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Large deviations and phase separation
in the two-dimensional Ising model. *

C.E. Pfister
Departement of mathematics E.P.F.-L.

CH-1015 Lausanne Switzerland
(15. VII. 1991)

1 Introduction.

In 1967 Minlos and Sinai published a remarkable paper on the Ising model [M.S.1].
Many important ideas, which were later on developed in Statistical Mechanics were
in germ in it. In their paper the phenomenon of phase separation or phase seg-
regation is explained, at a mathematical level, on the basis of the first principles
of Statistical Mechanics. In 1988 Dobrushin, Kotecky and Shlosman [D.K.S] an-
nounced new important results: the phenomenological theory of Wulff, which gives
the shape of the spatial region occupied by one phase immersed in the other one, is
derived within Statistical Mechanics.

This paper is based on a series of lectures delivered at Troisieme Cycle de la Physique
en Suisse Romande in February 1991. The aim of these lectures was to expose part
of the work of Minlos and Sinai by incorporating the main features of the recent
developments of Dobrushin, Kotecky and Shlosman. The mathematical aspects of
the problem were emphasized in the lectures and not the physical aspects, which
are relevant, as the wetting phenomenon for example [F.P.2]. I tried to get the main
results, but not in the sharpest form, in order to keep the analysis as simple as possi-
ble. In particular I chose to use a constraint ensemble where the magnetization does
not have a fixed value. (See (1.8) and comments at the end of the introduction.) One
lecture was devoted to an exposition of the method of the cluster expansion, which
plays an important role in the analysis and which replaces the method of equations
for correlation functions used by Minlos and Sinai [M.S.2] (see section 3). Only the
two-dimensional Ising model at low temperature was treated in these lectures, since
the results of Dobrushin, Kotecky and Shlosman are restricted to this case.

Let us summarize the main points of the theory of Gibbs states and large deviations
of the magnetization for the two-dimensional Ising model. The free energy p(h, 3),
and the Gibbs states depend on two parameters, the external magnetic field A and
the inverse temperature (3, since the coupling constant J of the interaction can be
chosen equal to one without restricting the generality. (In this introduction the

*To appear in Helvetica Physica Acta
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free energy is normalized as in Physics, by dividing the logarithm of the partition
function by the inverse temperature. This normalization is not used in the rest of
the paper.) The Gibbs states describe the equilibrium states in the thermodynamic
limit. They are solutions of the D-L-R equations. For the two-dimensional Ising
model all solutions of these equations are known. The set of solutions of the D-L-R
equations is a convex set which has only one element for all nonzero values of A and
for h = 0 and B < B¢, where 3¢, is the critical inverse temperature. For h = 0 and
B > [3° there are exactly two extremal solutions of the D-L-R equations, denoted
below by ut and g™, all other solutions are g = apt + (1 —a)p™, 0 < a < 1. The
Gibbs states u* and g~ describe the pure phases, and the measure ap* + (1 — a)u~
describes an equilibrium state which is a mixture of the two pure phases. There is
a criterion for the unicity of the solution of the D-L-R equations, which is related
to a smoothness property of the function p(kh,3). Let o(t) be the spin variable at
t € Z®. We suppose that the random variables o(t) are distributed according to
the Gibbs measure p*(h,3) for some fixed values of the parameters h and 3. The
expectation value of &(t) is independent on ¢ and is written m*(h,3). Similarly we
define m~(h,3), which is the expectation value of o(t) with respect to the Gibbs
measure p~(h,3). There is a unique solution of the D-L-R equations if and only if
m*(h,8) = m~(h,B) and this happens if and only if the thermodynamical function
p(h,B) is differentiable with respect to the magnetic field at (h,3). Indeed, this
function is convex in h and the right derivative (left derivative) with respect to the
magnetic field is equal to m*(k,3) (m~(h, 3)).

Let A = A(L) be a finite subset of Z?, which we suppose to be a square. The
cardinality of A(L) is |[A| = L?. An important variable is X(A),

X(A) = I—A—IZU(t) (1.1)

which is the mean magnetization inside the region A. The extremal Gibbs states pu+
and p~ are ergodic measures with respect to the group of translations of the lattice

Z?. We have
1
lim ——— a(t) =m*(h,B t —a.s. 1.2
i I o0 =mtk8) (12)

A similar result holds for the measure u~. The study of the distribution of the
random variable X (A) is related to the large deviations of the magnetization inside
A, ie. to the estimation of Prob({X(A) € A}) for some subset A. Let us suppose
that the random variables X(A) are distributed according to the measure u*(h, 3).
Then, these variables obey a large deviation principle with rate function I(mlh,3)
(see e.g. [E]). The rate function is equal to

I(m|h, B) = B(sup(m - ¢ — p(k + ¢, B)) + p(h, B)) = (1.3)
ﬁ(s%p(m o b p(t,,@)) + P(h,,@) —m:- h)
If A is an open set, then

~ inf I(m]h,B) < limjnf Wlmln Prob({X(A(L)) € A}) (1.4)
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with the probability computed with the measure p*(k,3). If A is closed set, then

2 ' 1

Jnf I(m|h,B) 2 thsup D]
The rate function is nonnegative and it is equal to the sum of the Legendre transform
of p and the affine function of m, p(h,3) — m - h. It is a convex function, and it is
essentially equal to the thermodynamical function associated with a constraint en-
semble with given specific magnetization m. On the other hand, p is associated with
an unconstraint ensemble. The results (1.4) and (1.5) are independent on the choice
of the Gibbs measure (for the same values of h and ). The phase transition region
of the model in the (k,3)-plane corresponds to the region where several solutions
of the D-L-R equations exist. It is also characterized by the non-differentiability of
the function p(h,3) with respect to the magnetic field h. This non-differentiability
of p implies, via the Legendre transform, the existence of a non trivial affine part
in the graph of the rate function. Let us choose h = 0 and 3 > 3°. Then p(k,3)
is non differentiable at A = 0 and the left-derivative of p at b = 0 is equal to
m~(0,8) = —m*(B8) < 0 and the right-derivative is equal to m*(3) > 0. In this
case the graph of the rate function has an horizontal part : I(m|0,3) = 0 for all
—m*(3) £ m < m*(B3). Consequently the statements (1.4) and (1.5) become trivial
for any set A included in the interval [-m*, +m~].

