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Generalized Spectral Laws for the Energy and Enstrophy
Cascades in a Two-Dimensional Turbulence

Bhimsen K. Shivamoggi
University of Central Florida
Orlando, FL 32816

(3. IV. 1991)

Abstract:

We consider generalized von Karman-Heisenberg-von Weizsacker type model
for the inertial transfer to give generalized spectral laws for the energy and enstrophy
cascades in a forced two-dimensional turbulence that provides a satisfactory unified
description of the equipartition range and the inertial range for the energy cascade
and the dissipation range and the inertial range for the enstrophy cascade. We will
show that the equipartition range of the energy cascade and the dissipation range of
the enstrophy cascade can be satisfactory modeled by a stationary continuous spectral
cascading process. We will then discuss the intermittency aspects of the departures
from the Batchelor-Kraichnan scaling laws and show that while the intermittency
corrections within the framework of the f-model are in qualitative agreement with
the predictions made by the generalized spectral laws given in this article, intermit-
tency by itself is unable to account fully for the equipartition spectrum of the energy
cascade observed in laboratory experiments and the dissipative spectrum of the
enstrophy cascade observed in laboratory and numerical experiments. We will discuss
further fractal aspects of the enstrophy cascades, and show that for the enstrophy
cascade, the fractal dimension rules not only the manner in which the cascading
proceeds but also the point where it stops, while for the energy cascade the fractal
dimension rules only the manner in which the inverse cascade proceeds and not the
point where it stops.

This article is dedicated to
Professor Mahinder S. Uberoi.
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1. Introduction:

A principal reason for interest in two-dimensional turbulence is the possibility
of applying the theory to planetary boundary layers (Rhines, 1979; Kraichnan and
Montgomery, 1980). Strictly two-dimensional flow in a layer of fluid requires that
the velocity vector everywhere lie in a given plane and that there be no variation of
the velocity field perpendicular to that plane. On a global scale, the earth’s atmosphere
and oceans are a very thin layer so that it is reasonable to expect two-dimensional
motion on scales large compared with the layer thickness. It may be noted that though
several factors such as topographic surface variations and salinity variations in the
oceans destroy the two-dimensional nature of the motion, the rotation of the earth
plays a crucial role in preserving the latter. (This follows from Taylor-Proudman
theorem (see Greenspan, 1968) which shows that uniform rotation of a plane layer of
fluid about an axis, say z-axis, perpendicular to the plane tends to lock the fluid into
two-dimensional motion independent of z.)

Kraichnan (1967) and Batchelor (1969) pointed out the possibility of two
inertial ranges in a two-dimensional turbulence: the energy subrange in which energy
propagates to larger scales, and the enstrophy subrange in which enstrophy cascades
to smaller scales. Kraichnan (1967) and Batchelor (1969) invoked arguments similar
to those used in Kolmogorov’s (1941) theory of three-dimensional isotropic hydro-
dynamic turbulence to surmise that if the Reynolds number is sufficiently high the
large-scale components are influenced only by the boundary conditions on the system.
The statistical properties of the small-scale components of velocity and vorticity-fields
in the inertial range were assumed to have some universality and are uniquely
determined by the mean energy and enstrophy dissipation rates ¢ and T, respectively,
and the kinematic viscosity v and depend only weakly on the large-scale features of
these fields. By using dimensional arguments, they then derived k * and k™ power
laws for the spectrum of kinetic energy density of the fluctuations in the stationary
state for the energy subrange and enstrophy subrange, respectively. Kraichnan (1967)

proposed that both inertial ranges would exist simultaneously in a continuously driven



Vol. 64, 1991 Shivamoggi 1115

turbulence. Leith (1968) derived a diffusion approximation to inertial energy transfer
in such a way that energy and enstrophy are conserved, and also predicted the k£ *and
kinertial ranges. Numerical closures of Frisch et al. (1967) and Pouquet et al. (1975)
and numerical simulations of Lilly (1969), Herring et al. (1974), Fornberg (1977),
and Frisch and Sulem (1984) confirmed the conjecture of Kraichnan (1967) and
Batchelor (1969) that there occurs a transfer of excitation to lower and higher
wavenumbers in a manner qualitatively consistent with the simultaneous existence
of both the energy and enstrophy inertial ranges. Lilly (1969) obtained an omnidi-
rectional energy spectrum for a system driven continuously by a mode at wavenumber
kc. Figure 1 shows two inertial ranges—the energy cascade for k > k., developing
from aninitially peaked spectrum dominated by the source spectrum atk = k.. Pouquet
etal. (1975) used the stochastic models introduced by Kraichnan (1961) to numerically
test a simultaneous direct enstrophy cascade and inverse energy cascade for two-
dimensional turbulence. When enstrophy and energy are continuously injected at a
fixed wavenumber, it was found that (see Figure 2) a quasi-steady regime is obtained
where enstrophy cascades to large wavenumbers across k™ inertial range with zerq
energy transfer while energy flows indefinitely to small wavenumbers across a K3
inertial range with zero enstrophy transfer. Atmospheric measurements have also
revealed the existence of an energy cascade (Fjortoft, 1953) and an enstrophy cascade
(Ogura, 1958; Wiin-Nielsen, 1967; Julian et al. 1970; Morel and Necco, 1973; Morel
and Larcheveque, 1974; Desbois, 1975). Kraichnan (1971) proposed further that the
k spectrum for the enstrophy cascade should be modified by a logarithmic correction
term to give k~[In(k/k,)] >. However, the latter result does not extend to infinity,
because it does not give the rapid decay of the spectrum prevalent at high wave-
numbers. Kida (1981) applied the modified cumulant expansion and numerically
calculated the equations for the energy spectrum, and confirmed a more rapid decay
of the spectrum in the enstrophy cascade at very large wavenumbers. Numerical
simulations of decaying flows (Basdevant and Sadourny, 1983; McWilliams, 1984;
Brachet et al. 1988) and forced flows (Kida, 1985; Brachet et al. 1986, Basdevant et
al. 1981) also gave for the enstrophy cascade energy spectra steeper than k™ (see
Figures 3 and 4).
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Figure 1. An omnidirectional energy spectrum of two-dimensional Navier-Stokes
turbulence obtained numerically. The initial spectrum, which is domi-
nated by the source spectrum at the source wave k,, is shown to relax

to the inertial range spectra for enstrophy at k > k, and energy at k <k,.

(From D. K. Lilly, 1969)
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Figure 2. Quasi-steady energy spectrum E (k,¢) for t = 100, 1000 and 3000
corresponding to an injection spectrum constant in a half-octave
band around k, = 1 with injection rates £ = 0.03 and f§ = 0.03.

Reynolds number R = 2.4 x 10’.

(From A. Pouquet, M. Lesieur, J. C. Andre and C. Basdevant, 1975)
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Figure 3. Energy spectra of experiments E4 and E10. Arrows indicate

injection wavenumbers. Spectral slopes £~ and k™ are
indicated (log-log scale).

(from A. Babiano, C. Basdevant and R. Sadourny, 1985)
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Figure 4. Energy spectrum E (k) for case 1 (b) (1 <k =< 128) in the stationary state.

