= Jaoo @1 J{zeE:G(z)>A}
Then
lim ~1In / e G0 [dz] = sup{G(z) — I(z)} . (2.22)
l—oo aj E z€EE

To verify that the function G#~* satisfies the hypothesis of Varadhan’s theorem,
we note that the continuity of G follows as in Lemma 4.1 in [5] by replacing the

Laplace transform by the Fourier transform; to check (2.21) is more troublesome and
we do it in the following two lemmas.

Lemma 2.1. Suppose C is a non-empty compact subset of R%; then there is a con-
stant b(C') > 0 such that for all m € E, we have

2

m [ c
GHlm) < g + #m(CY)

Proof : Let b(C) = inf{vo(k,k") : (k,k") € C x C}; we have for m € M’ (C), the
space of bounded positive measures on C, that
(m, Vo) 2 b(C)||m/||*

and since C' x C is compact b(C) > 0. We now split up the measures m € E into two
parts: m = m' + m" where m' = m|c and m" = m|g.. Since {m,Vm) > (m,V,m)
for all m € E we have

1
G¥[m] < pllml| = 5{m, Vom)
1 1
= ullmll + pllm"|| = 5 {m’, Vom') — 5(m", Vom") — (m', Vom")

1
< pllml| + pllm”|| = 5 (m, Vom')

2

1 ' P
< pllmll = SH(C)Im I + ullm”|| < 2H(C) +ullm”|.

1205
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Lemma 2.2. The functional G*~9[ . | satisfies (2.21) with respect to the measures
K.

Proof: To prove (2.21) it is sufficient to prove that for > 1,

lim sup lln.[ e GEK (dx) < o0 . (2.23)
E

i—oo

We see this as follows: If ( > 1

1

—1In

/ eagG(:)Kl(dz) < lln/ e{qu(tc)—(C—l)a:A}Kl(d;z;)
@ JizeE:G()> ) S a Jg

e ((-1)A+ +1n f eCHGK (dz),
ap E

If (2.23) is satisfied then the last term is bounded and thus (2.21) holds.

Let v > max (2u — a,0) and let C = {k: k € R%, (k) <~}. C is compact and
therefore by Lemma 2.1

p—a (ﬂ’ _a)Z c
G'[m] < W"‘(ﬂ—a)m(c ) -

Thus

p—o 2 c
]Eezﬁv}c:“-“{m]K?[dm] < P WLezﬂW(n—a)m(C )K?[dm]. (2.24)

We can compute explicitly the integral in the righthand side of (2.24):

/E 2OVilu=m(CIKE [dm] = ¥ exp {2ﬂ(u —a) > Gj(W)} Prw]

weR {5:e(ki(5)) >~}

= exp {8V [ (2w olk) = pilali(a) |

Therefore
1 S (4 = ay
limsup———ln/ 2PVG T Imlc e dm] < T+/ p(2p — alk)v(dk) < oo
I—oo BVI JE (©) ce

since €(k) > 24 — a on the complement of C. Thus we have proved 2.23 with ¢ = 2.

O

We are now ready to give a variational formula for the perturbed mean-field
model on which the rest of this work is based. This follows by applying Varadhan’s
theorem to G*#~%[m], using the preceding lemma.
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Theorem 2. Suppose that (T1) and (T2) hold and that the potential v satisfies
(P); then the pressure p(p) = lim;_.oo pi1(ps) exists for the perturbed mean-field model
determined by (2.3), and is given by

B(p) = —inf £*[m]

where
E¥[m] = I%[m] — G*7°[m] — p(a)

2.25
= flm] + 5(m, Vm) ~ ulml, 22

and f[m)] is the free energy functional for free bosons given by (2.19).

Remark The results so far hold also if instead of assuming that (P) holds we suppose
that v satisfies:

(P") v:R%x R? = R is a continuous, positive, strictly positive definite function.
The proof of Lemma 2.1 is modified as follows: Since C is compact the unit

sphere in Mﬂ_(C ), the space of bounded positive measures on C, is compact in the

narrow topology. Because m — (m,Vm) is continuous and (m,Vm) > 0 for m # 0,

inf{(m,Vm) : me M:(C’), |lm| =1} > 0.
Thus there is a constant 5(C) > 0 such that

(m,Vm) > b(C)||m||® for all m € M5%(C).

§3. Existence, uniqueness and spherical symmetry of the minimizer.

We shall begin by proving that the minimizer m* of £#[m] defined in (2.25)
exists and satisfies the Euler-Lagrange equations. Next we assume that the model
has rotational symmetry; in that case we can reformulate the problem in terms of
measures on [0,00) and obtain a formula for the pressure similar to that derived in
[5]. We prove also the uniqueness of the minimizing measure.