InProb({X(A(L)) € A}) - (1.5)

The summary above shows that the theory of Gibbs measures in the thermodynam-
ical limit is unadequate for describing the coexistence of phases in the sense that
any Gibbs measure is of the form

p=apt+(1—a)u” ,0<a<1 (1.6)

The Gibbs measures are related to the equilibrium states of an unconstraint ensemble
(the value of the magnetization is not given a priori). A measure like u describes a
mixture of two phases in a statistical sense only, the coefficient a being the fraction
of the pure phase which is associated with the measure p*. In order to study the
coexistence of the phases we work with a system defined in a finite box and we
use a constraint ensemble with given magnetization. The physical situation which
is described in these lectures is the coexistence of the two phases when one of the
phase is attracted by the boundary of the box and the other one is repulsed. We
choose the + boundary condition. The above results on the large deviations of the
magnetization in the interval [—m*, +m~| are trivial, because large deviations in the

presence of several phases is a less rare event than in the region of a single phase.
Indeed, the probability that

Y o(t) =mlA| ,—m* < m < +m" (L7)

teA

is now exp(O(|A|*/?)) and not anymore exp(O(|A|)) (see [S]). One main purpose of
these lectures is to show the relation between this behaviour of the large deviations
of the magnetization when there is coexistence of phases and the phenomenon of
phase separation. The two themes are intimately related, and in a mean field version
of the model it is easy to see that we have no phase separation, an equilibrium state
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with given magnetization is always an homogeneous state, and the above theory of
large deviations is not trivial. Notice that the rate function is not convex.

Let us consider the model in a finite square box A(L). We always choose the +
boundary condition for the box. The parameters of the models are chosen so that
there is no magnetic field and the inverse temperature 3 is large enough. Let o be
a configuration. We define

A(m) = A(m;c,co) = {o: | o(t) — m|A|| < colA|- L7°} (1.8)

teA

where —m*(8) < m < m*(8) (with m not too small) and 0 < ¢ < 1/2. All
configurations ¢ of A have a total magnetization of order O(|A|) - m. We define
a constraint model by considering only configurations in A. Therefore, for finite
A(L), the equilibrium state of the constraint model is described by the conditional
measure u} ( - |A) where u} is the Gibbs measure in A with + boundary condition.
Our purpose is to find a set of typical configurations for ,u,I( p)( - |A) for large values
of L. The main result, which were proven by Minlos and Sinai, is that there exists
a set of typical configurations which can be roughly described as follows. We can
partition this set into subsets, each of these subsets being characterized by a spatial
region R, so that inside R and not too close to the boundary of the region R we
have typical configurations of the measure p~ (restricted to R) and in A\R, and
not too close to the boundary of A\R, we have typical configurations of the measure
pt (restricted to the region A\R). The volume of the regions R is

*

m —m

vol(R) = V(m) + O(|APP*), V(m) = a(m)|A| = [A| (1.9)

2m*
Dobrushin, Kotecky and Shlosman give a better estimate of the volume of the regions
R , and show that the shape of R is given by the Wulftf’s variational principle.
Before reviewing this principle let us state the results on the large deviations of the
magnetization, which are a direct consequence of these phase separation results:

) 1
gl_l;rclo —Eln ProbK(L)(A(m;c, co))’ = 2(|W,| - a(m))"/? (1.10)

where |W,| is a constant, which depends on 3 and which is equal to the volume of
the Wulff crystal (see below), and a(m) is defined in (1.9). We have

. |W
Jim og =1 (1.11)

It is important to notice that in this case the result (1.10) depends on the choice
of the conditional Gibbs state and also on the shape of the box A. The result e.g.
for periodic boundary conditions is different (see [D.K.S] and [Sh]). This is in fact
very natural since we have here a surface phenomenon and we cannot expect that
the boundary of A, or the boundary condition for this set, do not play a dominant
role. The phenomenon of wetting is of course important although we do not discuss
this topic. We only mention that the result (1.10) reflects the fact that there is a
repulsion of the negatively magnetized phase by the boundary of A, as a consequence
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of our choice of the boundary condition ([F.P.2}).

The Wulff’s theory predicts the shape of a crystal in equilibrium with its vapor on
the basis of a simple variational argument. This is a phenomenological macroscopic
theory. Let us consider only the two-dimensional version. We suppose that a possible
shape of the crystal is described by a simple closed curve ¢ and that the crystal is
inside ¢. Let n be a unit vector of R? and r(n) the surface tension (per unit length)
of an interface perpendicular to n and separating the crystal and the vapor. The
total surface free energy associated with the shape c is,

fc r(n(s))ds (1.12)

where n(s) is the unit normal vector exterior to c at ¢(s). The shape of the crystal
of volume V is given by the solution which minimizes (1.12) over "all sufficiently
regular” simple curves V which are the boundaries of regions of volume V. If we have
two fluid phases in coexistence, then the same argument applies. In particular if the
surface tension is isotropic (1.12) is proportional to the length of the curve ¢ and the
equilibrium shape is a disc, as a consequence of the classical isoperimetric inequality.
The variational problem to solve is a generalization of the classical isoperimetric
problem. When 7 is positive, which is the case here, we can intrepret (1.12) as a
new length of ¢ (r-length). Let 7 : R? — R be a positively homogeneous function of
degree one. (We can always extend in this way the definition of the surface tension

to R?.) We define the Wulff crystal

W, = {z* € R*: (z|z") < 7(z), for every z € R?} (1.13)
= {z* e R?:7r*(z") < 0}

The Lebesgue measure of the set W, is |W.|. For example when 7 is the Euclidean
norm, then |W,| = x, and when 7(z) = [z;] + |22 then W, is a square of volume
4. In (1.13) (- |- ) is the Euclidean scalar product in R?, and 7* is the Legendre
transform of r. Let s € [0,1] = ¢(s) = (c1(s), c2(s)) € R? be a parametrized closed
curve (which is sufficiently regular). We define the Wulff functional by

