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Abstract. We propose a modified wave operator for long-range scattering in presence of

an accelerating force. Its relevance in connection with classical scattering is addressed.
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Introduction

The wave operators for the pair (H, Hy) of Stark Hamiltonians with H = Hy + V' and

p2
Ho=§“9'$a 0#g€R”

on ‘H = L%(R") do not exist [6] if V = V(z) behaves as |z|™%, & < 1/2 as = — oco. Re-
cently, several proposals [3, 5, 8] for modified wave operators dealing with slowly decaying

potentials were made. Here we add one more, based on a simple Dollard type argument:
The classical free Stark trajectories z(t) = gt2 /2 + pot + zo suggest that e 1t0ei%(1) with

®(t) := ]Ot V(gs?/2)ds

is a candidate for a comparison dynamics.

Theorem 1. Let V € C'(R) be real-valued with
IVV(z)] < C(1 + |2])*) (1)
for some C,e > 0. Then the wave operator
Q.= S_tlir&eime—ityoe—i@(t) (2)

ezists and is unitary.

The reason for stating this result comes from [6]. There a discrepancy between the
quantum and the classical scattering problem was discovered, as for in the latter one the
wave operators exist and are complete without modification basically as long as V() =
O(|z|¢) for some ¢ > 0. We believe our result heals this discrepancy for the class of
potentials we consider, since the comparison dynamics differs multiplicatively from the
free Stark one only by a phase, which is physically irrelevant. Actually, no modification
at all is needed if the asymptotic condition is formulated in the Heisenberg picture: The
above result then implies that

,Ui(A) = s— lim eltHe—ltHerltng—ltH

t—o00

exists and is an automorphism on £(H). By contrast, this limit typically exists in long-
range scattering only for A € {Hyp}', the von Neumann algebra of operators commuting
with bounded functions of Hy [1]. In this respect (1) behaves as a short-range potential.
It follows from (1) that lim,;_.o, V(z) exists. We may assume this limit to be zero,
since (2) is not affected if the potential is shifted by a constant. Then |V(z)| £ C(1+|z|)~¢,
which is assumed also by [3, 5, 8]. However there stronger oscillations of the potential are

allowed, since (1) is replaced by a weaker decay.

Remark. The hypothesis (1) can be weakened logarithmically [6].
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Proofs

Let us state some kinematical remarks beforehand. The following propagation estimate
for the free dynamics without electric field is well-known (see e.g. [4], Lemma 6.3): Let
f € C§°(R”) with f(y) = 0 for |y| > 1, and let @« > 1. Then for R > 0,t > 0 and any
N>0

|F(lz| > a(R + t))e™*" /2 f(p)F (|| < R)| < Cn(R+ )™,

with Cn indepedent of R,t. States supported in momentum space in {|y| < v}, v > 0
are accounted for through scaling by v > 0: We apply the unitary dilation U satisfying
UpU~! = p/v, UzU~! = vz to the operator in the estimate above, replace t by v?t and R
by vR, the result being

|F(lz] > &(R + vt))e /2 f(p/v)F(|z| < R)|| < Cn[v(R+vt)] ™V .

An estimate for the free Stark dynamics is readily obtained by means of the Avron-Herbst

formula
ewitHo e T(t)e—itp2/2 : T(t) s e—igzta/ﬁeitg-ze—itzg-p/'2

and of T(t)z = (z — gt?/2)T(t), namely

|F(lz — gt*/2| > a(R + vt))e HHo f(p/v)F(|z| < R)|| < Cn[v(R+ )]V . (3)

Proof of Theorem 1 (existence). By Cook’s theorem we have to show that

| 106, e o de < o0
0
for ¢ in a dense set D, where U(z,t) := V(z) — V(gt?/2). Choosing

D = {f(p/v)F(|z| < R)?,[)If eCe(lyl <1),v,R>0,v € H},

this follows from

U (z, t)e~tHe f(p/v)F(|z| < R)Y|
< ||U(z, )F(|z — gt2/2| < a(R + ot))|[|[¥]| + Ci[v(R + vt)] "N [[w]l = Ot 72)||1%]| . (4)

