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Plasmon Frequency for a Spin-Density Wave Model

M. Broidioi and A. Verbeure

K.U.Leuven
Instituut voor Theoretische Fysica
Celestijnenlaan 200 D
B-3001 LEUVEN (Belgium)

(22. IV. 1991, revised 10. VII. 1991)

Abstract

A prototype of a system with a long range interaction, a mean field model exhibiting a
phase transition showing a spin density wave, is considered, in order to explain rigorously
the occurrence of a discrete plasma frequency in the fluctuation spectrum. A canonical
pair is found corresponding to the fluctuations of the relative (spin up, spin down) spin
density, respectively the local order parameter density. The pair decouples from the other

degrees of freedom of the system.



1094 Broidioi and Verbeure = H.P.A.

1 Introduction

The standard Goldstone theorem [1] for short range interactions in many-body systems
implies specific properties of the spectrum of the time evolution at zero momentum (k = 0)
[2]. It is known that due to the breakdown of the Galilei invariance an energy gap
in the density excitation spectrum is incompatible with short range forces, i.e. in the
mathematical language of [3] the symmetry group may be not implementable if long
range forces are present.

This situation beyond the Goldstone theorem, has been the subject of many studies for
a long time. It is referred to as the phenomenon of oscillations with frequency spectrum
taking a finite value w # 0 at k = 0. From the physical point of view the phenomenon
has had much attention (see e.g. [4,5,6]). In the various discussions of this problem, one
is particularly concerned with the computation of these frequencies. Different approxima-
tions, e.g. the random phase approximation, yield good experimental values. However the
mechanism or the mathematical frame in which it can be understood was still lacking.

Recently we developed central limit theorems for non-commuting random variables
(operators) which made it clear how to associate to quantum systems, a macroscopic
system of fluctuations with a dynamics induced by the microdynamics of the system
[7]. We worked out already this theory for the strong coupling BCS-model [8] and the
Schwinger model [9]. We were able to describe the above phenomenon rigorously as part
of the spectrum of the phonons carried by the fluctuation fields. In [10] we computed the
full dynamics of the macroscopic field fluctuations in thermodynamic equilibrium for the

Overhauser model [11,12]. This model describes electronic interactions in certain metals.



Vol. 64, 1991 Broidioi and Verbeure 1095

Below a critical temperature T, the interactions give rise to a coherent excitation of a

spin-density wave with wave vector g. The local Hamiltonian in the volume V' is given by

2
1
=) = *(z) - VC;
Hy 3 2/;/d$ VCI(z) (z)

_%/de eiqufL(x)Cz(i‘)LdZC_iqZC;(z)Cl(z) (1.1)

where the CF, C;, ¢ = 1,2 are the usual Fermion creation and annihilation operators
satisfying the anti-commutation relations.

We consider here the translation invariant case i.e. we put the wave vector ¢ = 0 or in
other words we consider the limit of the wavelength of the spin wave tending to infinity.

Hence the actual model is given by

Hy = ;%/‘/dwqﬁ*(m)-va(z)_ %/vd:c CH2)Cala) [ d= CH(=)Cu(z)  (12)

The symmetry group of the model is the translation group and the two-dimensional gauge

group G represented by the gauge *-automorphisms of the algebra of anti-commutation

relations :
g = {7011,02|ai 2 [O,?Tf]} (13)

where

YareeCF (2) = €0 (z)

Yaraa O3 (2) = €20 (a).
The infinitesimal generators of this gauge group G are given by

B = /d:v OR}0(z) | 1=1,2. (1.4)
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Below the critical temperature T, the symmetry G breaks down spontaneously to a

one-dimensional subgroup Gy = {Ya,o|a € [0,27]} acting as follows :
YoaCif (2) = €°CH(2z) , i=1,2.