(e 1= Llr(c;(s),_c;(s))ds (1.14)

and

vol(c) := %Ll(c;(s)cl(s) — cj(8)ca(s))ds (1.15)

Notice that vol(c) is the Lebesgue measure of the set enclosed by ¢, when c is a
simple closed curve. We have the following theorem, which generalized the classical
isoperimetric inequality, and which gives the solution of the variational problem:

(7(c))? > 4|W,| - vol(c) (1.16)

Equality holds if and only if ¢ is the boundary of a region which is obtained by a
dilatation and translation of the Wulff crystal. Inequality (1.16) has been proven



958 Pfister H.P.A.

several times under various conditions. Although inequality (1.16) plays an impor-
tant role in the analysis we do not prove it here. There is a d-dimensional version
of it. For this version there is a proof based on Brunn-Minkowski inequality (see
in particular [D], [T]). Recently new proofs were published, see [F|, [D.P]. A curve
which realizes almost the minimum is almost a Wulff crystal of volume vol(c) (see
e.g. [D.P]). This stability of the variational problem is best expressed by the gen-
eralized Bonnesen’s inequalities (see [D.K.S]). We use these inequalities only at the
very end of the analysis.

A precise formulation of the results on the phase separation is given in theorems
9.2, 9.3, 9.4 and in the conclusion of section 9. Let us outline the content of the
next sections. The typical configurations of the conditional probability uf( - |A)
are described in terms of large contours and small contours. One needs an estimate
of the large deviations of the magnetization computed with the probability which
is obtained by conditioning the Gibbs measure u} with respect to the event that
there are only small contours. To simplify the analysis the constraint ensemble is
defined by the event A, which specifies the magnetization up to a term of order
O(|A] - L™¢). Therefore it is sufficient to prove Bernstein’s inequality for these large
deviations. Such an inequality is derived in section 5, and follows easily from the
results of section 4. (From the results of section 4 one can get stronger results, and
prove local limit theorems analogous to those obtained by Richter for independent
random variables [R].) There are two main estimates in the analysis of the typical
configurations of the measure uj( - |A). One of them is a lower bound for the
probability of the event A computed with the Gibbs measure p}. This estimate is
done in section 7. The second estimate is an upper bound for events described in
terms of geometrical objects called droplets. The droplets are defined in section 8,
and the estimate is established in the same section. It is essential that both esti-
mates are expressed in terms of surface tension, and for that purpose we introduce
an intermediate scale in the analysis, following an idea of Dobrushin, Kotecky and
Shlosman. The method of proof for these estimates differs from the one used by
Dobrushin, Kotecky and Shlosman. There is a convenient way of studying the sur-
face tension, which is suggested by duality. It is known that the two-dimensional
Ising model is self-dual, and that the surface tension is equal to the mass-gap of
the two-point function of the same model at the dual inverse temperature. Dual-
ity and surface tension are the subjects of section 6, which also contains two basic
simple estimates, which are important for sections 7 and 8. One of these estimates
expresses the fact that a complicated large contour has a small probability and it
is proved by the cluster expansion. The second estimate is based on monotonicity
properties of the expectation value of the spin variables with respect to the size of
the system. This second estimate greatly simplifies the analysis. Moreover such an
approach is also possible for higher dimensions. Correlation inequalities are used
for proving the lower bound of section 7 by mimicking the method of reflection of
the theory of random walks. Here we use monotonicity properties of the two-point
function with respect to the position of the spins. What is really needed to know
about the surface tension corresponds to prove in the dual model that the two-point
function has an Ornstein-Zernicke behaviour. Section 9 contains the main theorems
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and the conclusions of the analysis. A lemma due to Minlos and Sinai plays an
important role, when we prove the separation of phases. Section 2 is devoted to
some basic definitions and notations. The correlation inequalities which we use are
quoted there. The method of the cluster expansion is explained in section 3.

Remarks.

1) In the definition of the constraint ensemble we allow some fluctuations of the
magnetization. As a consequence in the set of typical configurations we always have
some contours of intermediate size (which are still small contours for our definition.)
To study such contours, one must investigate the intermediate fluctuations of the
magnetization. This important subject is treated in [D.K.S].

2) In [D.K.S] the authors use a definition of contours, which is very particular. This
is not the case in these lectures, and our approach is better for generalizations.
However the geometry of the (large) contours is more complicated in our case (see
section 8). We could avoid these complications by using the definition of contours of
[D.K.S]. This brings a non trivial simplification at the expense of generality. This
simplified approach is discussed in section 10.

3) The main steps of the analysis are summarized below.

e Lemma 6.3 which gives the relation between the surface tension and the mass-
gap of the two-point function of the dual model.

e Theorem 7.1 which gives the lower bound on the probability of the set A(m;c, co).

e Theorem 8.2 which gives an estimate of the total volume (and the total length)
of the large contours.

e The definition of the droplets and lemma 8.8 which gives an upper bound on
the probability of a family of droplets. This lemma is proved by using the
basic estimate of lemma 6.7.

e Theorem 8.4 which describes a typical set of configurations in terms of droplets.

Acknowledgements. During the past three years I had several occasions to discuss
different aspects of these questions, in particular with Kotecky and Shlosman. I also
had a written version of their analysis of the surface tension, and I used some of
their results at one point (lemma 7.1). I am very grateful for the many entlightening
discussions which I could share with Dobrushin, Kotecky and Shlosman.
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2 Ising model, notations.

We set up the main notations in section 2.1 and recall some basic properties of the
model in 2.2. Finally we state in 2.3 the correlation inequalities which we use later
on.

