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Abstract:

We consider generalized von Karman-Heisenberg-von Weizsäcker type model
for the inertial transfer to give generalized spectral laws for the energy and enstrophy
cascades in a forced two-dimensional turbulence that provides a satisfactory unified
description of the equipartition range and the inertial range for the energy cascade
and the dissipation range and the inertial range for the enstrophy cascade. We will
show that the equipartition range of the energy cascade and the dissipation range of
the enstrophy cascade can be satisfactory modeled by a stationary continuous spectral
cascading process. We will then discuss the intermittency aspects of the departures
from the Batchelor-Kraichnan scaling laws and show that while the intermittency
corrections within the framework of the ß-model are in qualitative agreement with
the predictions made by the generalized spectral laws given in this article, intermittency

by itself is unable to account fully for the equipartition spectrum of the energy
cascade observed in laboratory experiments and the dissipative spectrum of the
enstrophy cascade observed in laboratory and numerical experiments. We will discuss
further fractal aspects of the enstrophy cascades, and show that for the enstrophy
cascade, the fractal dimension rules not only the manner in which the cascading
proceeds but also the point where it stops, while for the energy cascade the fractal
dimension rules only the manner in which the inverse cascade proceeds and not the
point where it stops.

This article is dedicated to
Professor Mahinder S. Uberoi.
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1. Introduction:

A principal reason for interest in two-dimensional turbulence is the possibility

of applying the theory to planetary boundary layers (Rhines, 1979; Kraichnan and

Montgomery, 1980). Strictly two-dimensional flow in a layer of fluid requires that

the velocity vector everywhere lie in a given plane and that there be no variation of

the velocity field perpendicular to that plane. On a global scale, the earth's atmosphere

and oceans are a very thin layer so that it is reasonable to expect two-dimensional

motion on scales large compared with the layer thickness. It may be noted that though

several factors such as topographic surface variations and salinity variations in the

oceans destroy the two-dimensional nature of the motion, the rotation of the earth

plays a crucial role in preserving the latter. (This follows from Taylor-Proudman

theorem (see Greenspan, 1968) which shows that uniform rotation of a plane layer of

fluid about an axis, say z-axis, perpendicular to the plane tends to lock the fluid into

two-dimensional motion independent of z.)

Kraichnan (1967) and Batchelor (1969) pointed out the possibility of two

inertial ranges in a two-dimensional turbulence: the energy subrange in which energy

propagates to larger scales, and the enstrophy subrange in which enstrophy cascades

to smaller scales. Kraichnan (1967) and Batchelor (1969) invoked arguments similar

to those used in Kolmogorov's (1941) theory of three-dimensional isotropic hydro-

dynamic turbulence to surmise that if the Reynolds number is sufficiently high the

large-scale components are influenced only by the boundary conditions on the system.

The statistical properties of the small-scale components ofvelocity and vorticity-fields
in the inertial range were assumed to have some universality and are uniquely

determined by the mean energy and enstrophy dissipation rates e and x, respectively,

and the kinematic viscosity v and depend only weakly on the large-scale features of
these fields. By using dimensional arguments, they then derived k * and k~3 power
laws for the spectrum of kinetic energy density of the fluctuations in the stationary

state for the energy subrange and enstrophy subrange, respectively. Kraichnan (1967)

proposed that both inertial ranges would exist simultaneously in a continuously driven
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turbulence. Leith (1968) derived a diffusion approximation to inertial energy transfer

in such a way that energy and enstrophy are conserved, and also predicted the k 3 and

k~3 inertial ranges. Numerical closures ofFrisch et al. (1967) and Pouquet et al. (1975)

and numerical simulations of Lilly (1969), Herring et al. (1974), Fornberg (1977),

and Frisch and Sulem (1984) confirmed the conjecture of Kraichnan (1967) and

Batchelor (1969) that there occurs a transfer of excitation to lower and higher

wavenumbers in a manner qualitatively consistent with the simultaneous existence

of both the energy and enstrophy inertial ranges. Lilly (1969) obtained an

omnidirectional energy spectrum for a system driven continuously by a mode at wavenumber

kc. Figure 1 shows two inertial ranges—the energy cascade for k > kc, developing

from an initially peaked spectrum dominated by the source spectrum at £ kc. Pouquet

et al. (1975) used the stochastic models introduced by Kraichnan (1961) to numerically

test a simultaneous direct enstrophy cascade and inverse energy cascade for two-

dimensional turbulence. When enstrophy and energy are continuously injected at a

fixed wavenumber, it was found that (see Figure 2) a quasi-steady regime is obtained

where enstrophy cascades to large wavenumbers across k~3 inertial range with zero

energy transfer while energy flows indefinitely to small wavenumbers across a k 3

inertial range with zero enstrophy transfer. Atmospheric measurements have also

revealed the existence of an energy cascade (Fj orto ft, 1953) and an enstrophy cascade

(Ogura, 1958; Wiin-Nielsen, 1967; Julian et al. 1970; Morel and Necco, 1973; Morel

and Larcheveque, 1974; Desbois, 1975). Kraichnan (1971) proposed further that the

A:"3 spectrum for the enstrophy cascade should be modified by a logarithmic correction

term to give k~\ln(k/kc)] \ However, the latter result does not extend to infinity,
because it does not give the rapid decay of the spectrum prevalent at high wave-

numbers. Kida (1981) applied the modified cumulant expansion and numerically

calculated the equations for the energy spectrum, and confirmed a more rapid decay

of the spectrum in the enstrophy cascade at very large wavenumbers. Numerical

simulations of decaying flows (Basdevant and Sadourny, 1983; McWilliams, 1984;

Brächet et al. 1988) and forced flows (Kida, 1985; Brächet et al. 1986, Basdevant et

al. 1981) also gave for the enstrophy cascade energy spectra steeper than k~3 (see

Figures 3 and 4).
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Figure 1. An omnidirectional energy spectrum of two-dimensional Navier-Stokes
turbulence obtained numerically. The initial spectrum, which is dominated

by the source spectrum at the source wave ke, is shown to relax

to the inertial range spectra for enstrophy at k > ke and energy at k < ke.

(From D. K. Lilly, 1969)
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Figure 2. Quasi-steady energy spectrumE(k,t) for t 100, 1000 and 3000
corresponding to an injection spectrum constant in a half-octave
band around k, \ with injection rates e 0.03 and ß 0.03.

Reynolds number R 2.4 x 107.

(From A. Pouquet, M. Lesieur, J. C. Andre and C. Basdevant, 1975)
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Figure 3. Energy spectra of experiments E4 and ElO. Arrows indicate

injection wavenumbers. Spectral slopes k~A and /fa are
indicated (log-log scale).

(from A. Babiano, C. Basdevant and R. Sadourny, 1985)
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Figure 4. Energy spectrumE(k) for case 1(b) (\<.k<. 128) in the stationary state.

(From J. R. Herring and J. C. McWilliams, 1985)
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The whole theory of two-dimensional turbulence had, until recently, remained

almost an academic exercise, notwithstanding its possible connections with

atmospheric and oceanic large-scale flows. Just recently, truly two-dimensional flows

were produced to a close approximation in laboratory experiments. Experimental

evidence of the existence of inverse energy cascade was first obtained by Couder

(1984) on thin liquid soaps films, then by Sommeria (1986) in a shallow mercury

layer immersed in a strong normal magnetic field.