The proof of existence is more complex than in [5] because we do not have a

bound of the form a||m||* for G#[m]; however we can use the weaker bound of Lemma
2.1

Lemma 3.1. Let e = inf,eg £#[m]; then there exists m* in E such that E#¥[m*] = e.

Proof: Since £#[0] = 0 we have e < 0 and it follows that there exists a sequence
{mxa} in E such that e < £#[m,] < 0 and limp—0o £#[Mmy] = e. Recall that £#[m)]
can be expressed in the form (see Theorem 2):

E#[m] = I*[m] — G*"%[m] — p(a).

Since I is lower semi-continuous and G*~% is continuous, £* is lower semi-continuous;
therefore it is sufficient to prove that {m,} has a convergent subsequence. Because
E¥[my] <0, we have

I%lm,) < G*~%Imay] + p(a) . (3.1)
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As in Lemma 2.2 let v > max (2i — a,0) and let C = {k : k € R%, (k) < 7}; then by
Lemma 2.1 and the inequality (3.1) it follows that

o (“ — a)2 _ c
Io[ma) < Y 4 (1 = @)ma(C%) + pe) (32)

Let If ;[m] be the same as I®[m] with 3 replaced by 18, that is

Iyt = pysle)+ [ (k) am@r) =5 [ o (Go0)van, @3

where

2 ~18(e(k)—a
p%5(0)=—ﬁ /’;d In(1 — e~ 7R} =a)y, (k).

It is easy to check that inf,eg I‘fﬁ[m] = 0,
2

Now
I*[m] = pla) - 5yp(@) + 5 [ (k) ~ @)m(db) + 3 T5,(m
> pla) — 3p45(e) + 57— A)m(C).

Combining this inequality with (3.2) we get

— a)?
%(7 —2u+ a)my(C°) < (%I;(?))— + %P%ﬂ(a) -

This means that the sequence {m,(C¢)} is bounded and therefore {I*[m,]} is bounded
by (3.2); thus the sequence {m,} lies inside a level set of I* which, since I* is a rate
function, is compact. Hence {m,} contains a convergent subsequence.

O

The Euler-Lagrange equations for the variational formula given in (2.25) are as follows:
L¥(m;k)=0 m,—a.e. : (3.4a)

L*(m; k) = B71s'(p(k)) v —a.e. (3.4b)

where

m(dk) = my(dk) + p(k)v(dk)
is the Lebesgue decomposition of m with respect to v and L#(m; k) is defined by
L¥(m; k) = e(k) + (Vm)(k) — (3.5)
with

(Vm)(k) = A _v(k, k" ym(dk") .

The following results can be proved exactly as in [5]; we therefore omit the proof.
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Theorem 3.
a. Let m be a minimizer of £#; then p(k) > 0 a.e. with respect to v.

b. A measurem in E is a minimizer of E* if and only if it satisfies the Euler-Lagrange
equations (3.4a, b).

c. Ifm; and my are minimizers of £* then their absolutely continuous parts coincide.
We now study the problem when the model has rotational symmetry; from now on
we shall assume that €, v and v have the following properties:

For each R € O(d) the group of rotations in R?,
(Rl) eoR=¢,

(R2) v(Rk,Rk') = v(k, k') for all k, k' € R?,
(R3) Vo R_l =v.

Lemma 3.2. Suppose (R1), (R2) and (R3) are satisfied and let m € E be a minimizer

of £#; then the absolutely continuous part of m with respect to v is rotation invariant,
that is po R = p for all R € O(d).

Proof: From (R1), (R2) and (R3) it easily follows that £#[m o R™!] = £#[m)] for all
m € E and R € O(d). Thus if m is a minimizer so is m o R~!. But we know from
Theorem 3 that the absolutely continuous parts of m o R~! and m must coincide.

O

Let E = M? %[0, 00) the space of positive bounded measures on [0, 00) and for k € R¢
let p(k) = ||k|| If m € E is rotationally invariant we can express £#[m] in terms of

mop~! € E. Let é be an arbitrary fixed unit vector in R? and define € : Ry — Ry by
&r) = €(ré). If we now assume that ¢ is invertible then we can write £[m] in terms

of m=moploél=moeleck:
¥ [m] = E*[m),

where

4 (1) = G L, Uy — g s(p I
Bt = [ @+ 3 Um) =47 [ oGO —plil (39)

b D == / f ol APV BN EN)
[0,00)X[0,00)
u(A ) = / v(ET1(N)é, e (VN )REQ(R)
0(d)
dF()\) = (voe)~1(d)),
~ dm - "
PO = T2 = e (V9
In the remainder of this section we shall assume that € is invertible. Since € is invertible
and € has compact level sets € must be strictly increasing; therefore €(0) = inf e(k) = 0

and e(k) = 0 if and only if k = 0.

