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Abstract. We propose a modified wave operator for long-range scattering in presence of

an accelerating force. Its relevance in connection with classical scattering is addressed.
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Introduction
The wave operators for the pair (H, H0) of Stark Hamiltonians with H Hq +V and

H0 Ç-g-x, O^eR"
on H I/2(R") do not exist [6] if V V(x) behaves as \x\~e, e < 1/2 as x —> oo.

Recently, several proposals [3, 5, 8] for modified wave operators dealing with slowly decaying

potentials were made. Here we add one more, based on a simple Dollard type argument:
The classical free Stark trajectories x(t) gt2/2+p0t +x0 suggest that e_1(H°e-1*^' with

*(«):= / V(gs2/2)ds
Jo

is a candidate for a comparison dynamics.

Theorem 1. Let V € CfaR") be real-valued with

|w(x)| < c(i + H)-(1+£) (i)

for some C, e > 0. Then the wave operator

fi := s- lim eJ<He-l«Hoe-l*W (2)

exists and is unitary.

The reason for stating this result comes from [6]. There a discrepancy between the

quantum and the classical scattering problem was discovered, as for in the latter one the

wave operators exist and are complete without modification basically as long as V(x)
0(|ar| ^) for some e > 0. We believe our result heals this discrepancy for the class of

potentials we consider, since the comparison dynamics differs multiplicatively from the

free Stark one only by a phase, which is physically irrelevant. Actually, no modification
at all is needed if the asymptotic condition is formulated in the Heisenberg picture: The
above result then implies that

fi(A) := s- lim ei(He-i(HMei(H°e-iiH
t—*oo

exists and is an automorphism on C(H). By contrast, this limit typically exists in long-

range scattering only for A G {H0}', the von Neumann algebra of operators commuting
with bounded functions of Ho [1]. In this respect (1) behaves as a short-range potential.

It follows from (1) that lim;r_00 V(x) exists. We may assume this limit to be zero,
since (2) is not affected if the potential is shifted by a constant. Then |V(:r)| < C(l + |:r|)_£,
which is assumed also by [3, 5, 8]. However there stronger oscillations of the potential are

allowed, since (1) is replaced by a weaker decay.

Remark. The hypothesis (1) can be weakened logarithmically [6].



Vol. 64, 1991 Graf 1169

Proofs

Let us state some kinematical remarks beforehand. The following propagation estimate

for the free dynamics without electric field is well-known (see e.g. [4], Lemma 6.3): Let

/ € CS°(R") with f(y) 0 for \y\ > 1, and let a > 1. Then for R > Q,t > 0 and any

N>0
\\F(\x\ > a(R + t))e-itp^2f(p)F(\x\ < R)\\ < CN(R + t)~N

with Cn indepedent of R,t. States supported in momentum space in {|y| < v}, v > 0

are accounted for through scaling by v > 0: We apply the unitary dilation U satisfying
UpU~l p/v, UxU~1 vx to the operator in the estimate above, replace t by v2t and R

by vR, the result being

||F(|i| > a(R + vt))e-lt"2l2f(p/v)F(\x\ < R)\\ < CN[v(R + vt)}~N

An estimate for the free Stark dynamics is readily obtained by means of the Avron-Herbst
formula

e-itHo _ T(<)e-i'P2/2 T(<) := e-iS2t3/6ei««-xe-i<2Sp/2

and of T(t)x (x - gt2/2)T(t), namely

\\F(\x - gt2l2\ > a(R + vt))e-itH°f(p/v)F(\x\ < R)\\ < CN[v(R + vt))~N (3)

Proof of Theorem 1 (existence). By Cook's theorem we have to show that

\\U(x,t)e-itH°<f\\dt<oo
/o

for tp in a dense set D, where U(x,t) := V(x) — V(gt2/2). Choosing

D := {f(p/v)F(\x\ <R)i/>\f€ C0°°(|y| <1),»,Ä>0,^H},
this follows from

\\U(x,t)e-it^f(p/v)F(\x\<R)i>\\
< \\U(x, t)F(\x - gt2/2\ < a(R + vt))\\U\\ + C'N[v(R + vt)}-N\W\ 0(*~x~2ä)||V!i • (4)