The inverse energy cascade in a statistically steady forced two-dimensional

turbulence (without forcing, the inverse cascade cannot develop) experimentally

investigated by Sommeria (1986) showed a k 3 behavior at large wavenumbers and

a k1 behavior corresponding to an equilibrium energy equipartition spectrum at small

wavenumbers. Laboratory experiments in a cylindrical tank filled with a two-layer

fluid system and driven by a surface stress of a forced, quasi-two-dimensional
turbulence were performed by Narimousa et al. (1991) who obtained for large wave-

numbers an energy spectrum steeper than k'3 (Figure 5).

Basdevant et al. (1981) argued that the steeper energy spectra at large wave-

numbers is due to intermittency in the flow: an intermittent random variable is one

which has a large probability of taking values both very large and very small compared

with its standard deviation. Enstrophy dissipation is a highly-fluctuating quantity

whose statistical properties significantly affect the energy spectrum at small scales.

Due to intermittency, the small-scale structures are no longer uniformly distributed

in space but show more and more spottiness, and their statistics are increasingly

non-Gaussian. If intermittency increases as scale size decreases, and the Batchelor-

Kraichnan theory is assumed to hold in local regions, then the enstrophy cascade

would be expected to become more efficient as the scale size decreases. As a result,

one would expect that the energy spectrum must fall off more rapidly than k'3 if,

according to conservation of enstrophy, the overall enstrophy cascade rate is to be

independent of the scale size. Earlier, Mandelbrot (1976) had argued that intermittency

in the three-dimensional case is related to the fractal aspects of turbulence. In

particular, Mandelbrot (1976) proposed that the dissipation is concentrated on a set
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Figure 5. One-dimensional energy spectra (e) as a function of wavenumber (k),
inferred from a direct two-dimensional, FFT of the u'2 velocities
deduced from the interpolated data. Rough estimates of
spectral slopes are indicated for each experiment. The vertical
arrows indicate the wavenumber of the frontal eddies.

(From S. Narimousa, T. Maxworthy and G. R. Spedding, 1991)
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with noninterger Hausdorff dimension. Mandelbrot's ideas were formulated for the

three-dimensional case in a simpler way through a phenomenalogical model called

the ß-model (which was based on the ideas advanced by Kraichnan, 1972) by Frisch

et al. (1978). For the two-dimensional case, one may also use the ß-model to explore

the fractal aspects of the departures from the Batchelor-Kraichnan scaling laws. The

key assumption in this model is that the flux of energy is transferred to only a fixed

fraction ß of the eddies downstream in the cascade. A noteworthy feature of the

ß-model is that we do not have to assume the Batchelor-Kraichnan scaling laws

initially and then derive their modified versions by somehow mysteriously incorporating

the dissipation fluctuations. However, since the ß-model requires that there is no

mixing between the empty and nonempty regions it presupposes that the time-scale

of spatial mixing is much larger than that associated with the aggregation/fragmentation

processes in two-dimensional turbulence.

The application of the ß-model to the inverse energy cascade was done by

Frisch et al. (1978), who found that the intermittency corrections decrease the 5/3

exponent. Shivamoggi (1990J applied the ß-model to the enstrophy cascade and

confirmed that intermittency will steepen the energy spectrum, in qualitative agreement

with the generalized spectral law for the enstrophy cascade given in this paper.

However, we will show that intermittency by itself is unable to account fully for

steeper spectra observed at large wavenumbers in laboratory and numerical experiments

or flatter spectra observed at small wavenumbers in laboratory experiments.

The intermittency corrections mentioned above may also be too small to allow

an experimental or numerical verification at the usual level of resolution of kinetic

energy and enstrophy spectra. One may then take another approach and make a

systematic analysis of the effect of nonlinear inertial and viscous effects on the kinetic

energy and enstrophy spectra using generalized von Karman-Heisenberg-von

Weizsäcker type models for the inertial transfer (Shivamoggi, 1990a and 1990b).

According to this model, the transfers of the kinetic energy from small to large

wavelengths and the enstrophy from large to small wavelengths are described by

gradient-diffusion type cascade processes characterized by "eddy viscosities"

produced by small wavenumber modes acting to remove kinetic energy from large
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wavenumber modes and large wavenumber modes acting to remove enstrophy from

small wavenumber modes, respectively. Using this model, one may deduce generalized

spectral laws for the kinetic energy and enstrophy cascades that exhibit a

flatter/steeper spectra for small/large wavenumbers and reduce to the well known

inertial-range laws at the other ends of the spectra. This approach provides a unified

framework for describing both the inertial and equipartition/dissipative ranges of the

kinetic energy/enstrophy cascades observed in laboratory experiments/numerical

calculations. The small-wavenumber limit (namely, the equipartition regime) of the

energy cascade and the large-wavenumber limit (namely, the dissipative regime) of
the enstrophy cascade can also be modeled in a satisfactory way as a stationary

continuous spectral cascading process (Shivamoggi, 1987 and 1990a).

2. Conserved Quantities for a Two-Dimensional Flow:

The Navier-Stokes equations for an incompressible fluid are

-^ + (v.v)v -v(£)+vV>v (1,

V • v 0 (2)

where v is the fluid velocity, p the pressure, p the density, and v is the kinetic viscosity.

Taking the curl of equation (1), and using equation (2), we find that the

vorticity Q V x v obeys

+ (vv)q [Q-V|v + vV2Q (3)
dt

For a two-dimensional flow, taking the scalar product of equations (1) and

(3) with v and Q, respectively, we obtain
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d_

dt

/v2\

\ L)
+ V v—+ v— I svV

-2 -p,
vxQ -vQ2

dt

(Q2^ (q2 ï
- + V- — v{ 2 -j

vV •

\ 2/
Qx VxQ -v VxQ

(4)

(5)

If the fluid is surrounded by a rigid boundary so that the normal component

of velocity vanishes on the boundary, we have from equations (4) and (5),

v2
dw d

dt dt

Q2

—dx J> v v x Q • ds - vQvQ2dx

— — f fa-dx= £vQx(vxQ] -ds- fv( VxQ à

(6)

(7)

In the absence of viscous dissipation (v 0), equations (6) and (7) give the

conservations of the total energy and the total enstrophy (which is the mean square

vorticity) -

W const, U const (8)

Thus, in two-dimensional turbulence, there are two conserved quantities—
the energy and the enstrophy. (Due to a finite viscosity, however, the enstrophy is

dissipated at a nonnegligible rate; therefore the maintenance of a stationary state

requires an external source since the vortex stretching which acts like a source of

vorticity is inoperative here unlike the three-dimensional turbulence. However,

energy dissipation will tend to zero as v -* 0 so that two-dimensional turbulence is

almost nondissipative as v —» 0.) Therefore, there are two types of inertial

ranges—one for energy and one for enstrophy.