Let R, denote the subset of R? on which the function k' — (e(k) — (k') is locally
v-integrable:

R, {k €R? : K (e(k) — (k') ' € E,loc(ﬂd,v)}

={keﬂd LA (e(k) = )L EC,M(R+,dF)}.
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Lemma 3.3. Let v be such that for any m € E, A\ — (Ur)()) is continuously

differentiable; then the singular part m, of a minimizing measure m is concentrated
on the set R,: m,(R) = 0.

Proof: For m € E let m, denote the component in the Lebesgue decomposition of m
which is absolutely continuous with respect to v. Let Q be the normalized invariant
measure on O(d) and let

M= / mo R™'Q(dR).
O(d)

Since v is positive definite (M — m o R~!),V(m — m o R™!)) > 0; integrating this
inequality with respect to the measure @ we get (7, Vi) < (m, Vm) and therefore

[ etk = (k) + 5, V) = 5 [ s(ok)o(dk) < £¥(m

ﬁ

Now if m is a minimizer of £# by Lemma 3.2 we have that m, = (M5 )q +mg; therefore
if p(k) = 42 (k) then p(k) > p(k) and since z — s(z) is increasing ——% Jre s(B(k))v(dk)
—% Jre s(p(k))v(dk). This combined with the first inequality gives

VAN

£4[m] < €*[m]

and so m is also a minimizer of £#. Thus from Lemma 3.2 we have m, = m, = m,.
But then m = m, + m; = m,; + m, and m = m, + M, = M, + m, and consequently
s = M,. Thus since R, is rotation invariant m4(RS) = m,(RS) and therefore it is
sufficient to prove that 7,(RS) = 0. But since 7 minimizes £#, 1 = moe ! € E
minimizes £ given in (3.6). Therefore as in Lemma 5.4 of [5], 72, is concentrated on

Rr={X: X (A=-X)"1 e L} (Rs,dF)} and so m, is concentrated on e ' Rr = R,.

a

Theorem 4. Suppose that v satisfies the smoothness condition of Lemma 3.3 and
that for A > 0, F'(A) is continuous and F'()A) > 0; then a minimizer m of £* has the
following properties:

1. if A+ % is not locally dF-integrable at 0 then m, = 0,

2. if my # 0 then my, is concentrated at k = 0,
3. m is the unique minimizer of £*.

Proof: If F'()) is continuous and F'(A) > 0 for A > 0 then Rrp C {0} and thus
R, C {k : e(k) =0} = {0} so that (2) holds.

If A\ — % is not locally dF-integrable at 0 then R, = @ so that (1) holds. Since
z — z2v(0,0) is strictly convex, m, is unique; but by Theorem 3 we know that p is
unique, therefore m is unique.

O
If the conditions of Theorem 4 are satisfied the minimizer of £# is rotationally sym-
metric since p is symmetric and m, is concentrated at k = 0. We can therefore reduce
the problem to one over E:

Theorem 5. Suppose that v and F satisfy the conditions of Theorem 4 then the
pressure p(p) is given by

B(u) = — inf E*[]
meE

m
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where £* is given by (3.6).

The minimizer in* € E of €* is unique and obeys the Euler-Lagrange equations:

L*[m, A =0 e — a.e. (3.7a)
E#lm, N = B16(F())  dF — a.e. (3.78)

where
L[, A] = A — p+ (UR)(N). (3.8)

Conversely if in* satisfies (3.7a) and (3.7b) then * is the unique minimizer of £*.
If m* € E is the unique minimizer of £* then m* = m* o e~ 1.

We finally relate the atom in m* to Bose-Einstein condensation. Following [11]
we define the generalized condensate A(p) by

A) = m A 8) (3.9)
where _
A(p; 6) = lim E' X} (3.10)
and X ,6 is the random variable
1
Xw=5 Y o (3.11)

! Gee(ki(5)) <6)

and the expectation E;‘ is with respect to the grand-canonical probability measure on
2 given by

Plw] = exp {BuN (w) - Hi(w) - Visu(w)]} (312)
Let K; be the probability measure induced on E by L;:
Ky =By o L% (3.13)
or more explicitly
K [dm] = e#V{G" “Iml-p()—P(@} K2 (dm] . (3.14)

The sequence of probability measures {I%;‘} satisfies the large deviation principle with
constants {3V} and rate function

I*[m] = £#[m] - H(n). (3.15)

Under the assumptions of Theorem 4 [* has a unique minimizer m*. If F is a closed
subset of E not containing m* and and inf{€#[m]: m € E} = inf{E#[m]: m € F},
then by the argument in Lemma 3.1 the set F' must contain a minimizer of £#,
contradicting the uniqueness of m*; thus inf{€#[m] : m € E} < inf{€¥[m]: m € F}.
Therefore by Theorem 3.6 of [10] if g : E — R is continuous

/ glm]KL [dm] — g(m*) (3.16)
E
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as [ — oo. B
In terms of {K} }, A(y) is given by