The infinitesimal generator of the gauge group Gg 1s given by Ny + N,.
In particular the operator Ny — N; is not a constant of the motion anymore below
T, it is the generator of a spontaneously broken symmetry. Clearly this operator is an

integral over the local density n(z) = nq(z) — na(z),
Ny — Ny = /dmn(m)

where n;(z) = C}(2)Ci(z), 1 = 1,2. We are particularly interested in the time evolution
of this operator. As the spectrum of the microscopic time evolution will turn out to be
absolutely continuous except for the invariant vector, the time evolution of n(z) does not
show anything interesting. However, along the lines of the general theory as exposed in

[7] one considers the fluctuation @ of the local density n(z) :

~

.
Q~ ll‘x;n—ﬁﬁd:c n(z) (1.5)

together with the fluctuation P of, essentially, the density of the order parameter operator
of this model. We show that these macroscopic observables () and P are operators forming
a canonical pair i.e. they yiéld a representation of the canonical commutation relations.
Furthermore the mean square deviations Q? of the density n(z) and of the order parameter

density, namely P? satisfy the virial theorem

(P?) = w{(Q) (1.6)
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with a frequency w which can be interpreted as a plasma frequency of a spin density
wave, described again by the density n(z). The value of this frequency is found to be
equal to w = 2X|b|; A is the coupling constant and |b] is the absolute value of the order
parameter of the phase transition. In particular the phenomenon disappears above the
critical temperature.

We are also able to solve the time evolution of the macroscopic fluctuations @ and P.
Actually suggested by the harmonic oscillator

~

P2 w? -
5 + 7@2 (L.7)

we get the virial theorem (1.6) and we prove rigorously the following oscillator solution

Q(t) = Q coswt + gsinwt.
This proves that the frequency w is a discrete point in the spectrum of the macroscopic
system of {Q, P}-fluctuations. This system decouples completely from the other coor-
dinates of the system, it corresponds to the spin wave mode. Finally, motivated by the
above results, we compute the thermal equilibrium distributions of Q2 and P? and find,
as expected, that they are distributed according to the Gibbs distribution, determined by
a harmonic oscillator (1.7), depending only on the temperature and on the plasma fre-
quency. The latter computation is not based on the explicit use of the equilibrium state
expectation values, but purely on correlation inequalities for equilibrium states, showing

the model independence of the above results.
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2 Equilibrium states

First we determine the translation invariant equilibrium states of the model (1.2). As the
algebra of observables is the separable CAR-algebra A which is asymptotically abelian,
there exists a unique decomposition of any equilibrium state into translation extremal
invariant states [13, section 4.3]. Now we determine these extremal translation invariant
equilibrium states which we denote by p.

One of the main properties of these states is that the space mean m(A) of a local

observable A exists and is given by :

1
— weak — lim L _ 2.
m(4) = weak — Jim jv dz 1,A = p(A)1 2.1)

V—ooo

where 7, 1s the action or the *-automorphism of the CAR-algebra, representing the trans-
lation over the distance z € IR”. Clearly these means m(A) are observables at infinity
[14].

For the model Hy (1.2) and for p an extremal translation invariant state, using (2.1)

one has for any local observable A € A :

115“ p(A*[Hy, A))
= lim {p(A"(Tv, A]) = Abp(A*[Dv, A])
—\bp(A*[ D}, A))} s

where Dy = [, dz C}(z)Cq(z) and b = li&n% fv dz p(CiH (z)Co(z)) = p(Ci(z)Ca(x)).

This computation yields the effective Hamiltonian in the state p :

HY = Ty — A(bD} + bDy)
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such that
weak — li‘gn[Hv, A] = weak — li&n[H{}, Al =6,(A).
Explicitly :
+ A +
6,Ci(z) = '"'2_01 (z) — ACY (z)
s Ay TOF
6,C3 (z) = _'é‘cz (z) — AbCT (z)

where A is the Laplacian.

For convenience we introduce the two-component version of the CAR-algebra A : for
= fr) e (R @ L*(R") = L

define the annihilation operators

C(f) = (Cl(f1), C?(fz))

then

5,C*(f) = C*(hyf) (2.3)

where h, is the following operator :

52 3 | [ A=)
(hof)(2) =
—Ab ——% fg(.’l?)

which can be defined as a self-adjoint operator on L. Let # = argb, for all £ € IR, denote

1 1
ef(z) = ———— e

V2(2m )12 Teif
One has

hpel = ex(k)el (2.4)
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where
Ny
e+(k) = -2—(k + 2A|8)) .