If the enstrophy vanishes during the normal cascade, equation (6) shows that

dW/dt => 0 even in the presence of a viscous dissipation. This implies that the system

will evolve toward a state of minimum enstrophy with constant energy. Thus, there

exists a selective dissipation process among the conserved quantities in a two-

dimensional flow when dissipation is introduced—the enstrophy decays faster than

the energy.
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3. Fourier Analysis of the Turbulent Velocity Field:

Fourier analysis of the velocity field, when it is a stationary random function

of position, affords a convenient identification of the scales of motion with Fourier

modes anda view of the turbulent motion as comprised of the superposition ofmotions

of a large number ofcomponents ofdifferent length scales. These Fourier components

contribute additively to the total energy and total enstrophy and interact with each

other according to the nonlinear inertial terms in the equations of flow. The observed

properties of the turbulent field are thought of as being the statistical result of such

interactions. It should be noted that Fourier representation is natural for infinitely
extended homogeneous turbulent fields but not for inhomogeneous flows for which

there is only a weak relation between the structure in real space and the Fourier modes.

Certain spatially compact objects called wavelets (Argoul et al. 1989) have recently

been advanced for an efficient decomposition of a turbulent field into various sizes.

Let us express the flow properties at any point x at time t, as a superposition

of plane waves of the form,

ik • x

w[x,t\ ^v(k,t\e

\p[x,t) ip[k,t)e

(9)
ik • x

P

Since V and P are actually measurable, they must be real so that

V*(k) v(-k\,P'(k) =p(-k

We have dropped the argument t for convenience. We then obtain from equations

(1) and (2), the following equation -

kjk,)-+vrm* =-;*jô,--

x?y*(*')^(*-*') (10)
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which describes the mode coupling among different Fourier components.

In terms of the stream function ip, defined by

v Vij)x/2 (11a)

we have for the vorticity Q,

Q -Vxv V2ipfz (lie)

and equation (3) becomes

:Vfy + [ V iL) x î) ¦ V(V2xls) vV4iL> (12)
dt

Fourier analyzing ipi x, 11, according to,

equation (12) becomes

d
— +
dt

where,

Mx,t\ 2xV\k>t)eì
*

(13)

*2vV*U J Al.Mk'Wk") (14)

Kk»-7i[k'*k"\ -iz(k'2-k"2)

and we have again dropped the argument t for convenience. A becomes large when

k, k' and k" have comparable magnitudes so that the modal cascade is dominated by

local interactions in £-space.

4. Energy and Enstrophy Cascades:

Consider a source in the spectral space at k ks with energy Ws W(ks) (the

omnidirectional energy spectrum W(k) is defined such that JW(k)dk =£ V\k\

gives the total energy).
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Through mode-mode coupling this source would decay into two modes with

wavenumbers kx and k^ with energies Wx and W2, (k < ks corresponds to the inertial

range for energy and k > ks corresponds to the inertial range for enstrophy.) Since

energy and enstrophy are conserved, we have

Ws W1 + W2 (15)

k2Ws=klWx+klW2 (16)

from which, the energy is partitioned as

wx —2—-ws
K2 — Kx

K — Kx
W2 —2 2Ws

k2—kx

(17)

This implies that

k\>k2s>k\ (18)

so that the mode with wavenumber ks decays into a mode with wavenumber kt < ks

and to another mode with wavenumber k2 > ks.

Let us (following Hasegawa, 1985) assume that a mode k, first decays into

modes kx(kx =^/pks and k2(k2 y/l +pks ;p < 1), with corresponding energies

Wx pWs and W2 (1 -p)Ws, and enstrophies Ux k2p2Ws and U2 k2(l -p2)Ws.

In the next step of the cascade, the mode kx decays into a mode Vpkx pk, and

another mode Vl +pkx =Vp(l +p)ks, while the mode k2 decays into a mode

y[pic2 \/p(\ +p)ks and another mode Vl +pk2 (1 + p)ks. The energies for the

modes pk„ ^p(l+p)ks and (1+/>)£, are p2Ws, 2p(l-p)Ws and (l-pfW„
respectively. Thus, at the nth step of the cascade, the energy is given by

w(k2 P*-r(i+Pyk2)

Apn-'(l-p)rWs (19)
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Now, by the de Moivre-Laplace approximation, we have for the binomial distribution,

as n => oo,

\ 1 _(n-r-np)2

\pn-r(\-p)n-r~ —e ^(1-p) (20)
rI y/2xnp(l -p)

so that the binomial distribution in (19) peaks at r/n - 1 - p as n => oo. The

corresponding wavenumber is

k2= Lt p"-r(l+p)rk2

Lt P~\l+Pf k2

Lt \pp{\APtP]nk2 (21)
n =>»

Since, for 0 <p < 1, /^(l +/>)1-p < 1, we obtain A;,2 - 0. This means that the peak of

the energy distribution moves to k => 0 as n => oo. Hence, the energy cascades

inversely and condensates at k =s> 0 (or at the longest wavelength permissible for the

system).

Next, the enstrophies for the modes pks, Vp(l +p) ks and 1 + p)ks are k*p4W„

2k*p2(l -p2)Ws and ^4(1 -p2)2Ws, respectively. Thus, at the nth step of the cascade,

the enstrophy is given by

U(k2 p"-r(l +p)rk2) ^p*"-\l -p2)rk?Ws (22)

The binomial distribution in (22) peaks at r/n — 1 -p2 as n => oo. The corresponding

wavenumber is
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ki= Lt pn-r(l+p)rk2

ttLJAp~"a+pf\k*

¦^.1/(1^ (23)

Since, for 0 <p < 1, pp (1 +pf p > 1, we obtain kl-oo. This means that the peak

of the enstrophy distribution moves to k => oo as n => oo. Hence, the enstrophy

cascades directly and condensates at k => oo (where strong viscous dissipation sets in).

5. Self-organization and Self-degradation in Two-dimensional Flows:

The energy cascade to lower wavenumbers has the result that random

excitation at intermediate wavenumbers drives the (necessarily coherent) largest spatial

scales of the system. Thus, two-dimensional flows seem to have a self-organizing

character. Figures 6 and 7 show a numerical calculation (Lilly, 1969) of the evolution

of the stream function and the vorticity. The smooth structure of the stream function

is a consequence of the inverse cascade of the energy to large wavelengths, while the

convoluted state of the vorticity is a result of the enstrophy cascading to smaller

wavelengths.

In order to understand the self-degradation of vorticity, consider equations

(11) and (12) in the inviscid limit,

ifa«> Q(0 0

V2ip(r) -Q(0

where the operator L (t) is given by

L(f)»Vi|>(0xiz • V

(24)

(25)

and we have omitted showing the dependence on x explicitly.
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for the wavenumber 8 experiment with v 2.5 x 10"4 and x 0.5,
all in dimensionless units.

(From D. K. Lilly, 1969)
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Following Keller (1964), the operator!(t) can be split into a mean partL(0

and a fluctuating partL'(0 as follows -

L(t)=L(t)+L'(t)
Upon averaging, equation (24) gives

Q(t) -(L'(t)Q'(t)) (26)—+1(0
dt v '

where the bars overhead (or refer to the average, and the primes refer to the

fluctuation, and

Q(f) Q(0 + Q'(f).