A(p; 6) = lim fE (m, 15 0 )K} [dm)]. (3.17)

where 15 is the indicator function of the interval [0,8]. m +— (m, 15 o €) is not contin-
uous in the narrow topology; however by using (3.16) we get the following bounds for

A(p; 6).

sup (m*,t) < A(p;8) < inf  (m*,t). (3.18)
tect(RY) tec®(R)
t<l0€ t>1g0¢€

This gives
m*{k:e(k) < 6} < A(u;é) < m*™{k:e(k) <6}

or equivalently

Since m* is absolutely continuous except at A = 0, the two bounds are equal. There-
fore

() =T ) = {0} =" {0} (3.19)

§4. The models

In this section we study the variational problem for the pressure for some special
kernels v(,-). Throughout §4 we take (k) = a||k||* with @ > 0, we assume that v
is rotationally invariant in the sense of (R3) and that for A > 0, F'()) is continuous
and strictly positive. We see from Theorem 4 that if A — } is not dF - integrable

X
at 0 then there is no condensation; we therefore concentrate on the cases where there

1s a possibility that the model exhibits Bose-Einstein condensation and assume that
A % is dF - integrable at 0. Moreover in the cases that we shall consider the

spherically averaged kernel u(:,-) given in (3.6) is strictly positive. Condensation

requires by (3.7) that (Um)(0) = u which is impossible if 4 < 0; we shall therefore
take p > 0.

Our main objective is to study the variational problem for the Gaussian kernel
v(k, k') = voeSIe=¥II* (4.1)

where vy and é are positive constants. v clearly satisfies (P) and (R2) (in fact v is also

strictly positive definite). As discussed in §1 we proceed by comparison with simpler
kernels; we write v in the form

o(k, K'Y = vpe= I+ %) 20k (4.2)
and replace €25 by by 1, to get

o(k, k') = voe~SURIPHIFI®). (4.3)
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As this kernel is separable, the corresponding operator is of rank one. In this case v
is not strictly positive definite; however it is positive definite and strictly positive so
that it satisfies (P). The spherically averaged kernel corresponding to (4.3) is

u(A X) = uge O+, | (4.4)

where ug and « are positive constants. Next we consider the approximation
v(k, k') = voe SWRIPHIFID (1 | 26 . k). (4.5)
This is positive definite but not strictly so and also not positive; but it still satisfies (P)
since (m,Vm) > (m,Vym) where V] is given by the kernel in (4.3). The spherically
averaged kernel in this case is the same as for (4.3), that is, it is given by (4.4) and

so the variational problem is the same.
We then consider

v(k, k') = voe"SURIPHIFI) (1 4 6 k- k' + 0 (k - K')?). (4.6)
This satisfies (P) by the same argument as above and the corresponding u is given by
u(A, ) = uge” AN (1 4 42N, (4.7)

where ug, @ and 4 are positive constants.
Before embarking on the detailed study of these models we make the following

two remarks. If m € E is a minimizer of £# then from equation (3.7b) we see, since
F'(X) > 0 and F" is continuous for A > 0, that

A—p+ (Um)(A) 20 a.e for A > 0; (4.8)

but since A + A — u 4+ (Um)(A) is continuous we have

1213

A—p+ (Um)(A) >0 for all A€ [0,00), (4.9)
and in particular
(Um)(0) > p . (4.10)
If the model exhibits Bose-Einstein condensation that is, m({0}) # 0 then from (3.7a)
we get
(Um)(0) = b (4.11)

We now proceed with the study of the models mentioned above. We start with those
given by (4.3) and (4.5).

Let go(A) = A—p+pe™ if € (0,a71], go(A) > 0for A > 0. go(A) ~ A(1—ap)
for small A so that if p € (0,07 1)

oo e—ou\
/; ) —1 ldF()\) < o0;

the integral is strictly decreasing in 3, tends to oo as # — 0 and to 0 as f — oo. For
p € (0,a™!) let Bo(p) be the unique solution of

o0 e—ax\
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Ifu=al, g() ~ u# for small X; if A — rlf is dF-integrable at 0, then we define
Bc(a~!) as above, otherwise we put B.(a™!) = oo.

Theorem 6. The perturbed meanfield model with interaction given by the kernel
in (4.3) or in (4.5) has the following behaviour:

(a) If u € (0,a7!], the model exhibits Bose-Einstein condensation for 8 > B.(¢) and
no condensation for # < Bc(p). (b) If u > %, there is no condensation.

Proof: Let m € E be the minimizer of £*.
(a) Suppose that g € (0,a™?] and 8 > B.(u). Using (4.10) we get

(Um)(X) = e *NUm)(0) > e, (4.13)
and thus |
p()\) < EF!;;-(;—)-:—]?. (4.14)

Therefore if there is no condensation

oo e-—aA

Om)0) = [ uoepN)F() < uo [ e FN) <w, (415)

which contradicts (4.10), and so there must be condensation.
Now let # > B.(u) and suppose there is condensation so that (Um)(0) = p. Then

1
P =y 1 (4.16)
and consequently
oo e«-a)\

contradiction. Hence there is no condensation for 8 > f.(u).