(From J. R. Herring and J. C. McWilliams, 1985)
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The whole theory of two-dimensional turbulence had, until recently, remained
almost an academic exercise, notwithstanding its possible connections with atmo-
spheric and oceanic large-scale flows. Just recently, truly two-dimensional flows
were produced to a close approximation in laboratory experiments. Experimental
evidence of the existence of inverse energy cascade was first obtained by Couder
(1984) on thin liquid soaps films, then by Sommeria (1986) in a shallow mercury
layer immersed in a strong normal magnetic field.

The inverse energy cascade in a statistically steady forced two-dimensional
turbulence (without forcing, the inverse cascade cannot develop) experimentally
investigated by Sommeria (1986) showed a k * behavior at large wavenumbers and
a k' behavior corresponding to an equilibrium energy equipartition spectrum at small
wavenumbers. Laboratory experiments in a cylindrical tank filled with a two-layer
fluid system and driven by a surface stress of a forced, quasi-two-dimensional tur-
bulence were performed by Narimousa et al. (1991) who obtained for large wave-
numbers an energy spectrum steeper than k™ (Figure 5).

Basdevant et al. (1981) argued that the steeper energy spectra at large wave-
numbers is due to intermittency in the flow: an intermittent random variable is one
which has a large probability of taking values both very large and very small compared
with its standard deviation. Enstrophy dissipation is a highly-fluctuating quantity
whose statistical properties significantly affect the energy spectrum at small scales.
Due to intermittency, the small-scale structures are no longer uniformly distributed
in space but show more and more spottiness, and their statistics are increasingly
non-Gaussian. If intermittency increases as scale size decreases, and the Batchelor-
Kraichnan theory is assumed to hold in local regions, then the enstrophy cascade
would be expected to become more efficient as the scale size decreases. As aresult,
one would expect that the energy spectrum must fall off more rapidly than k3 if,
according to conservation of enstrophy, the overall enstrophy cascade rate is to be
independent of the scale size. Earlier, Mandelbrot (1976) had argued that intermit-
tency in the three-dimensional case is related to the fractal aspects of turbulence. In

particalar, Mandelbrot (1976) proposed that the dissipation is concentrated on a set
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Figure 5. One-dimensional energy spectra (e) as a function of wavenumber (k),

inferred from a direct two-dimensional, FFT of the u'* velocities
deduced from the interpolated data. Rough estimates of

spectral slopes are indicated for each experiment. The vertical
arrows indicate the wavenumber of the frontal eddies.

(From S. Narimousa, T. Maxworthy and G. R. Spedding, 1991)
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with noninterger Hausdorff dimension. Mandelbrot’s ideas were formulated for the
three-dimensional case in a simpler way through a phenomenalogical model called
the B-model (which was based on the ideas advanced by Kraichnan, 1972) by Frisch
et al. (1978). For the two-dimensional case, one may also use the B-model to explore
the fractal aspects of the departures from the Batchelor-Kraichnan scaling laws. The
key assumption in this model is that the flux of energy is transferred to only a fixed
fraction P of the eddies downstream in the cascade. A noteworthy feature of the
p-model is that we do not have to assume the Batchelor-Kraichnan scaling laws ini-
tially and then derive their modified versions by somehow mysteriously incorporating
the dissipation fluctuations. However, since the B-model requires that there is no
mixing between the empty and nonempty regions it presupposes that the time-scale
of spatial mixing is much larger than that associated with the aggregation/fragmen-
tation processes in two-dimensional turbulence.

The application of the -model to the inverse energy cascade was done by
Frisch et al. (1978), who found that the intermittency corrections decrease the 5/3
exponent. Shivamoggi (1990,) applied the B-model to the enstrophy cascade and
confirmed that intermittency will steepen the energy spectrum, in qualitative agree-
ment with the generalized spectral law for the enstrophy cascade given in this paper.
However, we will show that intermittency by itself is unable to account fully for
steeper spectra observed at large wavenumbers in laboratory and numerical experi-
ments or flatter spectra observed at small wavenumbers in laboratory experiments.

The intermittency corrections mentioned above may also be too small to allow
an experimental or numerical verification at the usual level of resolution of kinetic
energy and enstrophy spectra. One may then take another approach and make a
systematic analysis of the effect of nonlinear inertial and viscous effects on the kinetic
energy and enstrophy spectra using generalized von Karman-Heisenberg-von
Weizsacker type models for the inertial transfer (Shivamoggi, 1990, and 1990,).
According to this model, the transfers of the kinetic energy from small to large
wavelengths and the enstrophy from large to small wavelengths are described by
gradient-diffusion type cascade processes characterized by "eddy viscosities" pro-

duced by small wavenumber modes acting to remove kinetic energy from large
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wavenumber modes and large wavenumber modes acting to remove enstrophy from
small wavenumber modes, respectively. Using this model, one may deduce gener-
alized spectral laws for the kinetic energy and enstrophy cascades that exhibit a
flatter/steeper spectra for small/large wavenumbers and reduce to the well known
inertial-range laws at the other ends of the spectra. This approach provides a unified
framework for describing both the inertial and equipartition/dissipative ranges of the
kinetic energy/enstrophy cascades observed in laboratory experiments/numerical
calculations. The small-wavenumber limit (namely, the equipartition regime) of the
energy cascade and the large-wavenumber limit (namely, the dissipative regime) of
the enstrophy cascade can also be modeled in a satisfactory way as a stationary

continuous spectral cascading process (Shivamoggi, 1987 and 1990,).

2. Conserved Quantities for a Two-Dimensional Flow:

The Navier-Stokes equations for an incompressible fluid are
av
—~+(V'V)V=—V(£) +vViy (1)
ot = % p

Vev=0 (2)

where v is the fluid velocity, p the pressure, p the density, and v is the kinetic viscosity.

Taking the curl of equation (1), and using equation (2), we find that the
vorticity Q =V x v obeys

Q2
a—;+(v-V)Q=(Q-V)v+VVZQ (3)

~ ~

For a two-dimensional flow, taking the scalar product of equations (1) and

(3) with v and Q, respectively, we obtain
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a{VZ v?
3| = +V-(v3+v£) EVV'(VXQ) -vQ* (4)
2 i T i
(@ Q? 2
e JE L T =VV-[QX(VXQ)]—V(V>(Q) ()
2 2 - B )

If the fluid is surrounded by a rigid boundary so that the normal component

of velocity vanishes on the boundary, we have from equations (4) and (5),

2
v
aWw 9 -
—-—E—f—dx= v(va)-ds—vade (6)
ot ot 2 - ~ ~ ~ ~ o~
2 2
du o N
—_— = —dx =¢VvQ x| Vx Q| +ds - viQ)dx (7)
ot ot 2 . . - - - -

In the absence of viscous dissipation (v = 0), equations (6) and (7) give the
conservations of the total energy and the total enstrophy (which is the mean square
vorticity) -

W =const, U =const (8)

Thus, in two-dimensional turbulence, there are two conserved quantities—
the energy and the enstrophy. (Due to a finite viscosity, however, the enstrophy is
dissipated at a nonnegligible rate; therefore the maintenance of a stationary state
requires an external source since the vortex stretching which acts like a source of
vorticity is inoperative here unlike the three-dimensional turbulence. However,
energy dissipation will tend to zero as v — 0 so that two-dimensional turbulence is
almost nondissipative as v — (0.) Therefore, there are two types of inertial
ranges—one for energy and one for enstrophy.