Upon subtracting equation (26) from equation (24), we obtain

ä7+t«> Q'(t) -L '(t)Q(t) + {L '(t)Q'(t)) (27)

If we introduce Green's function G (t,t') for the operator [ jt+L(t)\, defined

by

— +L(t)
dt

v ' (28)

(29)a

H(t)= ÏG(t,t')H(t')dt'

the solution of equation (27) can be written formally as

Q'(0 f G(t, t') [{L '(t')Q'(t')) -L '(t')Q(t')]dt'

and on iteration, as the Neumann series -

Q'(t)— (G(t,t')L'(t')Q(t')dt' +

- ÏG(t,t')(L'(t') f G(t',t")L'(t")Q(t")dt"\dt' +

As a first approximation we will retain only the first term on the right-hand side of

equation (29). Equation (26) and the fluctuating part of equation (25) then become

(29)0

dt
+L(t) Q(t) [dt'{L'(t)G(t,t')L'(t'))Q(t')

VV(0- \dt'G(t,t')L'(t')Q(t')

(30)

(31)
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Ifwe now suppose that the integrand on the right in equation (30) peaks near

t' t for a short period of time of xc, the correlation time of the fluctuations (or the

eddy turnover time), and that Q(t) is sufficiently smooth and does not change

significantly during this period, we may ignore the non-local character of the diffusion

operator in equation (30). The latter then becomes the Fokker-Planck equation -

dQ\x,t

(^+7.V)q(x,.) ^.£)(x,.). —

and equation (31) becomes

Vxv'xJ
aa(x,t

L - '-• (dt'G(t,t'ylx,A (33)
dx

Here, assuming that the fluctuations are stationary, the diffusion coefficientD is given

by,

D(x,t)=Jdt'(\'(x,t)G(t,t-t')v(x,t-t'j\

which embodies the fluctuation-dissipation theorem (Kubo, 1957).

Equation (32) signifies the self-degrada ti on of vorticity and implies that the

evolution ofvorticity in two-dimensional turbulence can be considered to be a Markov

process. This is plausible if we note that when the vorticity has evolved for a time

long compared with the correlation time of the enstrophy cascade the enstrophy-

transfer process would have completed a large number of steps in the cascade, each

of which produces a small random contribution.

6. Batchelor-Kraichnan Theory of the Inertial Ranges:

Kolmogorov's (1941) theory of the inertial range occupies a central place in

the theory of three-dimensional turbulence. Kolmogorov (1941) argued that there

exists a certain range, called the inertial range, in the wavenumber space which is in

a state of statistical equilibrium in the sense that there is neither a source nor a sink

of energy. The energy spectrum is assumed to cascade here smoothly through non-
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linear processes in a stationary state. Furthermore, the energy spectrum E(k) in the

inertial range is assumed to depend only on the wavenumber k and on the rate e at

which energy is cascaded per unit mass. Dimensional arguments then imply that E (k

has the form

E(k) CE2ßk~5f3 (34)

where C is a dimensionless constant.

In two-dimensional turbulence the existence of two conserved quantities,

energy and enstrophy, imply the possibility of two cascades with inertial ranges of

the Kolmogorov type. Using dimensional arguments, Kraichnan (1967) and Batchelor

(1969) gave for the inertial-range energy spectrum E(k) the following form in the

energy cascade -

E(k) C1s2/3k-513 (35)

and the following form in the enstrophy cascade -

E(k) C2T?3k-3 (36)

where e and t is the rate of cascade of energy and enstrophy per unit area, respectively,

and Cu C2 are dimensionless constants.

Kraichnan (1971) later gave a more refined analysis in which he suggested

that the eddy-turnover time T (which was given by the local expression T ~ [k3E (k )]~1/2

r k ,-iß
/ p2E(p)dp
o

Thisin deriving (25)) be given by the non-local expression T(k) ~

would then lead to the log-corrected spectrum E(k) ~x2/ik~3[ln(k/kc)]~1'3 for the

enstrophy cascade.

7. The Intermittency Corrections to the Batchelor-Kraichnan Scaling Laws:

The Batchelor-Kraichnan study does not take into account the spatial

intermittency in the flow that arises due to the non-Gaussian nature of the small-scale

statistics and leads to the spatial randomness of kinetic energy and enstrophy

dissipation rates. The latter would be expected to depend on the Reynolds number
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and to cause at the upper end of the energy subrange and the lower end of the enstrophy

subrange systematic departures from the Batchelor-Kraichnan scaling laws which use

mean dissipative values.

However, it is now well known that the intermittency effects associated with

small scales are not accessible to traditional closure calculations (Kraichnan (1974),

Nelkin (1975) and Frisch et al. (1978)). Therefore, one takes a heuristic approach to

this problem whereby one makes ad hoc assumptions about the stochastic nature of

the kinetic energy and enstrophy dissipation rates.

Alternatively, one could follow Mandelbrot (1976) and argue that the

deviations from the Batchelor-Kraichnan scaling laws are related to fractal aspects of the

geometry of two-dimensional turbulence. In particular, one may assume that the

kinetic energy and enstrophy dissipations are concentrated on sets with noninteger

Hausdorff dimensions. These ideas may be formulated in a simpler way through the

so-called ß-model (Frisch et al. (1978)). The key assumption in this model is that the

kinetic energy and enstrophy are transferred to only a fixed fraction ß of the eddies

downstream in the cascade.

8. ß-Model for the Intermittency Corrections to Inverse Energy Cascade:

Let us briefly review the ß-model of Frisch et al. (1978) applied to the inverse

energy cascade. One considers a discrete sequence of scales

ln l0pn; n =0,1,2,... (37)

and a discrete sequence of wavenumbers kn Z"1. Here,/» is the constant ratio of the

cascade in sizes. The kinetic energy per unit mass in the nth scale is defined by

£„= f E(k)dk (38)

One assumes a statistically stationary turbulence where energy is introduced

into the fluid at scales ~ /0 and is then transferred successively to scales ~ lx,l2,...,
until some scale /* is reached where /* is the macroscopic size of the system. One

now makes an assumption that at the nth step, only a fraction ß" of the total space has

an appreciable excitation.
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The kinetic energy per unit mass in the nth scale is then given by

where Vn is a characteristic velocity of the nth scale, and using (37),

ß" (pD-2)"~||
D-1

(39)

(40)

D is the fractal dimension of the region in which the energy dissipation is concentrated.

(40) expresses the fact that intermittency increases with increase of size in the inverse

cascade. If intermittency increases as scale size increases, and Kraichnan-Batchelor

basic ideas hold in local regions, then the cascade becomes less and less efficient as

ln increases andE(k) must fall off less rapidly than k~5f3 if, according to conservation

of energy, the overall energy cascade rate is independent of /„.

The rate of transfer of energy per unit mass from the nth scale to the (n + l)th
scale is given by

e" ~
t.