(b) Finally let 4 > a™! and again suppose there is condensation so that (4.16) holds.
This contradicts p(A) > 0 since go(A) < 0 for some values of X if p > a1,

O

We now turn to the model with the interaction given by (4.7). In this case we are
not able to give the full behaviour of the model but we can describe what happens

for low temperatures. We break up the proof into several lemmas and combine the
results in Theorem 7.

Lemma 4.1 For the model with interaction given by (4.6) with u € (0,2a71),
p # a1, there exists B(p) > 0 such that for all B > B(u) there is condensation for
p € (0,a™!) and no condensation for p € (a™!,2a71).

Proof: Suppose s € (0,a™!) and let m € E be the minimizer of £#. Since (Um)(\) >
e~ **(Um)(0) the argument of Theorem 6 applies and we have condensation for 3 >

B(u) = Be(u) .
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Let p € (a™!,2a7!) and let

g(N) = B75'(p(N)) ,

T -—-/ uge”*m(dA) ,
[0,00)

y =/ yupe **m(d))
[0,00)

and
_ po = uom({0}) .
We then have

o<} e—aA
T = Uy /0 mdF(A) + Po (4.18)

D
and from the Euler-Lagrange equation (3.7b),
gA) =X — p+ze ** Fyre™r . (4.20)

If there is condensation, then z = (Um)(0) = p; but then ¢g(0) = 0 and, since g(})
cannot be negative, ¢'(0) =y —ap+1>0o0ry > ap —1. Let

g1(A) = X — p+ pe™** + (ap — DAe™ ™,
¢91(0) =0, ¢;(0) =0 and
g'(A) = a(2 — ap)e™* + a®(ap — 1)Ae N .

Thus g¢; is convex, increasing and g(A) > 0 for A > 0. We know that g(A) > g1(A)
and so

<o [ 22 R (4.21)
Y= Yuo : m () :

Now g1(\) ~ “22)‘2 (2a™1 — p) for small \; thus

e T
/0 v 1dF()\) < o0

and is strictly decreasing in 3. Therefore if § > 3(p) where 3(u) is the solution of

® demoA
a3 /0 P71 b

we get a contradition: y < ay—1. Hence there is no condensation for u € (a™1,2a7?)
and 8 > B(p).
O
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Remark If A — 1/)? is dF - integrable at 0, then for 4 = a~! we have condensation

and for 4 = 2a™! we have no condensation for 3 sufficiently large. These can be
deduced from the proof of lemma 4.1.

In the presence of condensation we must have ¢ = y; let
g1(Xy) = A — p+ pe™ N +yre™ N, (4.22)

For p € (a™!,2a7!] we saw that the only constraint on y for this to be positive is
y > ap— 1. For u > 2a7! let A\(u) be the unique positive solution of

e=@* = ZX2 _ar+1 (4.23)
I

and let
y(u) = M) ap — ad(w) - 1), (4.24)
We have the following bounds for A(x) and y(u):

Lemma 4.2
() =2 < Mp) < 2=y

ap—1
(b) y(p) > ap—1.
Proof:
(a) Let r(\) = e™** — (%A% — aX + 1); then r(A) > 0 if and only if 0 < A < A(u)
and r(A) < 0 if and only if A > A(u). Now for y > 0 we have 4/1 + 5'4—2 <1l+ 162— and
therefore1+3'2—2+y\/1+5'; <1-!-y—{~3’2i—}~1’6i < eY or

1
e ¥ — < 0.

2 2
1+ 2 4y /142

Putting y = aA4+(p) where Ay (p) = %"‘%u we get r(A+(u)) < 0 so that Ay(p) >

A(p). To obtain the lower bound for A(x) we use the inequality

2=y
eV ——>0
24y

for y > 0. Letting y = aA_(u) where A_(p) = p — 2 we get r(A_(p)) > 0 and
therefore A_(u) < A(w).

(b) We can rewrite the upper bound in (a) in the form:

é&&l.‘]_< _"__1__

p ap—1"
Therefore

@ sl _ o
Ii/\(“) a(p)+1<1 a1
or
gmad(u) o M= 1= a(p) ;
ap —1
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Thus
e M ap —1—aX(p) >ap—1,

or equivalently
y(p) >ap—1.

We now obtain the range of y consistent with z = g and p(A) > 0.

Lemma 4.3 Let g1(\;y) be as in (4.22); then g1(X;y) > 0 for all A > 0 if and only
ify > y(p).