Here we estimated the first term on the second line as follows: If |z — gt2 /2| < a(R + vt),
then U(z,t) = VV(Z) - (z — gt?/2) for some # with | — ¢gt?/2| < a(R + vt). Then
|Z| > |g|t?/4 for t large enough, and hence VV (&) = O(¢~2(1*9)), proving (4). O

Immediate consequences of the existence of the wave operator are that it is an isometry

and that

Q) =s— lim e*HemioHomi®(s+1) (5)

§— 00
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for any t € R, since ®(s +t) — ®(s) = f:“ V(gr%/2)dr — 0 as s — oo. By comparing (5)

with the definition (2) we get the intertwining relation e'*# Q = Qe'tHo,

Another formulation of (3) is obtained using

—itHp

e p= (p _ gt)e—itHo , e—itHom — ((E _pt o+ gt2/2)e—itHg ’

which is

|F(Jlz—gt*/2| > a(R+vt)) f((p—gt)/v)F(|z—pt+gt*/2| < R)|| < Cn[v(R+vt)]™" . (6)
The same remark also leads to
Corollary 2.

lim [[(Q — e *®)f((p — gt)/v)F(|z — pt + gt*/2| < R)|| = 0. (7)

t—o0

Proof. We apply Cook’s estimate to (5) yielding
@ e Oettig < [T U5+ e gl ds = [ Uz, et ds.
0 t

We then set ¢ = f(p/v)F(|z| < R)el'foyp and use (4). O

Let us now address the completeness question. We recall [2] that any V € L*(R")
with lim, o, V() = 0 is relatively compact with respect to Hy and to H. This follows by
density if it holds for V' with compact support. In this case all terms in

V(Ho +1)7' = V(p*/2+1)7 = V(p*/2+1)7 g 2(Ho +1)7"
=Vg-2(p*/2+1)7 (Ho +1)7"
FIVR/2 41 g p(o? /2 +1) (Ho +i)~
are compact. We will also use that H,,,¢ = H for the spectral decomposition with respect

to H [2]. Without using this result, one could prove that RanQ = H ., instead of
unitarity of 2 by suitably modifying the proofs below.

Lemma 3. For f € Co(R")

S_tli.rgoeitHf(p —t gt)e_-im — §(0), (8)
, — 2/2 .
s_t]-_i_‘rg-o elfo(x pttj gt / )e-—liH — f(o) ) (9)
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Proof. We first remark that D{(p) N D(z) is invariant under e~1*¥ and that
t
H(p— gt)e = pp = [ IV () ds, (10)
0
t ‘
etz — pt 4 gt?/2)e ™ Hep = 2y + / se* BV (z)e™*Hep ds
0

for ¢ € D(p) N D(z).

It suffices to prove the lemma for f depending on a single coordinate of its argument,
since linear combinations of products of such functions are dense in Co(R"). By [7],
Theorem VIIL.20 (b) it is enough to show that (8, 9) hold for f(y) = (vi —2)~ !,z ¢ R
and moreover strong and weak convergence are equivalent for resolvents. We thus set
p(t) := eltHpe=tH 4(1) := e*H ze~itH and have to show that for ¢ € H, 1 € D(p) N D(z)

(o [P oyt = (o)) = o (RO gy, 0y

vanishes as t — oo. Indeed, by (10) this is bounded by a constant times

1 1 [t N
?“Pﬂf’“ + z / ||3,~V(x)e l‘gH't,b” ds t——) 0.
0 — 00

The limit just stated holds by the RAGE theorem ([7], Theorem XI.115), because &;V is
relatively compact with respect to H. The other observable is treated analogously. O

Lemma 3 is still a rather weak result, since it roughly says that p(t) — gt = o(t),
z(t) — p(t)t + gt2/2 = o(t?), while these quantities are constants of motion for the free
Stark problem. The idea to improve this is the following: Let

Se:={(z,p) | |p — gt| < to, |& — pt + gt* /2| < 8t}

for some 6,25 > 0. Classically S;, at time t¢ is mapped into S; at time ¢ > ¢, under the
free Stark evolution. Moreover

|z — gt?/2| < |z — pt + gt*/2| + t|p — gt| < Sto(t + 1) < 26¢%
2| > (|g1/2 — 26)¢*

i.e. the particle is far from the scatterer if § < |g|/4. Therefore S, should be mapped
approximately in S; also under the full dynamics.