~
L

(41)

where tn is a characteristic time of the nth scale, tn lH/Vn. In the energy inertial range,

one assumes a stationary process in which energy is introduced at scales ~ /0;

conservation of energy requires

l*zl *L (42)

It is convenient to think of e also as the mean dissipation rate which is what it would

be when the eddies are of the order of the Kolmogorov length scale t|. (40)-(42) then

give

/, \-(A-2)/3
-,1 <¦„

I)v ~rlßi1/3

t -fa1*/2*

E -Ë20/20

(l.\ (D-2)ß

/, s(ö-2)/3

\^0/

(43)

(44)

(45)
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(45) leads to the energy spectrum (Frisch et al. 1978)

E(k)~i2ßk-5ß(kl0f-D)ß (46)

(46) shows that the intermittency corrections to the inverse energy cascade decrease

the 5/3 exponent. The general nature of this result was actually predicted by Kraichnan

(1975). This result is also in qualitative agreement with the predictions for small

wavenumbers of the generalized spectral law (70) for the inverse energy cascade (see

below). Observe that according to (46), the inverse energy cascade cannot have a

spectrum flatter than k'1. Thus, intermittency by itself is unable to account fully for

the energy equipartition spectrum.

Let us now discuss the manner in which the fractal dimension influences the

development and termination of the inverse energy cascade. The first cascade stage

leads to curds (to borrow Mandelbrot's terminology) of size lQp in which energy

dissipation is equal to either 0 or zp2~L', and the Kolmogorov scale is r\p-{2'D)'4, where

T) (v3/e) In the nth stage, the average dissipation is zpn{2~D\ the curd size is lQp",

and the Kolmogorov scale is r\p~n{2-D)'4. Thus, the Kolmogorov scale decreases with
increase in n, but the curd size increases with n. This means that the cascading will
continue until l0pn ~ I*, where /* is the macroscopic size of the system. Thus, the

fractal dimension rules only the manner in which the inverse cascade proceeds and

not the point where it stops, unlike the direct cascade.

9. ß-Model for the Intermittency Corrections to the Enstrophy Cascade:

The transfer of enstrophy to the small scales of motion is less well understood

and has been a subject of some controversy. Numerical simulations have not been

able to clarify this process because of their limitations due to finite degree truncations

and the use of eddy viscosities that distort the inviscid behavior at small scales. Weiss

1991), on the basis ofnumerical solution ofEuler's equations, contends that enstrophy

transfer is associated with the stretching and folding of fluid in the hyperbolic regions.

In view of the regularity of two-dimensional flows, the concomitant velocity
field develops no singularities in the limit of infinite Reynolds numbers. Thus, it

might appear that the enstrophy dissipation structures must be space filling and hence

exhibit no intermittency. Also, Kraichnan (1971) argued that intermittency will not
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affect the small-scale energy spectrum because the enstrophy-cascade interaction is

not local in wavenumber space. The nonlocality of the enstrophy cascade casts doubt

on the universality of the scaling law of the energy spectrum, because small-scale

motion cannot be independent of the large-scale forcing mechanism and/or boundary
conditions. This nonlocality also means that it takes an infinitely long time to initiate

a fully developed spectrum in a nearly inviscid flow driven by random forcing at a

fixed wavenumber. However, Basdevant et al. (1981) and Benzi et al. (1986) have

shown that in the absence of any organized large-scale motion, intermittency is able

to steepen the energy spectrum by restoring the spectral localness of nonlinear

interactions. This intermittency is the result of the formation of spatially organized

vortices, found in the numerical simulations of McWilliams (1984^, Benzi et al.

(1986), Brächet et al. (1988) and Santangelo et al. (1989) in decaying situations after

long periods of time, and also in some stationary forced situations with a forcing

spectrum at high wavenumbers (Basdevant et al. 1981, Herring and McWilliams,
1985). Coherent vortex structures were also found in the laboratory experiments of
Narimousa et al. (1991), as seen on the contour maps of the vorticity field (Figure 8).

These coherent structures inhibit the local inertial transfer of enstrophy and lead to

fluctuations in the enstrophy dissipation and are believed to produce steeper energy

spectra. This scenario has been confirmed by the recent numerical simulations of
Ohkitani (1991). Thus, though the enstrophy cascades toward small scales through
nonlinear interactions, the measure of the spatial domain in which such transfers are

active decreases as the scale size decreases (Basdevant and Sadourny, 1983). This

provides the rationale for the application of the ß-model to the enstrophy cascade.

Consider now a discrete sequence of scales

ln=loP-"; n =0,1,2,... (47)

and a discrete sequence of wavenumbers kn I'1. The kinetic energy per unit mass

in the nth scale is defined, as before, by

£„= f E(k)dk (48)

\
Let us assume that we have a statistically stationary turbulence where

enstrophy is introduced into the fluid at scales ~ /0 and is then transferred successively
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Figure 8. Isovorticity contours on a regular 322 grid. Contour levels drawn outside
the boundaries of the tank (heavy lines) are artifacts of the contouring
routine which insists on data on a rectangular grid. The cyclones are
indicated by C, while the anticyclones are indicated by A.

(From S. Narimousa, T. Maxworthy and G. R. Spedding, 1991)
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to scales ~ lx, l2,..., until some scale ld is reached where viscous dissipation is able to

compete with nonlinear transfer. We assume again that at the nth step, only a fraction

ß" of the total space has an appreciable excitation.

The enstrophy per unit mass in the nth scale is then given by

ß"V2A.-V (49)

where,

// \2'ù
ß" (AT~ U] (so)

D is the fractal dimension of the region in which the enstrophy dissipation is

concentrated. (34) expresses the fact that intermittency now increases with decrease of
scale size. If intermittency increases as scale size decreases, and the Batchelor-

Kraichnan theory is assumed to hold in local regions, then the enstrophy cascade

would become more and more efficient as /„ decreases and E(k) must fall off more

rapidly than k~3 if, according to conservation of enstrophy, the overall enstrophy

cascade rate is independent of /„.

The rate of transfer of enstrophy per unit mass from the nth scale to (n + l)th
scale is given by

Dn ß"V3

\ --^-r1 (51)

where tn is a characteristic time of the nth scale, tn /n/V„. In the enstrophy inertial

range, we assume a stationary process in which enstrophy is introduced at scales ~ /0

and removed at scales ~ ld; conservation of enstrophy requires that

Xn XJd*ln* lo (52)

It is convenient to think ofx also as the mean enstrophy dissipation rate which is what

it would be when the eddies are of the order of the Kraichnan length scale E, (see Sec.

11).

(50)-(52) then give
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V«~T Ht) (53)

^ [lì <54>

(55) leads to the energy spectrum

E(k)~xmk-\kl0)-<2-ù)/3 (56)

(56) shows that the intermittency corrections to the enstrophy cascade increase the 3

exponent. This is also in agreement with the predictions for large wavenumbers of

the generalized spectral law (95) for the enstrophy cascade (see Sec. 11). Further,

observe that according to (56), the enstrophy cascade cannot have a spectrum steeper

than k'1Ui. The latter result has also been deduced directly from the Navier-Stokes

equations (Sulem and Frisch, 1975; Pouquet, 1978). (The k'1113 spectrum was also

shown by Gilbert, 1988, to correspond to the passive advection of spiral filaments

which form around the coherent vortices observed in numerical simulation ofdecaying

two-dimensional turbulence (McWilliams, 1984a).) Thus, intermittency by itself is

unable to account fully for steeper spectra observed in the numerical experiments.