Proof: Let g2(A) = g1(A;y(p)); A(u) is defined in such a way that ga(A(p)) = 0
and g5(A(p)) = 0. Since g2(0) = 0, g5(0) = 1 — ap + y(p) > 0 by Lemma 4.2 and
g2(A) — oo as A — 00, ¢g4(A\) = 0 must have two solutions A1, Az with 0 < A; < Ag
say; A1 must be a local maximum and A; a local minimum. But then g2(A;) > 0
and therefore A(u) = Ay so that g2(A) > min (0, g2(A(p)) = 0. We thus have that if
y > y(p),

91(Ay) > g2(A) 2 0 for A > 0.

Conversely if y < y(p), 91(A(1); ¥) < g1(A(p)) =0

For y > y(u),

® e~
7“°£ eBa(xy) — 1dF(A)

is strictly decreasing as a function of y; it tends to oo as y — y(p) since g2(A(p)) =0
and tends to 0 as y — oo. Therefore the equation

B N

has a unique solution yo(u) > y(u).

To introduce the next lemma we make some heuristic remarks. As 3 — oo the
integral in (4.25) tends to 0 if y > y(u); thus as 8 — oco,yo(p) — y(p). As 8 — o
then the integrand in (4.25) with y = yo(u) must peak around A = A(p) and must
behave like L s\ — \(4)). But then uo / ” e~ dF(y) ~ Y g

Yo o efn(Xiyo(w) — 1 YA (1)
the latter quantity exceeds p then there is no condensation since this contradicts
(4.18); if it is less than u, then z = u, y = yo(p) is a solution of (4.18) and (4.19)
with pg > 0 and therefore there is condensation for large §.

Lemma 4.4 As 3 — oo, yo(u) — y(p) and

> g y(n)
u0/0 eB91(Xiyo(n)) — 1dF(/\) - yA(p)

Proof: Given € choose (3 such that

o0 Ae—aA
u07£ efogi(Xy(p)+e) — 1dF(’\) <y(pu)+e,

1217
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and suppose yo(¢) > y(p) + €. Then for B > fy we have

g
eBa(Xyo(n)) — 1

*° Ae—aA
< uO'Y[) eBogr(Ny(m)+e) — 1 dF(X)

< y(p) + € < yo(p).

N — jo h dF(\)

Since this is a contradiction we must have yo(u) < y(u) + € for all 8 > Fo.
It is clear that for any § > 0

1 )
im F ~0
prgie A () =6,A(p)+6)c efa(Ayo(n)) — 1 ( )
and
by —alA
i - dF()\) = 0;
B—oo (A1) —8,A(p)+8)¢ eBa1(Xyo(n)) — 1

thus we have

oo —al A(p)+6 —aAJF()
lim inf ug f : dF()) 2 limnf uq [ = ()
0 A

B— o0 eBa(Xwo(p)) — 1 —00 Eui—t eBar(Xyo(w)) — 1
) yo(pu) y(u)
> 1 =
= g Y1) + 6)  Y(Ak) + 6)
and
. % e y(p)
imupus | i =1 FO) € S0 gy

Since 6 is arbitrary, we have proved the lemma.

a

Lemma 4.5 Let f(u) = % . For p > 2a~" there is f(u) > 0 such that for 8 > B(p)
there is condensation for f(u) < yu and there is no condensation for f(u) > yu.

Proof: Suppose first f(u) > yu and suppose there is a sequence 3, increasing to co
such that for 8 = 8, there is condensation; for n sufficiently large, by Lemma 4.4,

20 e—aA
uo/() eBng1(Nyo(p)) — 1dF()‘) > e

This contradicts (4.18) and therefore there is no condensation for 3 large enough.
On the otherhand, if f(u) < yu, for B sufficiently large

oo —aA
€
unfo eBa1(Nyo(p)) — IdF()‘) < p



Vol. 64, 1991 Dorlas, Lewis and Pulé 1219

and therefore
® = 5
Y=Y (#)

oo e—aA
PO ] dF(\)
0

eBg1(XNyo(pn)) — 1

is a solution of (4.18) and (4.19).
O

In the preceding lemma we saw that to determine whether there is condensation
we have to compare f(u) with ypu; this is done in the following lemma:

Lemma 4.6 There is a critical value ~y. such that, for v < %, f(u) > yu for all
g > 2a~Y; for v > ~. there are two values of u, u; and pg, 2a™ < g1 < pa2, such
that f(p) > ypu if p € (2071, 1) U (p2,00) and f(p) < yp if p € (pa, pa)-

Proof: We first check that f(u) is strictly convex by showing that f"(u) > 0 for
¢ > 2a~!. Using the relation

ey — Aw)
Mu)= 1(2 — ap + ad(w))
we find that Xl \ 24— M)
1oy €W ap—ad+1—a’(p— Ap
flw) = A(w) #(2 — ap + aX(p))
A1)
£'0) = Srrtant2 - ap+ X)) (et ar(w) - 1]
tau[s — 4ad(p) — 40 M(p)?] + 2® M) + 5a®A(p)? - 6}. (4.26)