Here we estimated the first term on the second line as follows: If |x — gt2/2| < a(R + vt),
then U(x,t) W(x) ¦ (x - gt2/2) for some x with \x - gt2/2| < a(R + vt). Then

1^1 > IpI*2/4 f°r ' large enough, and hence W(x) 0(t_2(1+t)), proving (4). D

Immediate consequences of the existence of the wave operator are that it is an isometry
and that

fi s- lim ei«He-i.H.e-i*(H-t) (5)
s—*oo

fJo
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for any i S R, since $(s + t) — $(s) J* V(gr2/2) dr —? 0 as s —+ 00. By comparing (5)

with the definition (2) we get the intertwining relation eltHfi ÇlétH°.

Another formulation of (3) is obtained using

e-i<H°p (p- ff<)e~i<//o e-itH°x (x - pt + gt2/2)e~UH°

which is

\\F(\x-gt2/2\ > a(R+vt))f((p-gt)/v)F(\x-pt+gt2/2\ < R)\\ < CN[v(R+vt)]~N (6)

The same remark also leads to

Corollary 2.

Hm ||(fi - e-i*(())/((p - gt)/v)F(\x - pt + gt2/2\ < R)\\ 0 (7)

Proof. We apply Cook's estimate to (5) yielding

/•OO yOO

||(fi-e-i*W)e-"HV||< / ||*7(x,s-M)e_i(s+t)HVll^= / \\U(x,s)e-'">H°ip\\ ds
Jo Jt

We then set ip f(p/v)F(\x\ < R)eitH°i/> and use (4). D

Let us now address the completeness question. We recall [2] that any V G L°°(R1')
with limr_00 V(x) 0 is relatively compact with respect to Hq and to H. This follows by

density if it holds for V with compact support. In this case all terms in

V(H0 + i)-1 - V(p2/2 + i)"1 V(P2/2 + iyig ¦ x(H0 + i)'1
Vg-x(p2/2 + i)-1(H0+i)-1
+ iV(p2/2 + iy'g ¦ p(p2/2 + iy^Ho + i)"1

are compact. We will also use that Ttcont TL for the spectral decomposition with respect

to H [2]. Without using this result, one could prove that Ran fi Ticont instead of

unitarity of fi by suitably modifying the proofs below.

Lemma 3. For f e C^R")

s-(lime^/(^)e-^=/(0), (8)

s-tlme><"f(X-pt^t2/2y<« f(0), (9)
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Proof. We first remark that D(p) fl D(x) is invariant under e~'tH and that

eitH(p - gt)e-HHx/> pi/> - / elsHVV(x)e-''sHiP ds (10)
Jo

eitH(x -pt + gt2/2)e-'itHi/> xi/> + f selsHWV(x)e-'aHip ds
Jo

for y> e D(p) n D(x).
It suffices to prove the lemma for / depending on a single coordinate of its argument,

since linear combinations of products of such functions are dense in C0O(R"). By [7],

Theorem VIII.20 (b) it is enough to show that (8, 9) hold for f(y) (y, - z)'1, z $ R

and moreover strong and weak convergence are equivalent for resolvents. We thus set

p(t) := ëtHpe-'ltH, x(t) := eitHxe-'ltH and have to show that for ip G H, i/> G D(p) fi D(x)

{Vt [{pJ^m _ ,ri _ {_z)-l]iP) =,-» i(pJû^M _ ,rv pJâ^iâ^,
vanishes as t —> oo. Indeed, by (10) this is bounded by a constant times

7IMII + 7 / \\dtV(x)e-isHn ds 0
t t Jq t—rOO

The limit just stated holds by the RAGE theorem ([7], Theorem XI.115), because diV is

relatively compact with respect to H. The other observable is treated analogously. D

Lemma 3 is still a rather weak result, since it roughly says that p(t) — gt o(t),
x(t) — p(t)t + gt2/2 o(<2), while these quantities are constants of motion for the free