[f the enstrophy vanishes during the normal cascade, equation (6) shows that
dW /ot = Oeven in the presence of a viscous dissipation. This implies that the system
will evolve toward a state of minimum enstrophy with constant energy. Thus, there
exists a selective dissipation process among the conserved quantities in a two-
dimensional flow when dissipation is introduced—the enstrophy decays faster than
the energy.
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3. Fourier Analysis of the Turbulent Velocity Field:
Fourier analysis of the velocity field, when it is a stationary random function

of position, affords a convenient identification of the scales of motion with Fourier
modes and a view of the turbulent motion as comprised of the superposition of motions
of alarge number of components of different length scales. These Fourier components
contribute additively to the total energy and total enstrophy and interact with each
other according to the nonlinear inertial terms in the equations of flow. The observed
properties of the turbulent field are thought of as being the statistical result of such
interactions. It should be noted that Fourier representation is natural for infinitely
extended homogeneous turbulent fields but not for inhomogeneous flows for which
there is only a weak relation between the structure in real space and the Fourier modes.
Certain spatially compact objects called wavelets (Argoul et al. 1989) have recently

been advanced for an efficient decomposition of a turbulent field into various sizes.

Let us express the flow properties at any point x at time £, as a superposition

ik - x
V(x,t) ) V(k,t)e T
o\ E ="\ a

1 ik-x
—-p(x,t) = EP(k,t)e T
P\= - ~
Since V and P are actually measurable, they must be real so that

v8)-v()h# 1) -4

We have dropped the argument ¢ for convenience. We then obtain from equations

of plane waves of the form,

9)

(1) and (2), the following equation -

9 5 ) k ik,
(eevfe) =-n o2

e (K)ve-) 00

~
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which describes the mode coupling among different Fourier components.

In terms of the stream function v, defined by

v=Vyxi, (11a)
we have for the vorticity 9,
9=—VXY=v2wfz (11b)
and equation (3) becomes
%quu(Vmp Xl}) - V(VA) = vV (12)

Fourier analyzing 'q)(x, t), according to,

ik-x
lp(x,t) =3 lp(k,t)e T (13)
k
equation (12) becomes

(567' k%)rp(k,) > “Aﬁ,,k,,llf(k’)lp(k”) (14)

where,
1 -
A’;”k” =;§(k’ . kn) . iz(kyz_an)

and we have again dropped the argument ¢ for convenience. A becomes large when
k,k' and k" have comparable magnitudes so that the modal cascade is dominated by

local interactions in k-space.

4. Energy and Enstrophy Cascades:

Consider a source in the spectral space at k = k, with energy W, = W(k,) (the
2

omnidirectional energy spectrum W(k) is defined such that [W(k)dk =3, !V(k)

gives the total energy).
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Through mode-mode coupling this source would decay into two modes with
wavenumbers &, and k, with energies W, and W, (k <k, corresponds to the inertial
range for energy and k > k_ corresponds to the inertial range for enstrophy.) Since

energy and enstrophy are conserved, we have
W =W+W, (15)
KW, = k2W, +ICW, (16)
from which, the energy is partitioned as

ks —k;

1= 2 5. AR
ky — ki

> (17)
w, Kk,
2 kzz _ k]2 5
This implies that ‘
NN (18)

so that the mode with wavenumber k, decays into a mode with wavenumber k, <k,

and to another mode with wavenumber &, > k..

Let us (following Hasegawa, 1985) assume that a mode £, first decays into
modes k,(k, =Vpk,) and kyk,=V1+pk,;p <1), with corresponding energies
W, = pW, and W, = (1 - p)W,, and enstrophies U, = k2p*W, and U, = kX(1 - pH)W,.

In the next step of the cascade, the mode k, decays into a mode Vpk, = pk, and

another mode V1+pk, =vVp(1+p)k, while the mode k, decays into a mode

VPk,=Vp(1 + p)k, and another mode V1 + pk,=(1+ p)k,. The energies for the

modes pk,, Vp(1+p)k, and (1+p)k, are p*W, 2p(1-p)W, and (1-p)’W,,

respectively. Thus, at the nth step of the cascade, the energy is given by
W(k*=p"~"(L+pYk;)

- (’r’)p"-’u —pYW, (19)
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Now, by the de Moivre-Laplace approximation, we have for the binomial distribution,

as n => oo,

1 (n=r=np)®

e' Zp(1-p) (20)
V2nnp(1 - p)

so that the binomial distribution in (19) peaks at r/n =1 - p as n = «. The corre-

(’:)p""(l =p)

sponding wavenumber is

ki= Lt p"~"(1+p)k?

n=>o

= Lt [ py| K

Lt [pP(1+p) Tk (21)

n=auw

Since, for 0 < p <1, p?(1+p)'# <1, we obtain kZ ~ 0. This means that the peak of
the energy distribution moves to k = 0 as n = . Hence, the energy cascades
inversely and condensates at k = 0 (or at the longest wavelength permissible for the
system).

Next, the enstrophies for the modes pk,,Vp(1 + p)k,and (1 + p)k, arek'p*W,,

2kp*H(1 - pHYW, and k(1 - p?)°W,, respectively. Thus, at the nth step of the cascade,
the enstrophy is given by

UK = p""(1+ pYk?) = (': o= pyew, (22)

The binomial distribution in (22) peaks at r/n ~ 1 — p* as n = . The corresponding

wavenumber is
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ki= Lt p""(1+p)k?

= Lt ' e py| K

= Lt [pP(1+p) 2K (23)

n=ae

Since, for 0 < p <1, pP2(1 +p)1""2 > 1, we obtain k% ~ o. This means that the peak

of the enstrophy distribution moves to kK = » as n = «. Hence, the enstrophy

cascades directly and condensates atk = oo (where strong viscous dissipationsets in).

S. Self-organization and Self-degradation in Two-dimensional Flows:

The energy cascade to lower wavenumbers has the result that random exci-
tation at intermediate wavenumbers drives the (necessarily coherent) largest spatial
scales of the system. Thus, two-dimensional flows seem to have a self-organizing
character. Figures 6 and 7 show a numerical calculation (Lilly, 1969) of the evolution
of the stream function and the vorticity. The smooth structure of the stream function
is a consequence of the inverse cascade of the energy to large wavelengths, while the
convoluted state of the vorticity is a result of the enstrophy cascading to smaller
wavelengths.

In order to understand the self-degradation of vorticity, consider equations
(11) and (12) in the inviscid limit,

[%+L(r)]§2(r) -0 (24)

VA(t) = -Q(r) (25)
where the operator L (t) is given by

L(t)=Vy(t)xi, +V

and we have omitted showing the dependence on x explicitly.
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Figure 6. Stream function (a) and vorticity (b) at the 160th time step, f = 10.87,

for the wavenumber 8 experiment with v =2.5x 10 and t = 0.5,
all in dimensionless units.

(From D. K. Lilly, 1969)
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Figure 6(b)
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Figure 7. Same as Figure 6 at the 2360th step, ¢t = 75.45.

(From D. K. Lilly, 1969)
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Following Keller (1964), the operator L (¢) can be split into a mean part L (¢)
and a fluctuating part L'(t) as follows -
L(@t)=L(t)+L'(t)

Upon averaging, equation (24) gives

[ g’t-arr (t)]ﬁ(r) - L' (L)) (26)

where the bars overhead (or ( )) refer to the average, and the primes refer to the
fluctuation, and
Q1) =Q(t) +Q'(¢) .