These are the quasi-particle energies at momentum k. Clearly the spectrum of £, is
absolutely continuous.

Now we are in a position to find all equilibrium or KMS-states at arbitrary but fixed
inverse temperature S.

The extremal space invariant #-equilibrium states of the system (1.2) are the quasi-free

states p of A determined by the two-point function

p(CHNCWO) = (9 57/ (25)

where f,g € L and where the order parameter b is determined by the gap equation [10] :

0=t (1 ~ @ ] i cosh(ﬁ€+(k)/2)1cosh(ﬁ6—(k)/2)) - 29

This gap equation admits always a solution b = 0. It corresponds to the state of
free fermions. It is not only space translation invariant but also gauge invariant for the
two-dimensional gauge group G (1.3).

For B large enough there exists a solution b of (2.6) such that b # 0. For these
solutions the gauge group G is broken in the sense that p(C;C;) # 0, i.e. there are non-
trivial transitions from one spin state to the other spin state. The solution is carrying a
spin density wave (see [19]).

The gap equation fixes only the absolute value of the order parameter b, but not its
phase 6. In the following we consider only the generic solution b # 0 with 4 = 0.

The physical spectrum of the microdynamics in the state p is as usual given by the spec-

trum of the Hamiltonian H,, implementing the time evolution in the GNS-representation
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of p
eintC(f)e—int — eitﬁpc(f)

where 6, is given by formula (2.3). It follows from (2.4) that the spectrum of H, consists
of the discrete point {0} and the absolutely continuous spectrum coinciding with the real
line.

Considering the spectrum of h, given in (2.4), it follows from (2.5) that the two-point
function p(C;t(z)C;(y)) tends to zero if |z — y| tends to infinity and it tends to zero faster
than any polynomial. As a consequence the truncated functions pr are integrable, i.e.

let A;,... A, be strictly local observables, e.g. even products of creation and annihilation

operators C*( f) with support (f) bounded, then

/dml . d.‘L‘n_l iPT(T:nAla e T:L‘,;..]An—la An)

< o0 (2.7)
for all n > 2. It is readily checked that we have the following central limit theorem.

Proposition 2.1. (Central limit theorem)

For any strictly local self adjoint observable A one has :

Birhi p (eiuVIV fv dr(T,A—p(A)))

Vo
2
= exp—E(A,A)~ s p€R (2.8)
where

(4,4)~ = [ dzp((A— p(A))(mzA — p(4)).

Proof : Follows straightforwardly by expansion of the exponential, the definition of

truncated functions and the property (2.7). m
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This property is used to give a meaning to macroscopic fluctuations. The local fluc-

tuation of an observable A in a volume V is of course given by

1
Av =7 /v dz(r. A — p(A)). (2.9)

We are interested in the macroscopic quantities lim Ay, called simply the fluctuation of

A in the state p. The limit should be understood in the sense of the central limit theorem

as given in proposition 2.1. We denote

~

Clearly by differentiation with respect to g in (2.8) the central limit theorem also give

a meaning to any power of the fluctuation e.g.
A" = (limAy)™; m =1,2,3,....
Hence we can consider the algebra of fluctuations generated by {A|A any strictly local

observable}. As is proved in [7], it is a representation of the canonical commutation

relations algebra A with the commutation relations
(A, B] = io(A, B)1 (2.11)
where o(A, B) = —t [ dz p([A, 7. B)).

The representation space of the CCR-algebra A is the Hilbert space H obtained as

the closure of A with respect to the scalar product
(A", B™)~ = p(A™B")

where j is the state of A defined by the formula :

ﬁ(ei’a) = exp—%(A,A)N ,Ae A.

Clearly the Hilbert space H, can be called the space of (macroscopic) fluctuations.
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3 A canonical pair of fluctuations

As said above we work with an equilibrium state p, below the critical temperature, such
that b # 0 and for notational simplicity we take § = arg b = 0.