Let us now discuss the lower bound for the fractal dimension D in the

enstrophy cascade. Equating tn to the viscous dissipation time, we have

x UJ ~" (57a)

or

/„ lQR'^ (57b)

where,

xlßll
R= (58)

v



1144 Shivamoggi H.P.A.

Now, from (50),

ûJogÈ£jogN
logp logp

where N is the average number of offsprings, which can be less than unity, so that D

can assume arbitrary negative values. However, according to (57), there is a dynamical

reason to require .D > -4; otherwise, the enstrophy cascade will never be terminated

by viscosity.

Let us next discuss further the manner in which the fractal dimension

influences the development and termination of the enstrophy cascade. The first

curdling stage leads to curds of size l^p'1 in which enstrophy dissipation is equal to

either 0 orxp2' and the Kraichnan scale is Ç/fa2~ )/6. In the nth stage, the average

dissipation is xpn(2~ \ the curd size is l0p'n and the Kraichnan scale is ^-"P--0)-"5-

Thus, both the Kraichnan scale and the curd size decrease with increase in n. However,

curdling can continue only until the curd size is bigger than the Kraichnan scale and

will stop thereafter. This occurs when

Çp-n(2-D)«„lop-n

or
L 2-û\

t,/lQ~p[~6,n (60)

Hence, for the enstrophy cascade, the fractal dimension D rules not only the

manner in which the curdling proceeds but also the point where it stops.

We have seen that the intermittency corrections mentioned above are

inadequate and may actually be too small to allow an experimental or numerical verification

at the usual level of resolution of kinetic energy and enstrophy spectra.

However, it is possible to take a more general approach and to make a systematic

analysis of the effect of nonlinear inertial and viscous effects on the kinetic energy
and enstrophy spectra using the generalized von Karman-Heisenberg-von Weizsäcker

type model for the inertial transfer (Shivamoggi, 1990a and 1990b). For this purpose,
first we need to start from a Fourier representation of the turbulent velocity and

vorticity fields.
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10. Generalized von Karman-Heisenberg-von Weizsäcker Type
Inertial-transfer Model for the Energy Cascade:

We have for the energy density £ (A:) in the Fourier space

(| + v*j£(*) ?^(-'-') (61)

where,

(62)

and

wìml[k,k'}=ika\ò.t-^à^ v{k)v»{k)v{k~~k-') (63)

When the volume of the flow region becomes large, we may replace the

Fourier sum in (61) by a Fourier integral

2w(k,k')=ÏQ(k,k')dk' (64)

where Q(k,k') is the net gain of energy by modes of wavenumber k from all modes

in the range k' to k' + dk'.

In order to write an expression for Q(k,k'), it is necessary to make some

assumption about the nonlinear transfer of energy across the spectrum. We use a

generalized von Karman-Heisenberg-von Weizsäcker type model, according to which

the transfer of energy from small to large wavelengths is described by a gradient-

diffusion type cascade process (i.e., a large-scale rapidly adjusting motion superimposed

on a large-scale slowly-adjusting motion) characterized by an eddy viscosity

produced by small wavenumber modes acting to remove energy from large

wavenumber modes. This idea is similar to the one proposed by von Karman (1948)

for the transfer of turbulent kinetic energy in the three-dimensional case (which was

a generalization of the idea proposed originally by Heisenberg (1948) and von

Weizsäcker (1948)). The present hypothesis of an eddy viscosity produced by small

wavenumber modes is in accord with the conjecture of Kraichnan (1975a) that the

eddy viscosity for the energy cascade in the two-dimensional case would be pro-
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portional to the total energy in the large scales and to a characteristic dynamical time

of the latter. Kraichnan (1975b) also pointed out that the idea of a transport coefficient

based on small-scale excitation in a two-dimensional turbulence is inapplicable.

If each mode in the range of wavenumbers from k' 0 to k' k is to make a

separate and similar contribution to the eddy viscosity v(k) which depends on the

energy density£ (A:') and the wavenumberk' only, then by dimensional considerations,

we may write

Q(k,k')-\
2A[E(k')f~ k'2~ [E(k)Jkm, k'>k

3 1

-2A[E(k)fnk2~m[E(k')Jk"n, k'<k
(65)

where A is a universal constant and m and n are arbitrary constants.

The rate of loss of energy by modes with wavenumbers greater than some

value k is given by
00 GO 00

r 8E(k )dk„ _2v
r E(^,^k,adk„ _2y(k) f [E(k")f'k"~2~"'dk" (66)

where

v(k)*A î[E(k')]nk""dk' (67)

Let us now replace the left-hand side in equation (66) by the total rate of

decay of energy, e. (This is valid for values of A: such that

oc A

f E(k")dk"» f E(k")dk"

which implies that only a negligible amount of energy is contained in wavenumbers

less than k. This, in turn, requires the existence of a sink at the low-wavenumber end.)

One then obtains from equation (66),

2vE(k)k2 + [2A{E(k)}nkm~\x

-e + 2v f E(k")k"dk"

2v(k)
+ 2v(k){E(k)Y~ k2' =0 (68)
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A solution of equation (68), for arbitrary values of m and n has not been

obtained. However, it is possible to obtain the asymptotic forms ofsolution ofequation

(68), in the limit of small and large wavenumbers.

Thus, for large wavenumbers, which corresponds to v « v(k), we obtain from

equation (68),

E(k)~k'~3 (69)

which is the well-known result for the inertial range.

On the other hand, for small wavenumbers, which corresponds to v »v(£),

equation (68) gives the new branch
OT-2

E(k)~k'"-1 (70)

Now, for small wavenumbers, the two-dimensional turbulence tends to relax

toward the equilibrium energy equipartition spectrum. Based on the work of Lee

(1952) for three-dimensional turbulence, one may argue that, for a statistical

equilibrium the canonical distribution for a given energy E will be f(E ~ e~{aE + vkE) where

a is analogous to an inverse temperature (see Appendix). This yields, for a truncated

system, an equipartition ofenergy among the various Fourier modes. Since the number

of Fourier modes is, in two dimensions, proportional to 2nk, the energy spectrum

E(k) goes like £ (A) ~ k. (70) will agree with this result if we choose

m=-, n l/2, say. (71)

It may be noted that there is, however, a radical difference between the character of
the equipartition spectra in two-dimensional turbulence and three-dimensional

turbulence. Whereas the equipartition spectrum in three-dimensional turbulence

corresponds to the inviscid limit, viscosity plays an important role in the equipartition

spectrum in two-dimensional spectrum. The numerical calculations of Pouquet et al.

(1975) for two-dimensional turbulence have also shown that the dynamics of the large

energetic scales is influenced by viscosity. Actually, this viscosity may be just

"virtual" which simulates a sink at low wavenumbers required to sustain a stationary

spectrum, as we discussed before. This would also enable the crossover from (69) to
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(70) to occur at a wavenumber that lies inside the regime in question! Thus, the above

inertial transfer model provides a satisfactory unified framework for describing both

the inertial range and the equipartition range of energy cascade.

Now, in regard to the comparison of (69) and (70)/(71) with the experimental

measurements, we first note that in experiments one measures the one-dimensional

transverse spectrum E2(k) by the relation (Uberoi and Kovasznay, 1953)

E2(k) 2 f E(p)/p2
k2 n I VF^

It is easy to see from (72), ifE(k) Ck", that

H±WLdp (72)

ji/2
2Ck" r

EJk) sec"-^ (73)
Ck" r

from which

E2(k)~k-5ß if E(k)~k-5ß |
E2(k)~k if E(k)~k J

(73) and (74) can now be compared with the experimentally measured spectral

behavior (Sommeria, 1986) of the inverse energy cascade in a statistically steady

two-dimensional turbulence. Figure 9 shows that the agreement is complete.