Upon subtracting equation (26) from equation (24), we obtain
0 —
[ —4L (r)‘ Q'(t) = -L'(6)Qe) + (L (L) 27)
If we introduce Green’s function G(¢,t") for the operator [ :T*L (t)], defined
by -
3 -1
[ ~4L (r)] H(r) = f G(t,t)H (t")dt’ (28)
the solution of equation (27) can be written formally as
Q'(t) = fG’(t, YL ()R (¢)) —L'(¢")Q(¢")]at’ (29)a
and on iteration, as the Neumann series -

Q'(t) ~— f G(t,t")L"(t"\Qt")dt' +

-jG(t,t')<L’(t’)fG(t',t”)L ’(t”)ﬁ(t”)dt”>dt’+ . (29D

As a first approximation we will retain only the first term on the right-hand side of

equation (29). Equation (26) and the fluctuating part of equation (25) then become

[ é-+17(t)]§(t) - [ar@ oG @) (30)

ot ]

Va'(c) = [ dr'G (e, e )L\ | (31)
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If we now suppose that the integrand on the right in equation (30) peaks near
t' =t for a short period of time of T, the correlation time of the fluctuations (or the
eddy turnover time), and that Q(t) is sufficiently smooth and does not change sig-
nificantly during this period, we may ignore the non-local character of the diffusion
operator in equation (30). The latter then becomes the Fokker-Planck equation -

aﬁ(x,t)
- S d ~
( ot -Hi.v)g()f’t) " ox -l:)(x,t) ) ax

~ ~

and equation (31) becomes

Q x, ¢

{V x Y’(x,r)l . ?“’ - —agg—;) . J‘dt’G(t,t')Y’()f,t') (33)

~

Here, assuming that the fluctuations are stationary, the diffusion coefficient D is given

by, i
D(x,t) =fdt’<v'(x,t)G(t,t - t')V’(x,t —t’)>

which embodies the fluctuation-dissipation theorem (Kubo, 1957).

Equation (32) signifies the self-degradation of vorticity and implies that the
evolution of vorticity in two-dimensional turbulence can be considered to be a Markov
process. This is plausible if we note that when the vorticity has evolved for a time
long compared with the correlation time of the enstrophy cascade the enstrophy-
transfer process would have completed a large number of steps in the cascade, each

of which produces a small random contribution.

6. Batchelor-Kraichnan Theory of the Inertial Ranges:

Kolmogorov’s (1941) theory of the inertial range occupies a central place in
the theory of three-dimensional turbulence. Kolmogorov (1941) argued that there
exists a certain range, called the inertial range, in the wavenumber space which is in
a state of statistical equilibrium in the sense that there is neither a source nor a sink

of energy. The energy spectrum is assumed to cascade here smoothly through non-
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linear processes in a stationary state. Furthermore, the energy spectrum E (k) in the
inertial range is assumed to depend only on the wavenumber k and on the rate ¢ at
which energy is cascaded per unit mass. Dimensional arguments then imply that E (k)
has the form

E(k)=Ce®k™ (34)

where C is a dimensionless constant.
In two-dimensional turbulence the existence of two conserved quantities,
energy and enstrophy, imply the possibility of two cascades with inertial ranges of
the Kolmogorov type. Using dimensional arguments, Kraichnan (1967) and Batchelor

(1969) gave for the inertial-range energy spectrum E (k) the following form in the

energy cascade -

E(k)=Cgg%k™" (35)
and the following form in the enstrophy cascade -

E(k) =C;7%k (36)

where € and T is the rate of cascade of energy and enstrophy per unit area, respectively,
and C,, C, are dimensionless constants.
Kraichnan (1971) later gave a more refined analysis in which he suggested

that the eddy-turnover time T (which was given by the local expression T ~ [k’E (k)"

k -12
in deriving (25)) be given by the non-local expression T(k) ~ [ I P’E(p )a’p] . This
0

would then lead to the log-corrected spectrum E (k) ~ vk [In(k/k,)]™" for the

enstrophy cascade.

7. The Intermittency Corrections to the Batchelor-Kraichnan Scaling Laws:

The Batchelor-Kraichnan study does not take into account the spatial inter-
mittency in the flow that arises due to the non-Gaussian nature of the small-scale
statistics and leads to the spatial randomness of kinetic energy and enstrophy

dissipation rates. The latter would be expected to depend on the Reynolds number
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and to cause at the upper end of the energy subrange and the lower end of the enstrophy
subrange systematic departures from the Batchelor-Kraichnan scaling laws which use
mean dissipative values.

However, it is now well known that the intermittency effects associated with
small scales are not accessible to traditional closure calculations (Kraichnan (1974),
Nelkin (1975) and Frisch et al. (1978)). Therefore, one takes a heuristic approach to
this problem whereby one makes ad hoc assumptions about the stochastic nature of
the kinetic energy and enstrophy dissipation rates.

Alternatively, one could follow Mandelbrot (1976) and argue that the devi-
ations from the Batchelor-Kraichnan scaling laws are related to fractal aspects of the
geometry of two-dimensional turbulence. In particular, one may assume that the
kinetic energy and enstrophy dissipations are concentrated on sets with noninteger
Hausdorff dimensions. These ideas may be formulated in a simpler way through the
so-called B-model (Frisch et al. (1978)). The key assumption in this model is that the
kinetic energy and enstrophy are transferred to only a fixed fraction f of the eddies

downstream in the cascade.

8. [B-Model for the Intermittency Corrections to Inverse Energy Cascade:

Let us briefly review the 3-model of Frisch et al. (1978) applied to the inverse

energy cascade. One considers a discrete sequence of scales

L=lyp”; n=012 (37)

and a discrete sequence of wavenumbers k, = [;'. Here, p is the constant ratio of the

cascade in sizes. The kinetic energy per unit mass in the nth scale is defined by
kn +1 ’
E = j E (k)dk (38)
kﬂ

One assumes a statistically stationary turbulence where energy is introduced
into the fluid at scales ~ /, and is then transferred successively to scales ~ [, 1, ...,
until some scale /* is reached where /* is the macroscopic size of the system. One
now makes an assumption that at the nth step, only a fraction 3" of the total space has
an appreciable excitation.
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The kinetic energy per unit mass in the nth scale is then given by
E, ~BV, (39)
where V, is a characteristic velocity of the nth scale, and using (37),
TAE:
B =(p"" ~ ( E) (40)
D is the fractal dimension of the region in which the energy dissipation is concentrated.
(40) expresses the fact that intermittency increases with increase of size in the inverse
cascade. If intermittency increases as scale size increases, and Kraichnan-Batchelor
basic ideas hold in local regions, then the cascade becomes less and less efficient as
I, increases and E (k) must fall off less rapidly than k™" if, according to conservation
of energy, the overall energy cascade rate is independent of /,.