Since by Lemma 4.2 (a) the denominator in (4.26) is positive, it is sufficient to prove

that the numerator in (4.26) is strictly positive; using (4.23) we eliminate u from the
numerator to write the latter as:

e AW =MW L ad(u) — 1} 2g(aA(p))

where ¢ : (0,00) — R is defined by

g(z) = 2*(z* — 622 + 12z — 6) + ®(22% — 52% — 12z + 12) + (2% + 522 — 6).
We can expand ¢ in powers of z:

oo

g(l‘) - chxn’

n=5
where
cn = (n)72" 3 (n® — 1502 + 62n — 48) + (2n® — 11n® — 3n 4+ 12)].
It is easy to check that the cubic polynomial z* — 1522 + 62z — 48 is increasing for

z > 7.08 and takes the value zero at z = 8, on the other hand the cubic polynomial
22° — 1122 — 32+ 12 is increasing for z > 3.8 and takes the value 30 at z = 6. Therfore



1220 Dorlas, Lewis and Pulé H.P.A.

both polynomials are positive for z > 8; thus ¢, > 0 for n > 8. We also have ¢5 = %,

25> €1 = 135- Therefore ¢, > 0 for n > 5 and so g(z) > 0 for all z > 0 and

consequently f"(p) > 0 for p > 2a~!. Now as u — 2a~!, A(p) — 0 and y(p) — 1 so
that f(u) — co. On the other hand if ap > 3

Cg =

2o — 3 z _ 2
ay—ak(u)—l>au%—l>(—a’ﬁm}—ae>§au.

Therefore f(u) > 29;&?—)(1;4 and thus f(u) — oo exponentially as p — co. The lemma
now follows immediately.

O

We now collect the results of the last six lemmas in a theorem giving the low
temperature behaviour of the model. With 4, p1, 2 as in the last lemma we have:

Theorem 7. The perturbed meanfield model with interaction given by the kernel in
(4.6) has the following low temperature behaviour:

(a) If~y < e, then for each u >0, u # o™, p # 2a~! there is a B(u) > 0 such that
for 8 > () the model exhibits condensation for 4 < o' and no condensation for
w>a l u# 20t

(b) Ifvy > 4., then for each p > 0, p # a™}, p # 207, p # p1, p # po there is a
B(u) > 0 such that if 8 > B(u) there is condensation for p € (0,a™!) U (p1,p2) and
no condensation for p € (o™, u1) U (pz,00), g # 2a71.

Proof: For u € (0,2a7?!) the result follows from Lemma 4.1. For u > 2a~! we obtain
the result by combining Lemmas 4.5 and 4.6.

O

We finally come to the Gaussian kernel (4.1). The spherically averaged kernel
corresponding to (4.1) is

—a(A+a) Sinh 2av AN
e —_—.
2av AN

We are not able to give the full low temperature behaviour in this case; we can deal
only with the range of chemical potential u < fip where fip > (1 + 3v/10)a™! is
determined in the following manner: For A > 0 let

u(X, A" =ug (4.27)

3
N =X—p+e® lu+(ap—1A+ m(a,u = 1)2)%].

§(0) =0, §'(0) = 0 and

e—aA

10u

g"(\) = {2(3 + 40p — 202 p?) + 2a(ap — 1)(6 — ap) + 3o’ (ap — 1)*A?}.

Thus for 1 < ap < 1+ %\/10, § is convex, increasing and §(A) > 0 if A > 0.
Therfore there is a maximal interval (o™, fig) with fip > (1 + 3v/10)a™! such that

for p € (a7, jig), g(A) > 0if A > 0.
The methods used in Theorem & are those of Theorem 6 and Lemma 4.1.
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Theorem 8. For the perturbed meanfield model with interaction kernel given by
(4.1) the following holds: If p € (0, i), p # o™, then there exists (p) > 0 such

that if B > B(u) the model exhibits Bose-Einstein condensation for yp < a~! and no

condensation for yu > a™ !,

Proof: Let m € E be the minimizer of £#. Since u(), ') > uge~***+*) we have
(Um)(A) = e~ **(Um)(0) and therefore for u € (0,a~!) we can argue as in Theorem
6 to show that there is no condensation for 8 > f(u) = Bc(u).