(Nonetheless, it should be noted that there is some question about the significance of

this agreement because in Sommeria's experiments dissipation is due to the interaction

of the two-dimensional flow with the Hartmann boundary layers.) Physically, the

inverse cascade is indicative of the formation of large-scale coherent structures like

the pairing of large energetic scales of same vorticity sign.

It is of interest to note that the small wavenumber limit of (68), namely

(60)/(61), can be recovered by a model based on a stationary continuous spectral

cascading process for transfer of turbulent kinetic energy at small wavenumbers

(Shivamoggi, 1987). (This idea is similar to the one proposed by Pao (1965) for

transfer of turbulent kinetic energy at large wavenumbers in the three-dimensional

case.)

In a stationary turbulence, Equation (61) can be written as
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Figure 9. Experimentally observed energy spectra in a two-dimensional
turbulence (J. Sommeria, 1986). Arrow indicates the injection
wavenumber.



1150 Shivamoggi H.P.A.

T(k)= ÌQ(k,k')dk' =vk2E(k) (75)

T(k) represents the contribution to the inertial transfer of energy to the mode of

wavenumber A from all wavenumbers. Then, the energy flux from wavenumbers

greater than k to the wavenumbers less than A is

S(k) ; T(k)dk (76)
o

or

f 7\A) (77)

If we now visualize the transfer of turbulent energy as a cascading process in which

the spectral energy is continuously transferred to ever smaller wavenumbers, the

energy flux across k can then be written as

S(k)=E(k)^ (78)

where — is the spectral cascading rate. Let us now assume that this process depends

on e (the rate at which the turbulent energy is fed to large eddies), on the viscosity v
(in accordance with (70)), and on the wavenumber k (or equivalently, the size of the

large eddies). On dimensional grounds, we have then

where B is a positive constant. This reflects the fact that dk/dt < 0 for the inverse

cascade. Using (77)-(79), (75) becomes

d_

dk
-B-^E(k)

AV
vkzE(k) (80)

from which we have

E(k) Cke i6B'" (81)

2

"-r
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where C is another constant. For k « 25 r\ r\ being the Kolmogorov length scale,

ti s (v3/e)1/4, (81) gives

E(k)~Ck. (82)

This seems to show that the transfer of turbulent kinetic energy at small wavenumbers

can be modeled in a satisfactory way as a stationary continuous spectral cascading

process.

11. Generalized von Karman-Heisenberg-von Weizsäcker Type
Inertial-transfer Model for the Enstrophy Cascade:

We have from equation (10)

- + vk'D\k =lUjk,k' (83)

where Z) A is the enstrophy density in the Fourier space,

D\k\-- Q A kxV\k k2E\k

and

U* -ikmai\k\Vm\k'\Ql\k-k'

(84)

(85)

When the volume of the flow region becomes large, we may replace the

Fourier sum in (83) by a Fourier integral

2u(k,k') ÏG(k,k')dk' (86)

where G (A, A') is the net enstrophy again by modes of wavenumber k from all modes

in the range A' to k' + dk'. In order to write an expression for this quantity, it is

necessary to make some assumption about the nonlinear inertial transfer of enstrophy

across the spectrum. We use a generalized von Karman-Heisenberg-von Weizsäcker

type model, according to which the process of transfer of enstrophy from large to

small wavelengths is described by a gradient-diffusion type cascade process (i.e., a
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small-scale rapidly adjusting motion super-imposed on a large-scale slowly-adjusting

motion) characterized by an eddy viscosity produced by large wavenumber modes

acting to remove enstrophy from small wavenumber modes.

If each mode in the range of wavenumbers from k' k to k' oo is to make

a separate and similar contribution to the eddy viscosity v(A:) which depends on the

energy density£(A') and the wavenumber k' only, then by dimensional considerations,

we may write

G(k,k') (87)
2A[E(k')]2 k'2 [D(k)]nkm, k'<k

3 1

-2A[D(k)]2'"k2""[E(k')]kk"n, k'>k
where A is a universal constant and m and n are arbitrary constants.

The rate of loss of enstrophy by modes with wavenumbers less than some

value k is given by

f 'dk" -2v [ D(k")k"2dk"-2v(k) f [D(k")Y~"k"~2~mdk"
"ïî *h *W

where

(k)=A f [E(k')Ykmdk'

(88)

(89)

Let us now replace the left hand side in equation (88) by the total rate of decay

of enstrophy, x. (This is valid for values of A: such that

k oo

f D(k")dk"» f D(k")dk"
o k

which implies that only a negligible amount of enstrophy is contained in wavenumbers

greater than A.) One then obtains from equation (88),

2vD(k)k2 + [2A{E(k)}nkmi

-x + 2v f D(k")k"2dk"

2v(k)

+2v(A)[D(A)]2 k2 =0
- n --m

(90)
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A solution of equation (90), for arbitrary values of m and n has not been

obtained. However, it is possible to obtain the asymptotic forms ofsolution ofequation

(90) in the limit of small and large values of the wavenumber A.

Thus, for small wavenumbers, which corresponds to v « v(A), we obtain from

equation (80),
4» 11

E(k)~k3~* (91)

(91) agrees with the well-known inertial-range result

E(k)~k~3 (92)

if we choose

n-\ (93)

which also corresponds to the choice for n one has to make to reduce (87) to a

Heisenberg-von Weizsäcker type model. Thus, the present model has only one free

parameter m and reduces completely to the Heisenberg-von Weizsäcker type model

by taking m --.
On the other hand, for large wavenumbers, which corresponds to v >>v(A),

equation (90) gives the new dissipative branch
»1-4

E(k)~k~7ZT (94)

or on using (93),

E(k)~k2im-4) (95)

For a Heisenberg-von Weizsäcker type model, for which m -3/2, an explicit

solution of equation (90) can be obtained:

£(*)-[ j) *
20 'IAAh

(96)

(96) shows that there is a new length scale Ç,

]
(97)
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that characterizes the enstrophy cascade, just as the Kolmogorov scale characterizes

the energy cascade. Let us call t, the Kraichnan scale. (96) gives for A « (A2/4)1/6Ç_1,

E(k)~A-2ßX2ßk~3 (98)

in agreement with (92). While (96) gives for k » (A 2/A)x\-\

E(k) ~^-k-n (99)
v

in agreement with (95) when one puts m -3/2.

(95) exhibits a more rapid decay of the spectrum for large wavenumbers. The

spectrum in this range, according to (95), is in fact an arbitrarily steep power law.

Nonetheless, it is possible to give an even more rapidly decaying exponential type

spectrum, using a stationary continuous spectral cascading model.

A stationary continuous spectral cascading model gives a satisfactory

description of the transfer of turbulent enstrophy at large wavenumbers because the

later stages in the cascade tend toward a stationary process in the wavenumber space.