2.1 Notations.
2.1.1 The lattice.

The model is defined on Z? or on some bounded part of 72,

2 = {t = (¢(1),t(2)): t(i) e Z,i = 1,2} (2.1)
Another lattice, the dual lattice is important. In our case the dual lattice is 72 |
72 = {t = (¢(1),4(2)) : t(3) + 1/2 € Z,i = 1,2} (2.2)

We also think of the lattice in a more geometrical way, as a cell-complex. The lattice
is the set of all elements of Z?, called sites (0-dim. cells), all edges e, e = [t,t'] ,
which are horizontal and vertical segments of R? with endpoints ¢t € 7%, t' € Z? and
[8(1) — t'(1)] + |t(2) — t'(2)] = 1 (1-dim. cells), and all plaquettes p , which are the
2-dim. squares of unit area of R? with corners belonging to Z2. When we consider
the lattice with this structure we denote it by L. Similarly we introduce L*, the
dual cell -complex. We have the important geometrical relations :

e each site t of L is the center of a unique plaquette p* of L~
e each edge e of L is crossed by a unique edge e* of L~
e each plaquette p of L has a unique site t* of L™ as center.

The boundary of an edge e = [t,t'] is by definition §e = {t,t'}. We extend the notion
of boundary for subsets v of edges. By definition v, the boundary of 7, is the set
of sites which belong to an odd number of edges of 4. The boundary of a plaguette
p is the set §p formed by the four edges of its boundary (as set of R? ). The sites
have no boundary.

The cardinality of a set A C Z? is denoted by |A|. We use two distances. The
distance d;,

2
dy(t,t") = [t(z) — ¢'(7)] (2.3)
=1
and the Euclidean distance
2
da(t,t') = (3 |t(5) — ¢'(i)")Y? (2.4)
i=1

As usual the distance of a point ¢ to a set A is

di(t, A) = }gﬁdi(t,t) i=LE (2.5)
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Let A be a bounded set of 7Z2. We also use the notation A for the following subset
of L : all sites of A are the elements ¢ of A (as subset of Z?); all edges of A are the
edges of L, e = [t, ] with ¢, sites of A; all plaquettes of A are all plaquettesof L, p
, such that dp = {e;, ez, 3,4} with all e; edges of A. We write A C L. With each
A C L we associate a dual subset A* of L* : all plaquettes of A* are the plaquettes
p*(t) of L™ whose centers ¢t € A ; all edges of A* are all edges of the boundaries of
these plaquettes; all sites of A* are all sites which are in the boundaries of the edges
of A*. A path on 7? is an ordered sequence of sites and edges, to,€0,t1,€1,---,%n
with de; = {t;,t;_1}, all i. The site ¢, is the initial point of the path and t, is the
final point. The path is self-avoiding if t; # t; for all 7 # j. It is closed if to = t,.
A subset A C Z? is connected if for any pair of points t,t' € A, there is a path with
initial point ¢ and final point ¢’ which contains only sites of A. A subset A C Z? is
simply connected if the set of R? which is the union of all plaquettes p*(¢),t € A | is
a simply connected set of R?. A subset I' of edges of L is connected if the set of R?
which is the union of the edges of I' is connected in R?. Finally, for any finite set
A C 72 we set

K ={t €7 max|t(i) — £(;)| < Lall ' € A} (2.6)

2.1.2 The configurations.
A configuration o of the model is an element of the product space

X ={-1,1}% (2.7)
When the model is defined on A the set of configurations is

X(A) = {-1,1}* (2.8)

An element of this set is usualy denoted by ¢ but sometimes we write oy when we
want to specify the set A. There is a natural action of Z% on the set X as group of
translations : to each t € 72, T, is a map X — X,

(To)(t) i=a(t —t') (2.9)

where o(t) is the value of the configuration at ¢. For each subset A C Z? we introduce
F(A) as the o-algebra of X generated by the cylinder sets with bases in A. We write
F for F(Z?). By definition we can decide whether a configuration o belongs to some
cylinder set A with base A if and only if we know all its values o(¢),t € A.

Let A be a finite subset of Z2. We say that we have specified a boundary condition for
A when we have chosen one particular configuration o' € X. When a set A is given
with a boundary condition (b.c) then we can extend uniquely any configuration oy
of X(A) to a configuration ¢ € X,
o(t) :=op(t) ifteA (2.10)
o(t):=0a'(t) iftdA

Two boundary conditions are fundamental : the + boundary condition (4 b.c.) and
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the — boundary condition (— b.c). The + b.c. (resp. — b.c.) corresponds to the
choice of o(t) = 1 (resp o(t) = —1). Let A be given with + b.c. All configurations
o which are compatible with this b.c. (i.e. o(t) = 1, t € A) can be described
geometrically as follows : we consider the set

{te?:o(t)=-1}C A (2.11)

and then the set

U » @) (2.12)

tio(t)=-1

where p* is the plaquette of L* with center t. As subset of R® the set (2.12) has
a boundary, which is composed of edges of I.*. We decompose the boundary into
maximal connected components 71, ...,v,. Connected sets of edges of L* are called
contours. All contours in a configuration are disjoint two by two and have no
boundary, év; = 0 for all ;. This last property can be verified by noticing that
8(y1 U...U7,) is the boundary of the boundary of the set (2.12). We say that the
contour +; is closed if §4; = (). We define two notions of compatibility for contours :
a family 4 = (71,...,7») of connected subsets of edges of A* is A*-compatible if

o 6v; =0 forall ¢
e 7; and ; are disjoint, all 7 # j
A family 4y = (71,...,7n) of connected subsets of edges of A* is At-compatible if

o there is a configuration o € X which is compatible with the + b.c. such that
the family v is exactly the set of contours of the configuration &

The A*-compatibility is introduced in order that there is a one-to-one correspon-
dence between all configurations ¢ € X compatible with the + b.c. of A and all
A*-compatible families of contours ¥ = (71,...,7.). On the other hand the notion
of A*-compatibility is purely geometrical and does not refer to a configuration o or a
boundary condition. The following fact is very important, and can be checked easily
on examples : when A is a simply connected set, a family of contours y = (y1,...,79x)
is A*-compatible if and only if it is A*-compatible. In general only the implication
At-compatibility = A*-compatibility is true. Similarly we introduce the notion of
A~ -compatibility.