For u > o™, we use the argument in Lemma 4.1 with a slight improvement. Let

g(\) = B77s'(p(X)) = A — p+ (Um)(N);
if there is condensation (Um)(0) = p and so g(0) = 0. Now ¢'(0) =1 — apu + y where

= g(;1.*2140/‘ Ae™**m(d));
3 [0,00)

thus y > ap — 1. We also have the inequality

2
u(A ) 2 uge= O [1 4 22055 2 japey
3 15
so that
gA) > X —p+ e M+ yA + 227
where

4
z= EQ—U.()/ e~ m(d)).
15 [0,00)

Using the Schwarz inequality we have

2
y? = éa‘*uﬁ f Ae™** m(d))
9 [0,00)

4
o §a4u§ (/ Aze_“’\m(dA)) (/ e_‘“m(d)\))
[0,00) [0,00)

2
therefore z > 3 and thus
10p

3 y? z
gA) > A —pte o [# +yA+ E—%A?] 2 §(A).
Since §(0) = 0, §'(0) = 0 and for u € (a™1,ji0), §(A) > 0if A > 0, the rest of the
proof is the same as in Lemma 4.1.
a
The behaviour of the models discussed above is in marked contrast with the
meanfield model of a Bose-gas; in the latter v is a constant equal to vy say. Let p.(f)
be the free Bose-gas critical density at inverse temperature J3, that is

pl6) = [ r—g PO, (4.28)



1222 Dorlas, Lewis and Pulé H.P.A.

and for 1 > 0let 5.(p¢) be the unique value of § such that u = vop.(3). We have proved
[4, 5] that for B > B.(u) the meanfield model exhibits Bose-Einstein condensation
while for 8 < B.(p) it does not. We find that a similar behaviour occurs also for the
perturbed meanfield models with v given by

v(k, k') = voe"“"k“z—"k'"z' (4.29)
and
v(k, k') = voe~SUIRIP =1 I)? (4.30)
In the case of (4.29) the variational problem can be solved completely by exploiting
' id*
the fact that u(X,X') = uge™®*~*' is the kernel of the inverse of (——a—ﬁ - aQ).

This is done in [12] . The other model with interaction given by (4.30) can be dealt
with very simply by extending the idea of the proof of Theorem 4.1; we end with a
theorem which gives the low temperature behaviour of this model.

Theorem 9. If in the perturbed meanfield model the interaction is given by (4.30),

then for all > 0 there exists B(u) such that for B > B(u) there is Bose-Einstein
condensation.

Proof: The spherically averaged kernel is
u(A, ) = uge~*P-XP, (4.31)

clearly for A, A' > 0, u(A\, A') > uoe=*A*+3*) and therefore if m € E is the minimizer
of £* then (Um)(X) > e=* (Um)(0) > e~ 4. If as before we let

g(X) = B71'(p(N)) = A — p + (Um)(A)
we have g(A) > A —p + ue““"z. Now there exists go > 0 such that if g < po then

A—p+ ue““"z > 0 for A > 0. Then for p < po, by the usual argument, we must have
condensation for 3 sufficiently large.

If p > po let Ag be the smallest value of A greater than 0 for which
/\—,u—f-,ue_“’\z =0

then A — p + pe=**" > 0 for 0 < A < Ao and therefore

) Ao/2 e_c”’\2

f—o0

Suppose there is a sequence f,, increasing to infinity such that for 8 = 8, there is no
condensation. Choose ng such that for n > ng

Ao/2 e_aA2 Ao
’Ll,o/o‘ —————eﬂ"g()‘) — 1dF()\) < "Z;
then

i e—alz Ag
———dF()\) > p— —.
Uo ,/;0/2 eﬁng()‘) 1 ( ) H 4
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It follows that

a(AZ4+X'3)

Y R T
(Um)(A) > ug [A Y 4O

oo —a)\?

aidg  —aA? '
= Haf h -/;0/2 eﬂng(A’) b ].d‘I;1(A )

> e—a(A—%Ao)ze-}OAg ( — %) X

Thus for X € (340, Ao),

g(A) > A — p+ e @O P eqorg(, 10
1 Ao Ao
= - — | = e 0;
ot 2)\0 A+ (p 1 ) 1 >

consequently
Ao —ad?

nlEIgouUL mdF(’\) = 0.

We repeat the argument and choose n; such that for n > n,
A -

uofo °6T"’g(;:_jdp(x)< ’\4—":0

which implies that
oo e-—orA2 Xo
UOLO mdf’(z\)>u—~z=0

and, as above,

A
(Um)() > emOAeN (- 2),

For X € (Ao, 2)\)

2 A
9(0) > A= p =20 ey 20
Ao 3o
>)\0—,U,+(p“—-4—)— T >0

and so

2X0 e—aAz
et Yo f(, gy —T () =0.

Choose N such that 2V g > 2p; then by repeating the argument N times we have

) 2p e—az\"'
nango uo,/{)‘ mdF(A) =0.
But

) o0 e—aA2 ) ug oo a?
nh—»ngo Ug j;” mdF(/\) < HILII;O Eﬂ—ﬂ;——_l _/;“ € dF(/\) =0,
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and therefore lim,_,o(Um)(0) = 0 contradicting (Um)(0) > p. It follows that there
exists B(u) such that, for 8 > B(u), there is condensation.

O
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