In stationary turbulence, Equation (83) can be written as

N(k)= \G(k,k')dk' =vk2D(k) (100)

N(k) represents the contribution to the inertial transfer of enstrophy to the mode of

wavenumber A from all wavenumbers. Then, the enstrophy flux from wavenumbers

less than k to wavenumbers greater than k is

7?(A)= f N(k)dk (101)
{

or

^---N(k) (102)
dk

If we now visualize the transfer of turbulent enstrophy as a cascading process in

which the enstrophy is continuously transferred in the spectral space to ever larger

wavenumbers, we can write



Vol. 64, 1991 Shivamoggi 1155

R(k)=D(K)^ (103)

where — is the spectral cascading rate. Let us now assume that this process depends

on t (the rate at which the turbulent enstrophy is fed to small eddies), on the viscosity

v (in accordance with (99)), and on the wavenumber k (or equivalently, the size of
the small eddies). On dimensional grounds, we have then

| FtwA (104)

dkwhere F is a positive constant. This reflects the fact that — > 0 for the enstrophy

cascade.

Using (102)-(104), (101) becomes

-^[Fx1/3A3£(A)] -vA4£(A) (105)
dk

from which we have

—fifi—k2

E(k)=Hk-3e^ß (106)

where H is another arbitrary constant.

For k « (8F3)1/6C\ (106) gives

E(k)~Hk~3 (107)

in agreement with (92). (106) gives an exponential decay at very large wavenumbers.

12. Summary:
We have considered a generalized von Karman-Heisenberg-von Weizsäcker

type inertial transfer model for the energy and enstrophy cascades in a two-

dimensional turbulence. This model gives spectra that are arbitrarily steep power
laws for very high wavenumbers so that this model may be able to provide a

satisfactory unified framework for describing both the inertial range and the strongly

viscous range of the enstrophy cascade, like the case with three-dimensional turbulence.

(This aspect is not conclusive yet, since the complete enstrophy cascade is still

to be obtained in the laboratory.) This model also provides a satisfactory unified
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framework for describing both the inertial range and the equipartition range of the

energy cascade observed in laboratory experiments. The small-wavenumber limit

(namely, the equipartition regime) of the energy cascade and the large-wavenumber

limit (namely, the dissipative regime) of the enstrophy cascade can also be modeled

in a satisfactory way as stationary continuous spectral cascading processes.

The departures from the Batchelor-Kraichnan scaling laws can be described

also in terms of intermittency corrections through the ß-model which are found to be

in qualitative agreement with the predictions made by the above generalized spectral

laws. However, intermittency by itself has been shown to be unable to account fully
for either the steeper spectra of the enstrophy cascade observed at large wavenumbers

in numerical and laboratory experiments or the flatter spectra of the energy cascade

observed at small wavenumbers in laboratory experiments. One may generalize the

ß-model to admit the possibility that the region containing in the energy or enstrophy

dissipation is instead a non-homogeneous or a multi-fractal. Multi-fractal formalism

is known (Stanley and Meakin, 1988) to be applicable to all systems where the

underlying physics is governed by self-similar multiplicative processes like the

aggregation/fragmentation processes in two-dimensional turbulence. Thus, in the

spirit of Mandelbrot's (1976) weighted-curdling model, the contraction factors ß's

may be considered as independent random variables (Benzi et al. 1984) which can

take different values in each scale i at the nth step of the cascade. It is to be noted

that though much work has been done to account for the intermittency corrections,

no definite theoretical framework toward this goal exists at the present time. A

deductive theory, based directly on the Navier-Stokes equations, is what is really

needed. But this has proved elusive as yet.

13. Appendix: Equilibrium Statistical Mechanics
of Two-dimensional Turbulence

Let us consider a two-dimensional turbulence within a square which can be

expanded into an infinite series of discrete wave vectors kn with velocity amplitudes

V\ kn, t related by Euler's equations in Fourier space. These equations are truncated
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by retaining the modes lower than a cut-off wavenumber kmax (so as to preserve the

validity of the inviscid model) and are suitably normalized to give for the stream

function ip (recall equation (14)):

dWifc]

dt
x- i Akk,k,mk
Z k-k' + k"

'W*") (A.l)

L^ yni(t) a°d y«2(0 be the real and imaginary parts of each mode W\kn \.

Then, ifN wave vectors are retained in the truncation, the system can be represented

by a point of m 2N coordinates yn (t (i from 1 to 2) in a phase space determined by

ya(t) (a going from 1 to 2N). Equation (A.l) conserves the kinetic energy
2

and the enstrophy

\lkl2 k.

IK

Mk i
-x 1 kX(t)l a-1

Mk >~ lkX(t)l a-1

(A.2)

(A .3)

which implies that the system evolves in the phase space on the intersection of the

kinetic energy sphere and the enstrophy ellipsoid. Let us consider in the phase space

a collection of systems ofdensity p(T)j,.., r\m, t). Since the total number of such systems

and hence the volumes are preserved in the phase space, we have the Liouville

Theorem:

dp+ s dya dp
_dt+a.i dt dya

(A .4)

The typical approach of statistical mechanics is to explain the statistical

behavior of a system in terms of its structural properties, like the conservation of

energy. This would allow one to study the equilibrium spectra of two-dimensional

turbulence from the viewpoint of microcanonical ensemble averages.

By the elementary Gibbsian methods of statistical mechanics, equilibrium

solutions of equation (A.4) are constructed as functions of the conserved quantities,

and are given by the Boltzmann type distribution
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i -MìWH*a
P(yv...,ym)-Ze

"-1

where a and p, are two constants and Z is the partition function of the system

(A.5)

"i\-l dyxdy2...dyn (A.G)

One then assumes that the microcanonical ensemble average (P(yx,---,ym,t)) of an

ensemble of given system P(yx,...,ym,t) obeying equations (A.l) and (A.4) will
eventually relax toward the equilibrium distribution (A.5). Indeed, the directions of
cascades predicted by assuming approach toward equilibrium seem to be supported

by computer simulations (Orszag, 1970).

The mean variance of the mode "a" of the stream function is given by

m)-z\\-\yl2 ^/pK^pW2
dyx...dym

1

k2(o + [ik2)

Thus,

and

Mk
k2a(a + \xkl)

£(A) jiA3< Mk

(A .7)

(A.8)

(A.9)
cx + pA:2

(A.9) shows that for the case a < 0, the energy spectrum is dominated by the

contributions form the largest wavelengths (k kmin ~ V - <Vp) which is in accord with

the fact that the energy cascades toward large scales. Observe further that, for A => 0,

(A.9) gives the spectrum of equipartition of kinetic energy among the modes -

E(k)~k. (A. 10)
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Thus, an inviscid finite system evolves towards an equipartition of energy

among all Fourier modes (Orszag, 1970). However, as we have seen in Sec. 6, the

situation is quite different for real flows (with infinite degrees of freedom), which

evolve towards the Batchelor-Kraichnan scaling laws -

E(k)~k~5ß (A.11)

in the inverse energy cascade, and

E(k)~k~3 (A.12)

in the direct enstrophy cascade. Thus, truncation of the modes acts as a barrier

preventing possible cascades and can produce a significant alteration in the statistical

properties of the system (Basdevant and Sadourny, 1974).
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