Let f € C§°(RY) with f(y) = 0 for |y| > é and set

fi(t to) := f(m = s gt2/2) » fa(t,to) == f(p —gt) ;

t2 to

O(t,t0) := f1(t, t0)" fa(t, t0)" fa(t, t0) fr (20 - (11)
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Lemma 4. If § < |g|/4, then

lim sup ||e*FO(t,t0)e ™ — el HO(tg,10)e || = 0. (12)

to—o0 t>tg

Proof. The supremum in (12) is bounded by

/t " DO, 1) dt (13)
where D- = i[H,-] + 8- /4, i.e.

DO =(DAH)fhRA+ (D) A+ {fZ(DR)A+HER(DA).
We start by computing
Df; = / F(s)i[V, ez —ptrat™/ DG 0] g — / f(s)el =PI DG 0 (Y (54 45245)~ V() ds
and split the integral into |s| > ¢ and |s| < ¢. The contribution to (13) of the first part is

bounded by O(t; ™) for all N > 0, due to the decay of f. For the other part, (6) implies
that for 1 < a < |g|(46)~?

f3fafr = F(lz — gt* /2] < abto(t + to))f3 fofr + O([ta(to + )] N) ,

where the remainder contributes to (13) aslittle as O(¢5 V). One is then left with estimating

f PNV (a+t5285)V (2)) F(la—gt* /2] < abto(t-+0))]| ds < const [|s flla 2524~ +29,
|s|<t

contributing O(¢, 2(H'e)) to (13). Here we used that if |z — gt2/2| < adt(t + 1) < 2aét?
then |V (z + 15 %ts) — V(z)| < t5%t|s||VV(Z)| for some & with

18 > 1glt*/2 = |z — g% /2| = |2 — 3] 2 #*(1g]/2 - 208 - 157),
where the bracket is positive for large ty. Terms arising from
Dia =i [ F(s)e0=095" (V@ - t5%5) - V(&) ds

are dealt with similarly. The integral restricted to |s| <t is estimated up to a constant by
lls f]l1t5 1 t=2(1%€) its contribution to (13) thus by O(t; 2T*)). O
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Lemma 5. Let f be as in the previous lemma, and real-valued with f < 1, f(0) =1 in
addition. Then

lim sup [I(L = falt, o) fa(t, o))e =] = 0 (14)

to—lroo tzto
for any ¢ € H.

Proof. Equations (8) and (9) imply (e~ O(ty,to)e " Hy) — (,9) as to — oo.
Then

sup (¥, %) — (74, O(t, to)e yp) —— 0 (15)

to—o0

follows from (12). Suppressing arguments (¢,tp) wehave 1 — fofi = (1 — f1) + (1 — fo)fr
and

11 = e )2 + [|(1—fo) fre ™ H ||
< (1912 = e T pI) + (1 e )17 = [l fafre™ P 0?)
= (1, %) — (719, 0(t, to)e ™7 9) ,

since f? < f;, i = 1,2. Hence (14) is immediate from (15). |
Proof of Theorem 1 (completeness). Given ¢ € H,

(R — e ¥ @)eitHy|
< (@ = e ) falt, o) fu(t t)e ™ || + 201 = oty to) a2 to))e ™ |

can be made arbitrarily small due to (7, 14) by first choosing to and then ¢ large enough.
Thus

b = eltH eI =it y, 4 o(1) = QeitHogi® (1) g=itH y, | o(1)

as t — 0o, implying ©» € Ran {2 = Ran 2. O

Acknowledgements. We thank B. Simon for pointing out to us Ref. [1], and A. Jensen
for useful discussions.
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