Let 4 be a contour. Then there is a unique configuration ¢., which has v as unique
contour. We define the interior of v , intvy, as the set of all t € 7%, o(¢) = —1 and
di(t,v) > 1. Notice that inty is exactly the set of all t € Z? with o(¢) = —1 . In
general inty has several connected components see figure 1. The volume of v is the

cardinality of int4, voly = [|inty|. We also use the notation inty for the closed
subset of R?

U »@® (2.13)

tio(t)=-1

Notice that inty is a simply connected set.
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Figure 1: inty
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2.2 The model.
2.2.1 Definition.

The model is a spin model. For each ¢ € 72 we have a spin variable which takes
the values + 1 or — 1. We also use the notation o(t) for the spin variables. Thus
o(t) may denote two different but intimately related quantities : the value of a
configuration o at ¢ or the function "spin at ¢t” defined on X and whose value at o
is the value of the configuration at ¢. In this case o(t) is a random variable on (X,
F) indexed by ¢t. The energy of a configuration is the sum of one-body interactions
— h(t)o(t), h(t) € R, and two-body interactions — Jo(t)o(t'), di(t,t") = 1. We
always consider the ferromagnetic case J > 0. On the other hand the magnetic field
h, t — h(t), may be inhomogeneous. Let A be some finite subset of Z®. Let ¢ and
o' be two configurations € X. The energy in A of the configuration o given o' is by
definition

Hp(olo') = Ha(o) + AH(olo') = (2.14)
—J/2 Y. a(t)e(t) =D A(t)e(t)—JT D o(t)o'(t)
teAt'eA teA teAt'gA

dl(t,t')=1 dy (t,t’):l

Notice that ¢ — Hy(o|o') defines a function on X which depends only on the
part of the configuration in A. This function is thus F(A)-measurable and we may
consider that it is defined on X(A) when necessary. On the other hand, the function
o' — Hp(elo') is F(A\A)-measurable. In the first part of the lectures we consider the
model as defined above, characterized by a coupling constant J and a magnetic field
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h. In this case we do not introduce explicitely the temperature. In the last part of
the lectures we consider the case where the magnetic field is zero. Here we introduce
explicitely the inverse temperature 3 by setting J = 3 (i.e. by taking a coupling
constant J equal to one). The corresponding expression (2.14) is interpreted as the
energy at inverse temperature (3.

2.2.2 The equilibrium states.

We study mainly finite volume Gibbs states. The theory of Gibbs states or Gibbs
measures is exposed in Georgii’s book [Ge] and in Sinai’s book [Si]. The two books
are different and complementary. We simply recall some basic facts.

On (X, F) we define the counting measure A, as reference measure. Let A be a finite
subset of Z? and let o be a configuration of X. Let

42 (o) = { gZ"(A))‘l rexp(=Ha(o'|0)) if o'(t) = o(t), all tEA

otherwise

The factor Z7(A) is a normalization factor,

(A)= Y. exp(—Ha(a}|on)) (2.16)

o €X(A)

so that the sum of u%(o’) over all o’ is equal to one. We define a probability measure

du5 (") 1= 5 (0")dN (o) (2.17)
and we often denote expectation value of f With‘respect to this measure by

1) ) = [ S(ui(e) = T fomi () (2.18)

The measure (2.17) is the finite Gibbs measure on A with b.c. ¢. For any measurable
function f the function ¢ — (f)7 (A) is F(Z?\A)-measurable. Moreover, if f is
F(A)-measurable, then the function ¢ — (f)” (A) is F(A\A)-measurable. It is easy
to verify that for any finite set  containing A and for any F(A)-measurable function
f the conditional expectation value of f computed with g, given F(Z?\A), is

E(fIF(Z*\A)(0) = (£)° (A) (2.19)
Definition :
A probability measure p on (X, F) is an equilibrium state or Gibbs mea-

sure if for all finite subsets A of 7%, all bounded measurable functions f,
the conditional expectation value of f given F(Z?\A) with respect to p

is EL(fIF(Z*\A))(e) = (f)" (A) p-as.

In our case, equation (2.19) holds for any F(A)-measurable function when p is
a Gibbs measure: the Gibbs measures of the Ising model have the local Markov
property. A Gibbs measure p is translation invariant if

p(foTy) =u(f) all tel? (2.20)
Let £(J, k) be the set of Gibbs measures of the model.
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Theorem 2.1

For the two-dimensional Ising model with coupling constant J and homogeneous
magnetic field h the following results hold:

1) The set Ey(J, h) is a convex set and all Gibbs measures are translation invari-
ant. Either £(J, k) contains a unique element or all elements of £2(.J, k) are convex
combinations of two extremal elements ut and pu~. The latter situation occurs if
and only tf h =0 and J > J,, sinh(2J,) = 1.

2) Let A, be any sequence of finite subsets of Z* with the properties : a) A,, C
Any1, b) for any finite set A C 72, there exists n(A) such that A, D A for all
n > n(A). Let pf resp. py be the finite Gibbs measures with + b.c. resp. — b.c.
Then the Gibbs measures ut and p~ of 1) are the weak limits of uy and py asn
tends to infinity.

3) If h = 0, then there are several Gibbs measures if and only if m*(J) =
pt(o(t)) > 0. When h=0, then p~(o(t)) = —p*(a(t)).

Remarks.

1) The first statement of theorem 2.1 is an important result of Aizenman [A] and
Higuchi [H]. It is not true for higher dimensions.

2) In general it is difficult to determine all extremal translation invariant Gibbs
measures. However, for ferromagnetic models, with spins taking their values in a
compact abelian metrizable group, all extremal translation invariant measures can
be classified in terms of the notion of symmetry breakdown in "generic” situations

[P£.2].
3) The statement of point 3) indicates that m=(J) is an order parameter. The
value of m*(J) was given by Onsager.