The rate of transfer of energy per unit mass from the nth scale to the (n + 1)th
scale 1s given by

- (41)

where ¢, is a characteristic time of the nth scale, ¢, = [,/V . Inthe energy inertial range,

one assumes a stationary process in which energy is introduced at scales ~ [
conservation of energy requires

g =¢, [*=1l =1 (42)

It is convenient to think of € also as the mean dissipation rate which is what it would

be when the eddies are of the order of the Kolmogorov length scale ). (40)-(42) then

give
_ ] \-0-23
v~ -1’3135( —") (43)
0
_ ;-8
- ‘”3133( -':) (44)
0

E ~Em12’3(—”) (45)
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(45) leads to the energy spectrum (Frisch et al. 1978)
E(k) ~ & Pk Pkl )PP (46)

(46) shows that the intermittency corrections to the inverse energy cascade decrease
the 5/3 exponent. The general nature of this result was actually predicted by Kraichnan
(1975). This result is also in qualitative agreement with the predictions for small
wavenumbers of the generalized spectral law (70) for the inverse energy cascade (see
below). Observe that according to (46), the inverse energy cascade cannot have a
spectrum flatter than k™. Thus, intermittency by itself is unable to account fully for
the energy equipartition spectrum.

Let us now discuss the manner in which the fractal dimension influences the
development and termination of the inverse energy cascade. The first cascade stage
leads to curds (to borrow Mandelbrot’s terminology) of size [, p in which energy

dissipation is equal to either 0 or ¢p*~”, and the Kolmogorov scale is np @27

, where
n = (v¥/e)'". In the nth stage, the average dissipation is ep"®~?), the curd size is I, p”,
and the Kolmogorov scale is p™"? 2" Thus, the Kolmogorov scale decreases with
increase in n, but the curd size increases with n. This means that the cascading will
continue until [, p" ~ I* where I* is the macroscopic size of the system. Thus, the
fractal dimension rules only the manner in which the inverse cascade proceeds and

not the point where it stops, unlike the direct cascade.

9. [-Model for the Intermittency Corrections to the Enstrophy Cascade:

The transfer of enstrophy to the small scales of motion is less well understood
and has been a subject of some controversy. Numerical simulations have not been
able to clarify this process because of their limitations due to finite degree truncations
and the use of eddy viscosities that distort the inviscid behavior at small scales. Weiss
(1991), onthe basis of numerical solution of Euler’s equations, contends that enstrophy
transfer is associated with the stretching and folding of fluid in the hyperbolic regions.

In view of the regularity of two-dimensional flows, the concomitant velocity
field develops no singularities in the limit of infinite Reynolds numbers. Thus, it
might appear that the enstrophy dissipation structures must be space filling and hence
exhibit no intermittency. Also, Kraichnan (1971) argued that intermittency will not
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affect the small-scale energy spectrum because the enstrophy-cascade interaction is
not local in wavenumber space. The nonlocality of the enstrophy cascade casts doubt
on the universality of the scaling law of the energy spectrum, because small-scale
motion cannot be independent of the large-scale forcing mechanism and/or boundary
conditions. This nonlocality also means that it takes an infinitely long time to initiate
a fully developed spectrum in a nearly inviscid flow driven by random forcing at a
fixed wavenumber. However, Basdevant et al. (1981) and Benzi et al. (1986) have
shown that in the absence of any organized large-scale motion, intermittency is able
to steepen the energy spectrum by restoring the spectral localness of nonlinear
interactions. This intermittency is the result of the formation of spatially organized
vortices, found in the numerical simulations of McWilliams (1984),, Benzi et al.
(1986), Brachet et al. (1988) and Santangelo et al. (1989) in decaying situations after
long periods of time, and also in some stationary forced situations with a forcing
spectrum at high wavenumbers (Basdevant et al. 1981, Herring and McWilliams,
1985). Coherent vortex structures were also found in the laboratory experiments of
Narimousa et al. (1991), as seen on the contour maps of the vorticity field (Figure 8).
These coherent structures inhibit the local inertial transfer of enstrophy and lead to
fluctuations in the enstrophy dissipation and are believed to produce steeper energy
spectra. This scenario has been confirmed by the recent numerical simulations of
Ohkitani (1991). Thus, though the enstrophy cascades toward small scales through
nonlinear interactions, the measure of the spatial domain in which such transfers are
active decreases as the scale size decreases (Basdevant and Sadourny, 1983). This
provides the rationale for the application of the B-model to the enstrophy cascade.
Consider now a discrete sequence of scales

L =lL,p™; n=0,12,... (47)

and a discrete sequence of wavenumbers k, = [;'. The kinetic energy per unit mass

in the nth scale is defined, as before, by
kn+l
E = f E (k)dk (48)
kﬂ

Let us assume that we have a statistically stationary turbulence where

enstrophy is introduced into the fluid at scales ~ /, and is then transferred successively
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Figure 8. Isovorticity contours on a regular 32° grid. Contour levels drawn outside
the boundaries of the tank (heavy lines) are artifacts of the contouring
routine which insists on data on a rectangular grid. The cyclones are
indicated by C, while the anticyclones are indicated by A.

(From S. Narimousa, T. Maxworthy and G. R. Spedding, 1991)
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to scales ~ [, ,, ..., until some scale /, is reached where viscous dissipation is able to

compete with nonlinear transfer. We assume again that at the nth step, only a fraction
B" of the total space has an appreciable excitation.

The enstrophy per unit mass in the nth scale is then given by

BV,
D ~ 7 (49)
where,
5 I 2-D
B = (p"?) ~(l—") (50)
0

D is the fractal dimension of the region in which the enstrophy dissipation is con-

centrated. (34) expresses the fact that intermittency now increases with decrease of
scale size. If intermittency increases as scale size decreases, and the Batchelor-
Kraichnan theory is assumed to hold in local regions, then the enstrophy cascade
would become more and more efficient as /, decreases and E (k) must fall off more
rapidly than £ if, according to conservation of enstrophy, the overall enstrophy
cascade rate 1s independent of /,.

The rate of transfer of enstrophy per unit mass from the nth scale to (n + 1)th

scale 1s given by

D, @'V,
T (5)

where t, is a characteristic time of the nth scale, r, =/,/V,. In the enstrophy inertial

range, we assume a stationary process in which enstrophy is introduced at scales ~ [,

and removed at scales ~ [,; conservation of enstrophy requires that
1, =1,l,sl sl (52)

Itis convenient to think of T also as the mean enstrophy dissipation rate which is what

it would be when the eddies are of the order of the Kraichnan length scale C (see Sec.
11).
(50)-(52) then give
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Vv ~ 'Emln( %)—(2—13)6 (53)
()" (54
4 lo
E, ~% 2’313( ;_:)(2—13)/3 (55)
(55) leads to the energy spectrum
E (k) ~T7k(k1 )2 -P» (56)

(56) shows that the intermittency corrections to the enstrophy cascade increase the 3
exponent. This is also in agreement with the predictions for large wavenumbers of
the generalized spectral law (95) for the enstrophy cascade (see Sec. 11). Further,
observe that according to (56), the enstrophy cascade cannot have a spectrum steeper
than k"2, The latter result has also been deduced directly from the Navier-Stokes
equations (Sulem and Frisch, 1975; Pouquet, 1978). (The k™' spectrum was also
shown by Gilbert, 1988, to correspond to the passive advection of spiral filaments
which form around the coherent vortices observed in numerical simulation of decaying
two-dimensional turbulence (McWilliams, 1984,).) Thus, intermittency by itself is

unable to account fully for steeper spectra observed in the numerical experiments.
Let us now discuss the lower bound for the fractal dimension D in the

enstrophy cascade. Equating ¢, to the viscous dissipation time, we have

- 1\2-Dy3 P2
1:‘”3( g) ~2 (57a)
or
_ 3
[ =I,R *° (57b)
where,
~1/3;2
Tl
R=—"1 (58)
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Now, from (50),

5 =logB])z:logN (59)
logp logp
where N is the average number of offsprings, which can be less than unity, so that D
canassume arbitrary negative values. However, according to (57), there is adynamical
reason to require D > —4; otherwise, the enstrophy cascade will never be terminated
by viscosity.