We limit our attention to the following two strictly local observables :

1
Q(z) = m(ﬂl(iﬂ) — n3(z)) (3.1)
P(z) = i\/g(of(z)cz($) — C (2)Ci(2)) (3.2)

where n;(z) = CF(z)Ci(z) ;1 =1,2.
Note that p(Q(z)) = p(P(z)) =0 ; z € R".
On the basis of the central limit theorem (2.8) one considers the corresponding fluc-

tuations Q and P.

Proposition 3.1.

The operators  and P form a canonical pair and satisfy

(@, P]=+1. (3.3)

Proof : Following formula (2.11) one has to compute

—i [ dz p(1Q(=), Pz + @)

The result follows straightforwardly from the commutator

[CT(2)Ch(x) = CF (2)Calz), CF () Caly) — C3 (y)Ca(y)]

= 2(C] (2)Cy(z) + Cf (2)Ci(2))8(z — y)
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and the expectation value

- li‘gn—‘l;fvd:cp(C{"(:c)Cg(r)).

Hence we discovered in the system a pair of canonical observables Q and P which are
macroscopic in nature and correspond to the fluctuations of the local observables Q(z)
and P(z) defined in (3.1) and (3.2). The algebra of canonical commutation relations
generated by this Q and P is a subalgebra B of the total algebra of fluctuations A of the

system. We will limit our attention to this subalgebra B.

As any equilibrium state is time invariant, also the state p is time invariant : p-6, = 0.
In the next proposition we prove that the mean square fluctuation of () is proportional
to the mean square fluctuation of P. In order to derive this property we do not need that
p is an equilibrium state, its time invariance is sufficient, of course supplemented with its

cluster properties.

Proposition 3.2. (Virial theorem)

One has
4N?|b*A(Q%) = A(P?)
where
(@) = iy [ dedyp(@@)RW))

p(P?) = li‘gn%/vdrdyp(P(w)P(y))
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Proof : Using the time translation invariance of the state p one has

5 [ da [ du{o(5,(Q(@)P(w)) + p(@()6,(P(3))} = 0. (3.4)

Using the fact that the kinetic energy is gauge invariant for the full gauge group
G one has that [dz[T,Q(z)] = 0, where T is the kinetic energy such that we can
drop this term. A straightforward computation of the commutator of Q(z) with the

potential part of the Hamiltonian H? yields

/d:c(S (z)) = rzfde (3.5)

We compute also

6, P(y) = i4X*[b]*Q(y)

+ﬁvy(—vcj(y)02(y) +Cf (y)VCaly)

—C (y)VCiy) - VO (¥)Ci(y)) - (3.6)

After substitution of (3.5) and (3.6) in (3.4) one gets

4A2|b|2

> [ dwdy p(P(2)P(w)) = P [ dzdy p(@()Q))

up to a boundary term, coming from the second term in (3.6), which vanishes in
the limit V — oo, by partial integration and translation invariance of the state p.

This proves the proposition.

The above result has the following physical meaning. Under the ergodic hypothesis

that phase space expectation values coincide with the time means, this result is expressing
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the quantum virial theorem on the level of the macroscopic fluctuations for a harmonic

oscillator problem

P2

5 71 -2—Q2 (3.7)
where w = 2A|b| is the oscillator frequency. Clearly this frequency can be called the
plasma frequency of the spin wave density. We shall prove that this plasma frequency is
indeed a point of the spectrum of the dynamics of the fluctuations algebra B generated by
Q and P. This dynamics is of course induced by the microdynamics, given by the model
(L.2] s

A(t) = o A(0) = e**» A(0) (3.8)

where A is any local observable and §, is given by formula (2.3).
As can be seen from the computation (3.6) the dynamics does not leave invariant the
pair of local observables Q(z) and P(z), (3.1) and (3.2). However this dynamics o, (3.8)

induces a time evolution &; of the fluctuations by the simple formulae

—

&tQ = atQ 3 d’tﬁ = O.’tP (39)

1.e. the time evolved fluctuation of a local observable is defined as the fluctuation of the
time evolved local observable. Immediately the question arises whether the fluctuation of

a time evolved local observable still exists. It turns out that this is the case for the time

evolution of ) and P.