2.3 Correlation inequalities.

We state three lemmas which summarize the correlation inequalities which are used
in the next sections.

Lemma 2.1 (Griffiths’ inequalities, [Gr])

Let A be a finite subset of 7% and let 0(A) = [Ieca o(t) (as random variable). Then
for any J >0, h(t) > 0

(o(A)" (AlJ, k) >0 (2.21)
and

(o(A) - o(B))" (AlJ,h) = (e(A))" (AlJ,h) - (o(B))" (A]J, h) (2.22)

Let n(t) be the random variable equal to one if o(¢) = 1 and 0 otherwise. It is an
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example of an increasing function. In general we say that o < o3, 0; € X, if and
only if ¢1(t) < o2(t) for all t. A function f : X — R is increasing if

o1 <oy = flo1) < fo2) (2.23)
Let A be a finite subset of Z% and n(A) = [Iye4 n(t).

Lemma 2.2 (Fortuin-Kasteleyn-Ginibre inequalities, [F.K.G])

Let J > 0 and h(t) be arbitrary. Then o +— (n(A))° (A) is an increasing function of
o. The function h — (n(A))° (A|J, k) is an increasing function of h. Moreover,

(n(A) -n(B))” (A) = (n(A))” (A) - (n(B))" (A) (2.24)
and

(n(A))" (A1) > (n(A)" (A2) Ay C A, (2.25)

We introduce the notion of free boundary condition (f-b.c.). Let A be some finite
subset of Z2. We define a measure on X(A) as before, but we replace Hy(o'|o) by

Hy(o),

wh(eh) = (Z7(A)) ™ - exp (= Ha(oh)) (2.26)
with
75 (A) = Z exp(—Ha(on)) (2.27)
ocpeX(A)

Expectation value of g with respect to uj is denoted by (g} (A). It follows from
lemma 2.1 that for any finite sets A, Ay, A, with A; D A,,

(o(A4) (A1) 2 (o(A)) (A2), A1 D A (2.28)

whenever J > 0 and h(t) > 0. Let h(t) = h. Then for any sequence A, as in
theorem 2.1 point 2,

lim (0(A))" (An) = ((A))’ (2.29)
exists. Therefore there exists a measure uf on X such that
(o(A)) = u(a(4)) (2.30)

Moreover, u/ is a translation invariant Gibbs measure.

Lemma 2.3 (Simon’s inequality [Sim])

Let J >0, h = 0. Lett, € 7%, t, € 7% and let B be a finite connected subset
of 7%, such that 72\ B has two connected components, one containing t, the other
containing t, (B separatest; and t;). Then

(o(tr)o(ta))’ < 3 (o(t)o(t)) - (o(t)a(ta))! (2.31)

teB
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Finally, we mention some monotonicity properties of the two-point correlation func-
tion. These properties have been proven in [M.M]. Let u = (u1,u5) and v = (v1,v2)
be two points of the lattice. Let [ be the half-line passing through v and v, with
end-point u.

Lemma 2.4

At the thermodynamic limit we have
(e(w)o(w))! > (e(@)o(0))’ (2.52)
in the following three casés :
® Uz = Uy, [U7 — uy| = 1 and the vertical line separating T and u does not cut l.

] = Uy, [47 — u2| = 1 and the horizontal line separating @ and v does not cut

[

¢ [%7 —u1| =1 and |uz — ug| = 1 and the diagonal line separating v and T does
not cut [.

In the next figure we have marked by e the points & for which lemma 2.4 applies.
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3 The cluster expansion.

The cluster expansion is one of the oldest tool of Statistical Mechanics. It was
introduced by Ursell (1927), Yvon (1935), Mayer and collaborators (1937). We
expose the basic elements of this method in essentially the original form, following
Brydges’ lectures [Br]. We do not discuss more recent approaches. The third volume
of "Phase Transitions and Critical Phenomena” [D.G] is devoted to this topics and
also related topics. Chapter 4 of Ruelle’s book [Ru] is also a good reference for our
purposes and we refer to the book of Glimm and Jaffe [G.J] and to the thesis of
Pordt [Po| for applications to Quantum Field Theory.

The exposition below is sufficient to handle many interesting models. We need only a
convergence theorem. In paragraph 3.1 we define the cluster expansion in an abstract
way and give in lemmas 3.1, 3.2 and 3.3 the general properties of the coefficients
of the expansion. We have written this section having in mind applications for
lattice systems. In the second part, sections 3.2 and 3.3, we treat the problem of the
convergence of the expansion using the so-called "tree-graph bound”. We follow here
a paper by Cammarota [C] and Brydges’ lectures. We do not treat the most general
case but give a sufficiently general exposition which covers the case of "polymer
expansions”. Polymer expansion were introduced by Kunz in [K].

3.1 Definition of the cluster expansion.

Let 2 be some set. The elements of (2 are for example the positions of the particles
of a one-component fluid or the contours of an Ising model and so on. For each
integer n, n > 1, let g, be a symmetric function of n variables z,,...,z,, defined
on Q x .-+ x Q (n factors). Since g, is symmetric we also use the notation g(X),
instead of g,(z1,...,z,), with X = {z;,...,z,}. We suppose that for each n we
have an average,

(gn) = Z Z gn(xl,“-,mn) (3‘1)

z; €0 T €0

We have sums in (3.1) because we have in mind lattice models. But for a classical
system of n particles in a box A, (g,) is given by

(gn) = fAdwl---fAdmn ga(T1,- .., Zn) (3.2)
Lemma 3.1

If
Z%ZZ |gn(@1, ..., 2n)| < 00 (3.3)

n>1 """ 2 €0 zn €0

then the following identity is true

exp (Z %(g@) =1+ = (Ga) (3.4)

n>l "™ n>1



Vol. 64, 1991 Pfister 969

with
Gn(z1,...,20) = G(X) = (3.5)
I |
> ] > 9(X1) -+ g(Xi)
kZl X XXX
XinX;=0
Ui X=X

The average (-) is defined by (3.1).
Proof.