Let us next discuss further the manner in which the fractal dimension
influences the development and termination of the enstrophy cascade. The first
curdling stage leads to curds of size [, p™ in which enstrophy dissipation is equal to
either O or rpz'D, and the Kraichnan scale is Cp «2-DY6_In the nth stage, the average

Z_D), the curd size is [, p™ and the Kraichnan scale is Cp‘"(Z‘D)’G-

dissipation is Tp""
Thus, both the Kraichnan scale and the curd size decrease with increaseinn. However,
curdling can continue only until the curd size is bigger than the Kraichnan scale and

will stop thereafter. This occurs when

-n(2-D)/6 "
Cp " ~hpP "
or

2-D
1——)n

C/lo”P( ’ (60)

Hence, for the enstrophy cascade, the fractal dimension D rules not only the
manner in which the curdling proceeds but also the point where it stops.

We have seen that the intermittency corrections mentioned above are inad-
equate and may actually be too small to allow an experimental or numerical verifi-
cation at the usual level of resolution of kinetic energy and enstrophy spectra.
However, it is possible to take a more general approach and to make a systematic
analysis of the effect of nonlinear inertial and viscous effects on the kinetic energy
and enstrophy spectra using the generalized von Karman-Heisenberg-von Weizsacker
type model for the inertial transfer (Shivamoggi, 1990, and 1990,). For this purpose,
first we need to start from a Fourier representation of the turbulent velocity and

vorticity fields.
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10. Generalized von Karman-Heisenberg-von Weizsacker Type
Inertial-transfer Model for the Energy Cascade:

We have for the energy density E (k) in the Fourier space

(%+vk7‘)E(lf) = kz ij,(k, k') (61)

-~ -~

where,

~ -~

ultor) - )le-r) o

When the volume of the flow region becomes large, we may replace the

-~

E(k) % ‘V(k) 2 (62)

and

Fourier sum in (61) by a Fourier integral
}jW(k,k') B J O (k, k')dk' (64)
K ~ o~

where Q(k, k") is the net gain of energy by modes of wavenumber k from all modes

in the range k' to k' + dk’.
In order to write an expression for Q(k,k’), it is necessary to make some

assumption about the nonlinear transfer of energy across the spectrum. We use a
generalized von Karman-Heisenberg-von Weizsacker type model, according to which
the transfer of energy from small to large wavelengths is described by a gradient-
diffusion type cascade process (i.e., a large-scale rapidly adjusting motion superim-
posed on a large-scale slowly-adjusting motion) characterized by an eddy viscosity
produced by small wavenumber modes acting to remove energy from large
wavenumber modes. This idea is similar to the one proposed by von Karman (1948)
for the transfer of turbulent kinetic energy in the three-dimensional case (which was
a generalization of the idea proposed originally by Heisenberg (1948) and von
Weizsacker (1948)). The present hypothesis of an eddy viscosity produced by small
wavenumber modes is in accord with the conjecture of Kraichnan (1975a) that the

eddy viscosity for the energy cascade in the two-dimensional case would be pro-
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portional to the total energy in the large scales and to a characteristic dynamical time
of the latter. Kraichnan (1975b) also pointed out that the idea of a transport coefficient

based on small-scale excitation in a two-dimensional turbulence is inapplicable.
If each mode in the range of wavenumbers from k' =0 to k' = k is to make a

separate and similar contribution to the eddy viscosity v(k) which depends on the
energy density E (k') and the wavenumber k£’ only, then by dimensional considerations,

we may write

3 1

Otk = |AECT k’l_ [Ek)K", k' >k 65

DAEK)T K TERITK™, k' <k
where A is a universal constant and m and » are arbitrary constants.
The rate of loss of energy by modes with wavenumbers greater than some

value k is given by

=

dk” = =2v J E (k'Y dk" - 29(k) f EGTE "k "dk" (66)
k [4
where
k
(k) =A J[E(k’)]”k""dk‘ (67)
0

Let us now replace the left-hand side in equation (66) by the total rate of
decay of energy, €. (This is valid for values of & such that

o k
J E(k")dk" » f E(k")dk"
k 0

which implies that only a negligible amount of energy is contained in wavenumbers
less than k. This, in turn, requires the existence of a sink at the low-wavenumber end.)

One then obtains from equation (66),

[—e+2vJE(k“)k”dk”l
OVE (k)2 + [24 {E (k))"k™] x | -

7 + 2v(k){E(K)} K* =0 (68)
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A solution of equation (68), for arbitrary values of m and »n has not been
obtained. However, itis possible to obtain the asymptotic forms of solution of equation
(68), in the limit of small and large wavenumbers.

Thus, for large wavenumbers, which corresponds to v € v(k), we obtain from

equation (68),
5

E(k)~k® (69)
which is the well-known result for the inertial range.

On the other hand, for small wavenumbers, which corresponds to v » {;(k),

equation (68) gives the new branch

E (k) ~ k‘:le (70)

Now, for small wavenumbers, the two-dimensional turbulence tends to relax

toward the equilibrium energy equipartition spectrum. Based on the work of Lee

(1952) for three-dimensional turbulence, one may argue that, for a statistical equi-

librium the canonical distribution for a given energy E will be f(E) ~ e"F **®) where

O is analogous to an inverse temperature (see Appendix). This yields, for a truncated

system, an equipartition of energy among the various Fourier modes. Since the number

of Fourier modes is, in two dimensions, proportional to 2nk, the energy spectrum
E (k) goes like E (k) ~ k. (70) will agree with this result if we choose

3
m=-2—, n=1/2, say. (71)

It may be noted that there is, however, a radical difference between the character of
the equipartition spectra in two-dimensional turbulence and three-dimensional tur-
bulence. Whereas the equipartition spectrum in three-dimensional turbulence cor-
responds to the inviscid limit, viscosity plays an important role in the equipartition
spectrum in two-dimensional spectrum. The numerical calculations of Pouquet et al.
(1975) for two-dimensional turbulence have also shown that the dynamics of the large
energetic scales is influenced by viscosity. Actually, this viscosity may be just
"virtual" which simulates a sink at low wavenumbers required to sustain a stationary

spectrum, as we discussed before. This would also enable the crossover from (69) to
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(70) to occur at a wavenumber that lies inside the regime in question! Thus, the above
inertial transfer model provides a satisfactory unified framework for describing both
the inertial range and the equipartition range of energy cascade.