Mathematically we consider the Hilbert space H of fluctuations and consider the time

evolution as a map of H into H. We prove :
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Proposition 3.3.
The infinitesimal generator &, of the microdynamics induces a map §, of the subset

B of H into B such that

Hence () and P are eigenvectors of 62 :
520 =0 , 2P =P

such that

&Q = e“SPQ = Qcoswt + £ sinwt .
w
Proof : (i) follows from (3.5) and (ii) from (3.6) and the scalar product in . The rest

1s straightforward.

This property proves that the frequency w is a discrete point in the spectrum of the
macroscopic system of the @), P-fluctuations. Although the dynamics &; is induced by the
microdynamics a4, the spectrum of &, is totally different in nature from that of o;. We
insist that the frequency w is not a discrete point of the spectrum of ;.

Note also that the frequency w = 2A|b| decreases for increasing temperature and

vanishes at the critical temperature 3, determined by the equation

1 A 1
= iy ) ¢ (cosh A2




1108 Broidioi and Verbeure H.P.A.

The occurrence of the frequency w # 0 is due to the long range of the potential and is ac-
companied by the phenomenon of spontaneous symmetry breaking. The two-dimensional
gauge group with generators N; and NV, is broken down to a one dimensional gauge group
with generator NV; + N,. The so-called Goldstone mode connected to the frequency w is
the fluctuation of the generator of the broken symmetry, namely N; — N ~ (). The latter
operator is not a constant of motion anymore below T..

The fluctuation of this operator behaves in time as a periodic fluctuation density of
spin-up particles to spin-down particles and back, describing the spin wave. This spin
wave seems to decouple completely from the other coordinates of the system, and seems
subjected only to the harmonic force w?(). We expect that the thermal equilibrium distri-
butions will be accordingly determined following the Gibbs distribution of the harmonic
oscillator Hamiltonian (3.7).

In order to compute this distribution of P? or Q2, we will have to use the properties

of p being the equilibrium state at inverse temperature 3.

Proposition 3.4.

The mean square deviation of the spin wave density is given by

HG7) = 5 coth B

where w is the spin wave plasma frequency.

Proof : Instead of computing explicitly this quantity using the equilibrium expectation

value (2.5) we use the following correlation inequalities [15,16,17] for equilibrium
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states : for any local observable A one has :

—Bp(AS,(A%)) p(A*A) _ Bp(A*6,(A)) .
(A S AAn) S () )

We take for A, the operators

1 .
Ay = J—V/‘/dx(Q(x)—i—zw P(z))

compute the different terms in the inequality and take the limit V — oo. Using

(3.3) one gets
Jim p(AvAY) = 4(Q%) +w 5(P?) + ™!
and by the virial theorem, proposition 3.2
Jim p(AvAy) = 25(Q) +w
Analogously
Jim p(A7 Av) = 25(Q%) —w™.

Using (3.5) and (3.6)

§,(Ay) = -i%/‘/dx P(z) —wz/l—vjvd:cQ(:c)

up to a boundary term, vanishing in the limit V — oo, which we drop immediately.

Hence
lim p(A8,(Av)) = H((Q — iw™ P)(—iP — w@))
= —wp(Q®) —w™B(P?) — ip(1Q P)).

Again using (3.3) and the virial theorem

lim p(A78,(Av)) = 1 — 2wp(Q%) .
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Analogously

~

lim p(Av6,(A7)) = 1+ 20p(Q?)

After substitution in the inequalities (x) one gets

~ "2 .
In M = —fw
2wp(Q?) +1
or alternatively
WB(Q?) = 3P = 2 coth 22

Formally a similar result has been obtained before for the Jellium model [18] of
fermions interacting via Coulomb potentials against a uniform background. In this model
the Galilei boost transformations do not commute with the kinetic energy. It is not a
model of spontaneous symmetry breaking, but a case of absence of symmetry. It is proved
that under suitable sum rules and at high temperatures, a canonical pair consisting of the
bulk momentum and the center of gravity splits off from the other degrees of freedom in

an equilibrium state.
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