Stark problem. The idea to improve this is the following: Let

St:={(x,p)\\p-gt\ <6t0, \x - pt + gt2/2\ < 6t2}

for some 6,t0 > 0. Classically St0 at time t0 is mapped into St at time t > t0 under the

free Stark evolution. Moreover

\x - gt2/2\ < \x - pt + gt2/2\ + t\p - gt\ < St0(t + t0) < 26t2

\x\>(\g\/2-2S)t2

i.e. the particle is far from the scatterer if 8 < |<?|/4. Therefore Sto should be mapped

approximately in St also under the full dynamics.
Let / G C^R") with f(y) 0 for \y\ > S and set

m,y.= ,(^ALA), wy.y(^),
e(Mo) := h(t,to)*h(t,t0yh(t,to)h(t,tQ). (ii)
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Lemma 4. If 6 < |sr|/4, then

lim sup||eim0(<,<o)e-i'H-ei(oH0(<o,<o)e-i<oH|| O. (12)

Proof. The supremum in (12) is bounded by

,oo

/ \\De(t,t0)\\dt, (i3)
Jto

where D- i[H, ¦} + d ¦ /dt, i.e.

db (DhYKhh+n(Dh)*hh + nr2(Df2)h+nnuoh) ¦

We start by computing

Dfx ff(s)i[V,ei<-x-pt+9t2^tö's}ds i ff(s)e'(T-pt+gt^2)tö2s(V(x+tä2ts)-V(x))ds

and split the integral into \s\ > t and |s| < t. The contribution to (13) of the first part is

bounded by 0(tg for all N > 0, due to the decay of /. For the other part, (6) implies
that for 1 < a < M^)"1

/2V2/1 F(\x - gt2/2\ < a6to(t + t0))f^f2fx + O([t20(t0 + t)]~N)

where the remainder contributes to (13) as little as 0(Ìq One is then left with estimating

/ \f(s)\\\(V(x+t-2ts)-V(x))F(\x-gt2/2\ < a6t0(t+t0))\\ ds < const ||s/||i<0_2<"
JisKt

contributing O(t0 2{1+e)) to (13). Here we used that if \x - gt2/2\ < aSt0(t +10) < 2a6t2

then \V(x + t^ts) - V(x)\ < tö2t\s\\VV(x)\ for some x with

\x\ > \g\t2l2 -\x- gt2/2\ - \x - x\ > t2(\g\/2 - 2a8 - t~2)

where the bracket is positive for large io • Terms arising from

Df2 i J f(s)é^-^^\V(x - Ch) - V(x)) ds

are dealt with similarly. The integral restricted to |s| < t is estimated up to a constant by

!!falMofa"2(1+fa its contribution to (13) thus by O(<0"2(1+£>). D
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Lemma 5. Let f be as in the previous lemma, and real-valued with f < 1, /(0) 1 in
addition. Then

Hm sup ||(1 -f2(t,t0)f1(t,tQ))e-HHtP\\ 0 (14)
<o—oof>to

for any %/> G H.

Proof. Equations (8) and (9) imply (e-itoHip, G(t0,t0)e-itoHip) -> (ip,ip) as t0 -» oo.

Then

sup (V>, VO - (e-i<HV, 6(*, t0)e-itHx/>) 0 (15)
t>t0 to—oo

follows from (12). Suppressing arguments (t,t0) we have 1 — f2fx (1 — /i) + (1 — f2)f\
and

||(1 -fx)e-itHip\\2 + ||(l-/2 )/ie-i(^||2
< (IWI2 - ll/ie-itHVf) + (\\fie-itHn2 - ||/2/ie-itHVH2)

(V-,V)-(e-i(HV,e(i,io)e-hHV),

since ff < fi, i 1,2. Hence (14) is immediate from (15). D

Proof of Theorem 1 (completeness). Given tp G Ti,

||(fì_e-i*(0)e-i^||
<||(fi-e-i*W)/2(<,to)/i(t,<o)e-i<HV||+2||(l-/2(t,<o)/i(t,to))e-i<KVII

can be made arbitrarily small due to (7, 14) by first choosing to and then t large enough.

Thus

x/> eimfiei$We-itHt/. + o(l) uétH»é*Wé-ìtUxl> + o(l)

as t —> oo, implying i/> G Ran fi Ran fi. D
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