Since (3.3) holds, we have
exp (T o)) = (3.6)
1 1 |
1+ 5 (Z ——(gm)) (Z ﬁ—,(gnk)) =

!
k>1 ny>1 M1 ng>1 Tk
L o 1 n!
Et 3~ 7 Yy o A ()
n>1 ™ k=1 ni>10m>1 R TR
Ef=1 ni=n

The sum in (3.6) over ny,...,n; can be evaluated in the following way: we con-
sider the term indexed by n; < ... < n with ny = ... = npy, Amy41 = ... =
Tomg4mzs s oy Ty ey 41 = o+ = Mnybotm, = Tk; there are kl/m,!...m,! terms

in the sum which give the same contribution as this term. On the other hand there
are (see [B])

n! 1

(nll)"‘l LAy ] (nml+...+ma_1+1!)m" 'm1! o8 m,!

(3.7)

partitions of the set X = {z;,...,z,} of n elements with m; sets of n, elements,
.. M, sets of W, 4..m,_,+1 elements. Therefore (3.6) is equal to

14X o T (g(X) (o) = (38)

n>1 " partitions of X
into k subsets

4TSS N (en) - 6)

n>1 XiCcX -XpCX
X,‘ﬂXj:@
U; X=X
By comparing with
1
) PENTER (3.9)

n>1

we get formula (3.5).
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In Statistical Mechanics we study partition functions. Sometimes the partition func-
tion Z is an expression of the form

Z=1+ Z%(Gn) (3.10)

n>1 """

For example, in the theory of classical fluids, with activity z and in a box A, the
grand canonical partition function is

1+:L;1J/Adml...Admnexp(_ﬁV(ml,...,a:n)) (3.11)

where V(z4,...,%,) is the (potential) energy of the particles. The functions G,, are
given and we determine the functions g, recursively by the formulas (3.5) :

gi(z1) = Gy(zy) {3.12)
ga(z1, T3) + 91(501) cgi(z2) = Go(z1, 22) (3.13)
93(@1, T2, T3) + g2(21, €2) - g1(z3) + ga(1, 23) - 91(2) (3.14)

g2(z2,3) - g1(21) + gi1(21) - ga(22) - gu(ma) =
GS(ml) T2, il’:3)

We now give an explicit form of the function g, in a special case, which is sufficient
to treat problems with two-body interactions or hard-core conditions. Let G be an
unoriented graph. The set of vertices of G is V(G) and the set of edges of G is E(G) .
All graphs below are unoriented simple graphs (i.e. without loop and with at most
one edge between two different vertices). We denote by G, the graph with n vertices
and with one edge e(i,j) between each pair of vertices ¢ # j. (G, is called the
complete graph with n vertices). With each vertex k of G,, we associate a variable 4

and we suppose that G,(zy,...,z,) is given by the expression (we write e(z,j) € G,
instead of e(z,7) € E(G,.))

Galz1,. .. zn) = [[ 2(z:) [I (1 + ea(a: ;) (3.15)
=1 e(i,j)EGn
where z(z) is a function of one variable and ¢s(z,y) is a symmetric function of
two variables. If we consider again the example of a classical fluid, with two-body
interactions ¥(x,y) between particles at z and y, then

exp(—BV(z1,...,2,) = (3.16)
I[I exp(-Bo(ziz;)) = I (1+palaiz;))
e(i,5)€0n e(i,3)€0n
with
p2(xi, z;) = exp(—B(zi, z;)) — 1 (3.17)

Let us consider the second factor in (3.15).By definition a partial graph G’ of a graph
G is a graph with the same set of vertices as G, V(G') = V(G), and whose set of
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edges is a subset of E(G), E(G') C E(G). We write G’ C G if G’ is a partial graph of
G. We decompose any partial graph G’ of G, in (3.15) into connected components
Cy,...,Cp, each connected component being a connected graph, V(C;) C V(G') and
E(C;) C E(G"), so that

V(C)NV(C)=0 , i3 (3.18)

and
Uve) =v(@) , UEE) = E@) (3.19)

Let C be a connected component with V(C) = {1,...,n}. We define

- 1 if |V(C)|:1
C) = T 3.20]
HO = Hecralenss | T3 (3:20)
and
ei(ey,..,zn) =0T (X)= Y @(C) (3.21)
C:connected
COn

The function T is called Ursell function of order n or truncated function.

Lemma 3.2

Let G,, be the complete graph on {1,...,n}. For each vertez i let x; be a variable
and let G,(zy,...,z,) be defined by (3.15). Then

Gk By § H 2(2) - o (24,...,2,) (3.22)
i=1
with
993:("511 ey Tn) = Z @(C) (3.23)
C:cg:&n;:'ted

and @(C) defined by (3.20).
Proof.

We compute

H (1 + ‘P2(misw:i)) = Z H ‘P2(miv$j) (3'24)
e(,j)E0n G': G'COn e(i,j)eg’
Let Xi,..., Xk be a partition of X = {1,...,n} into k subsets (1 < k < n). We
group together all terms of the sum (3.24) which are represented by partial graphs
G' with k connected components Cy,...,C, having as sets of vertices V(C;) = X,.
Then we sum over all possible partitions of X. Thus (3.24) is equal to

O | (P Z > (X)) eT(X) o (3.25)
partitionsofX :1=1 :1 XcX--XcX
X=X+-+X, XinX;=0

1<k<n Ui X=X

&

71
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We can identify ¢T(X;) with g(X;) of (3.5) because the functions g, are uniquely
defined.