Now, in regard to the comparison of (69) and (70)/(71) with the experimental
measurements, we first note that in experiments one measures the one-dimensional

transverse spectrum E,(k) by the relation (Uberoi and Kovasznay, 1953)

2(k) 2 E(p)/p

(72)
= ) Vp? k2
[t is easy to see from (72), if E (k) = Ck”", that
20k [
E k)= l' sec” ™ xdx (73)
from which
E (k) ~k™ if E(k)~k™
)~k it E®) -
E k)y~k if E(k)~k

(73) and (74) can now be compared with the experimentally measured spectral
behavior (Sommeria, 1986) of the inverse energy cascade in a statistically steady
two-dimensional turbulence. Figure 9 shows that the agreement is complete.
(Nonetheless, it should be noted that there is some question about the significance of
this agreement because in Sommeria’s experiments dissipation is due to the interaction
of the two-dimensional flow with the Hartmann boundary layers.) Physically, the
inverse cascade is indicative of the formation of large-scale coherent structures like
the pairing of large energetic scales of same vorticity sign.

It is of interest to note that the small wavenumber limit of (68), namely
(60)/(61), can be recovered by a model based on a stationary continuous spectral
cascading process for transfer of turbulent kinetic energy at small wavenumbers
(Shivamoggi, 1987). (This idea is similar to the one proposed by Pao (1965) for
transfer of turbulent kinetic energy at large wavenumbers in the three-dimensional
case.)

In a stationary turbulence, Equation (61) can be written as
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Figure 9. Experimentally observed energy spectra in a two-dimensional
turbulence (J. Sommeria, 1986). Arrow indicates the injection
wavenumber.
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T(k) = j O (k,k"\dk' = vkE (k) (75)

T(k) represents the contribution to the inertial transfer of energy to the mode of

wavenumber k from all wavenumbers. Then, the energy flux from wavenumbers

greater than k to the wavenumbers less than k is

S(k) = [ T(k)dk (76)
or
ds
—=T(®) (77)

If we now visualize the transfer of turbulent energy as a cascading process in which
the spectral energy is continuously transferred to ever smaller wavenumbers, the

energy flux across k can then be written as

SW)=E()S (78)

where % is the spectral cascading rate. Let us now assume that this process depends
on ¢ (the rate at which the turbulent energy is fed to large eddies), on the viscosity v
(in accordance with (70)), and on the wavenumber & (or equivalently, the size of the

large eddies). On dimensional grounds, we have then

= _-_B (79)

where B is a positive constant. This reflects the fact that dk/dt <0 for the inverse
cascade. Using (77)-(79), (75) becomes

%[—B ﬁE(k)] - vk (k) (80)

from which we have

2
vi o4

E(k) = Cke ™ 81)
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where C is another constant. For k « 2B"*n™, 1 being the Kolmogorov length scale,
n=Ye)", (81) gives

E(k)=Ck . (82)
This seems to show that the transfer of turbulent kinetic energy at small wavenumbers

can be modeled in a satisfactory way as a stationary continuous spectral cascading

process.

11. Generalized von Karman-Heisenberg-von Weizsacker Type
Inertial-transfer Model for the Enstrophy Cascade:

We have from equation (10)
0
ERGLORNIAYY &
P k' ~ ~

where D(k) is the enstrophy density in the Fourier space,
1 1
k| ==|Qlk]|| ==
o(k) -3 [o0H)] -3

U, = —ika,(k) Vm(k') Q,(If - If’) (85)

k ‘_/(lf) 2 = sz(lf) (84)

and

When the volume of the flow region becomes large, we may replace the

Fourier sum in (83) by a Fourier integral
3 U(k,k’) - JG(k,k’)dk’ (86)
k' o

where G (k, k') is the net enstrophy again by modes of wavenumber & from all modes

in the range k' to k' +dk’. In order to write an expression for this quantity, it is
necessary to make some assumption about the nonlinear inertial transfer of enstrophy
across the spectrum. We use a generalized von Karman-Heisenberg-von Weizsacker
type model, according to which the process of transfer of enstrophy from large to

small wavelengths is described by a gradient-diffusion type cascade process (i.e., a
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small-scale rapidly adjusting motion super-imposed on a large-scale slowly-adjusting
motion) characterized by an eddy viscosity produced by large wavenumber modes
acting to remove enstrophy from small wavenumber modes.

If each mode in the range of wavenumbers from k&’ =k to k' = « is to make

a separate and similar contribution to the eddy viscosity v(k) which depends on the
energy density £ (k') and the wavenumber k' only, then by dimensional considerations,
we may write

3 1
2A[E((N]? k7 "[D(K)]"k™, k' <k

3

Gk, k') = 1
2ADDK)? K [EKN]k™, k' >k

(87)

where A is a universal constant and m and n are arbitrary constants.

The rate of loss of enstrophy by modes with wavenumbers less than some
value k is given by

k aD(k" k _ k - 1_,,,-
f s a(t J k" = v f D(k"Yk'"*dk" = 2(k) J D& "k "ak" (88)
0 0

where
S(k) =A J (E(k")]"k™dk’ (89)
k
Let us now replace the left hand side in equation (88) by the total rate of decay
of enstrophy, T. (This is valid for values of £ such that
k )
f D(k")dk" » f D(k")dk"
0 k
whichimplies that only a negligible amount of enstrophy is contained in wavenumbers
greater than k.) One then obtains from equation (88),

k
T+ 2v J D(k")k"2dk""
0

2vD (k)k* +[2A {E (k)} k"] 29(k)

3

+2v(k)[D (k)]f'”k%"" -0 (90)
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A solution of equation (90), for arbitrary values of m and n has not been

obtained. However, itis possible to obtain the asymptotic forms of solution of equation
(90) in the limit of small and large values of the wavenumber k.

Thus, for small wavenumbers, which corresponds to v « v(k), we obtain from

equation (80),
4 11
E(k)y~k® ° (91)
(91) agrees with the well-known inertial-range result
E(k) ~ k> (92)
if we choose
1
—— 93
A=5 (93)

which also corresponds to the choice for n one has to make to reduce (87) to a
Heisenberg-von Weizsacker type model. Thus, the present model has only one free
parameter m and reduces completely to the Heisenberg-von Weizsacker type model
. 3
by taking m = -3.
On the other hand, for large wavenumbers, which corresponds to v » v(k),

equation (90) gives the new dissipative branch

4

E (k) ~ s (94)

or on using (93),
E (k) ~ k*m=9 (95)
For a Heisenberg-von Weizsacker type model, for whichm = -3/2, an explicit

solution of equation (90) can be obtained:

23 3 -4/3
E(k) = ( ?) k"3[ 1+ %k"] (96)

(96) shows that there is a new length scale C,

CE (13)1/6 (97)

T
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that characterizes the enstrophy cascade, just as the Kolmogorov scale characterizes
the energy cascade. Let us call T the Kraichnan scale. (96) gives for k « (A 2/4)”6C,'1,

E (k) ~A %k (98)
in agreement with (92). While (96) gives for k » (A %/4)"°¢",

E (k) ~A—$k‘“ (99)
v

in agreement with (95) when one puts m = -3/2.

(95) exhibits a more rapid decay of the spectrum for large wavenumbers. The
spectrum in this range, according to (95), is in fact an arbitrarily steep power law.
Nonetheless, it is possible to give an even more rapidly decaying exponential type
spectrum, using a stationary continuous spectral cascading model.

A stationary continuous spectral cascading model gives a satisfactory
description of the transfer of turbulent enstrophy at large wavenumbers because the
later stages in the cascade tend toward a stationary process in the wavenumber space.

In stationary turbulence, Equation (83) can be written as
N(k) = fG(k,k’)dk' — vk®D (k) (100)

N (k) represents the contribution to the inertial transfer of enstrophy to the mode of

wavenumber k from all wavenumbers. Then, the enstrophy flux from wavenumbers

less than k£ to wavenumbers greater than k is

R(k) = J "N (k)dk (101)
or
dR
=N (102)

If we now visualize the transfer of turbulent enstrophy as a cascading process in
which the enstrophy is continuously transferred in the spectral space to ever larger

wavenumbers, we can write
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R(k) =D(K)% (103)

where 53':— is the spectral cascading rate. Let us now assume that this process depends
on T (the rate at which the turbulent enstrophy is fed to small eddies), on the viscosity
v (in accordance with (99)), and on the wavenumber k (or equivalently, the size of

the small eddies). On dimensional grounds, we have then

dk
e Ft"k (104)

where F is a positive constant. This reflects the fact that %> 0 for the enstrophy
cascade.
Using (102)-(104), (101) becomes

d
= [Ft"k’E (k)] = =vk*E (k) (105)
from which we have
Y
E(k) = Hk e **° (106)

where H is another arbitrary constant.

For k « (8F>)"°C7Y, (106) gives

E (k) ~Hk™ (107)

in agreement with (92). (106) gives an exponential decay at very large wavenumbers.

12. Summary:
We have considered a generalized von Karman-Heisenberg-von Weizsacker

type inertial transfer model for the energy and enstrophy cascades in a two-
dimensional turbulence. This model gives spectra that are arbitrarily steep power
laws for very high wavenumbers so that this model may be able to provide a
satisfactory unified framework for describing both the inertial range and the strongly
viscous range of the enstrophy cascade, like the case with three-dimensional turbu-
lence. (This aspect is not conclusive yet, since the complete enstrophy cascade is still

to be obtained in the laboratory.) This model also provides a satisfactory unified
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framework for describing both the inertial range and the equipartition range of the
energy cascade observed in laboratory experiments. The small-wavenumber limit
(namely, the equipartition regime) of the energy cascade and the large-wavenumber
limit (namely, the dissipative regime) of the enstrophy cascade can also be modeled
in a satisfactory way as stationary continuous spectral cascading processes.

The departures from the Batchelor-Kraichnan scaling laws can be described
also in terms of intermittency corrections through the -model which are found to be
in qualitative agreement with the predictions made by the above generalized spectral
laws. However, intermittency by itself has been shown to be unable to account fully
for either the steeper spectra of the enstrophy cascade observed at large wavenumbers
in numerical and laboratory experiments or the flatter spectra of the energy cascade
observed at small wavenumbers in laboratory experiments. One may generalize the
B-model to admit the possibility that the region containing in the energy or enstrophy
dissipation is instead a non-homogeneous or a multi-fractal. Multi-fractal formalism
is known (Stanley and Meakin, 1988) to be applicable to all systems where the
underlying physics is governed by self-similar multiplicative processes like the
aggregation/fragmentation processes in two-dimensional turbulence. Thus, in the
spirit of Mandelbrot’s (1976) weighted-curdling model, the contraction factors 3’s
may be considered as independent random variables (Benzi et al. 1984) which can
take different values in each scale i at the nth step of the cascade. It is to be noted
that though much work has been done to account for the intermittency corrections,
no definite theoretical framework toward this goal exists at the present time. A
deductive theory, based directly on the Navier-Stokes equations, is what is really

needed. But this has proved elusive as yet.

13. Appendix: Equilibrium Statistical Mechanics
of Two-dimensional Turbulence

Let us consider a two-dimensional turbulence within a square which can be

expanded into an infinite series of discrete wave vectors k, with velocity amplitudes

V(k,,, t) related by Euler’s equations in Fourier space. These equations are truncated
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by retaining the modes lower than a cut-off wavenumber &, (S0 as to preserve the

validity of the inviscid model) and are suitably normalized to give for the stream
function y (recall equation (14)):

d‘I;Elf) (¥ % 3 Ai,’k,,lp(k’)‘lf(k”) (A.1)

K+ k"

~ ~

Let y,,(¢) and y_,(¢) be the real and imaginary parts of each mode 11—'( k,,).

Then, if N wave vectors are retained in the truncation, the system can be represented
by a point of m = 2N coordinates y, (¢) (i from 1 to 2) in a phase space determined by

Y.(t) (o going from 1 to 2N). Equation (A.1) conserves the kinetic energy

1 Pl om

33 kfelk)] -3 5 w0 42)
and the enstrophy

1 4 il -

> kEkﬂ Y| k, =5 zlkaya(t) (A.3)

which implies that the system evolves in the phase space on the intersection of the
kinetic energy sphere and the enstrophy ellipsoid. Let us consider in the phase space
a collection of systems of density p(1,, .., M,,, ). Since the total number of such systems
and hence the volumes are preserved in the phase space, we have the Liouville

Theorem:

" d
o, 5 PP _, (A.4)
at a=1 dt ayo._

The typical approach of statistical mechanics is to explain the statistical
behavior of a system in terms of its structural properties, like the conservation of
energy. This would allow one to study the equilibrium spectra of two-dimensional
turbulence from the viewpoint of microcanonical ensemble averages.

By the elementary Gibbsian methods of statistical mechanics, equilibrium
solutions of equation (A.4) are constructed as functions of the conserved quantities,

and are given by the Boltzmann type distribution
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1 5 (e
P(ylv"sym):Ze (A.5)

where o and p are two constants and Z is the partition function of the system

3.3 (o2 kly?)
7= .fj J - dydy,...dy, (A.6)

One then assumes that the microcanonical ensemble average (P(y;,...,,.,t)) of an

ensemble of given system P(y,,...,y,,t) obeying equations (A.1) and (A.4) will
eventually relax toward the equilibrium distribution (A.5). Indeed, the directions of
cascades predicted by assuming approach toward equilibrium seem to be supported
by computer simulations (Orszag, 1970).

The mean variance of the mode "a" of the stream function is given by

; E "rszo“‘“"p)
(X)) = ” Jya dy,...dy,

k2(o + uk2) @7
Thus,
2 2
(RO as
and
E(k) = Jr.k3< lp(k) 2> - 0+ka2 (A.9)

(A.9) shows that for the case o < 0, the energy spectrum is dominated by the con-
tributions form the largest wavelengths (k = k,,;,, =V —o/u) which is in accord with
the fact that the energy cascades toward large scales. Observe further that, for k = 0,

(A.9) gives the spectrum of equipartition of kinetic energy among the modes -
E(k)~k. (A.10)
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Thus, an inviscid finite system evolves towards an equipartition of energy
among all Fourier modes (Orszag, 1970). However, as we have seen in Sec. 6, the
situation is quite different for real flows (with infinite degrees of freedom), which
evolve towards the Batchelor-Kraichnan scaling laws -

Ek) ~k™? (A.11)
in the inverse energy cascade, and

E(k)~k™ (A.12)
in the direct enstrophy cascade. Thus, truncation of the modes acts as a barrier pre-

venting possible cascades and can produce a significant alteration in the statistical

properties of the system (Basdevant and Sadourny, 1974).
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