We emphasize that the n vertices of the graph G, in lemma 3.2 are in one-to-one
correspondence with the n variables z1,...,z, independently of their values. Let
now fix the values of the variables z,,...,z,. We introduce a new graph with n
vertices which depends explicitely on the values of x;,...,x,. The vertices of this
graph, g;f(ml, ...y&yn), are 1,...,n. The vertex i corresponds to the variable z;
and we have an edge e(7,j) between vertices 7 and j if and only if ¢,(=;, ;) # 0.
Clearly, if in (3.23) the variables ; have given values, then only the connected partial
graphs of GX(z1,...,,) contribute to (3.23). Consequently, if GT(z4,...,z,) is not
connected, then ¢T(z;,...,z,) = 0 for those values of z4,...,z,.

Lemma 3.3

Let 24,...,2, be a sequence of n fired elements of 1, not necessarily different.
Let GI(&1,...,%,) be the graph with n vertices, the vertez © for the element &; of
the sequence, and whose edges are all edges e(i,7) for which py(2;,2;) # 0. If
GI(&1,...,2,) is not connected, then

(,05(131 = "’&17 ey Tn = i\:n) = 0 (326)

We finish this section by an example, the Ising model, with no magnetic field. Notice
that the partition function Z is not given directly as

i !
Z =1+ nzz:l — (Gn) (3.27)
One of the nontrivial steps in the study of a model is often to write Z as in (3.27).
One method is to try to write Z as the partition function of a system of polymers.
In the case of the Ising model, at low temperature and in absence of a magnetic
field an expression like (3.27) for the partition function is well-known. Here the
basic objects are the contours which describe the configurations of the model.

Let A be a finite subset of Z? with + b.c. We suppose that A is simply connected
so that each family of closed disjoint contours v = (y1,...,7») on A*, ie. each
A*-compatible family of contours, is also a A*-compatible family of contours. The
main point here is that there is a one-to-one correspondence between the set of all
configurations ¢ compatible with the + b.c. for A and the set of all families of A*-
compatible contours in A*. This is important, because we can check locally whether
¥ = (71,--.,7) is A*-compatible : we need only to check that v, =0 i =1,...n,
and 7¥;, 74; are disjoint for all © # j. Because of this property we can write the
function G, using the following (local) hard-core potential. Let Q be the set of all
closed contours in A*. The hard-core potential ¢,(7,v’) is defined on © x £ by

0 if ~,4" disjoint

P27, 7) = { —1 if yN~4" not disjoint (3:28)
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The energy of a configuration, compatible with the + b.c., is equal to (up to a
constant)

—~J/2 Z Z (t)o(t') — 1) Z 2J |yi(e)| (3.29)

where (71(7),...,¥n(e)) is the family of all contours in o. Let

z(7) = exp(-2J|7() (3.30)

(we recall that |y| is the number of edges of 4 and represents its length). We define

R N G tibl
Gn(’Yl;---,')’n) s { i i=1 Z(V) 1 (71 ~ ) 18 compatibie (331)

otherwise

We can express G, as

n

Gn(y1,- - 7n) = T 2(9) TT(1 + w2(%:,75)) (3.32)

i=1 i<j

and the partition function, up to a constant, is equal to

l-l-Z Yoo Y Galmy o) (3.33)

11>1 ‘71 (31] 'Yuen

From lemma 3.3 we see that a necessary condition for ¢Z(vi,...,7s) to be nonzero
is that

n

U v; 1s a connected subset (3.34)
i=1
Indeed, if this is not the case we can partition the sequence 7;,...,7, into two
subsequences v;,...,7 and Yki1,...,7n (by labelling the contours conveniently) so
that each contour of the first subsequence is disjoint from each contour of the second
subsequence. This implies that the graph GT(91,...,7,) is not connected.

3.2 The tree-graph bound.

We suppose that z,,...,, have given fixed values. Let GZ(z,...,z,) be the graph
defined in lemma 3.3. We have

Pen. . 2) = Y H(C) (3.35)
where in (3.35) we sum over all connected partial graphs of GI(z4,...,,). Thereis
a distinguished class of connected partial graphs of GI(z1,...,z,) : the trees. A tree

is a connected graph without closed path (cycle). The following three definitions
are equivalent. A {ree is a connected graph such that if we delete one edge then the
resulting graph is not connected. A treeis a graph without cycle such that each time
we add one edge then the resulting graph has exactly one cycle. Finally a tree with n
vertices is a connected graph with n — 1 edges. This class of graphs is relatively easy
to handle and this is why in Statistical Mechanics a problem i1s often solved in the
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"tree-graph approximation” which simply means that the sum (3.35) is restricted to
the trees (see the article of Domb in [D.G]). Our goal is to have a theorem giving
sufficient conditions for the convergence of the cluster expansion. This is achieved
by proving the tree-graph bound on ¢Z which we now explain in details.

Let C be a connected partial graph of GI(z4,...,z,), 1,...,z, having fixed values.
We associate with C a specific tree T = 7 (C) following a paper by Penrose [P]. The
graph C has n vertices 1,...,n, and we define a weight w(7) for each vertex:

w(l) =0 (3.36)

and

iy = { minimal length of a path (3.37)

in C with endpoints 1 and k

(the length of a path is the number of edges which compose the path). Since C is
connected, w(k) > 1 for k > 2. We construct a tree 7 by a two-step construction.

o We delete all edges (i, j) of C with w(i) = w(y)

After that operation, we get a connected graph C’ with the same weights. Moreover,
all edges e(%,7) of C' are such that

lw(@) —w(5)| =1 (3.38)

o Each vertex i # 1 of C' is connected by an edge to one or more vertices ; with
w(j) = w(i) — 1. We delete all these edges except the one with 7 minimal.

The resulting graph is still connected and clearly has no cycle because (3.38) holds.
It is the tree T7(C). Notice that the weights w(i) of T are equal to those of C.
Conversely, given a tree T and its weights, we can reconstruct all C such that
T(C) = 7. It is not difficult to prove that among all graphs C  GT, with T(C) = 7,
there is a maximal graph C*(’f’) with respect to the "partial graph” relation C. This
maximal graph is obtained from 7 as follows. Let i be a vertex of the tree, with
weight w(z) and which is connnected with the vertex k, with weight w(k) = w(i) -1
by an edge e(i,k). We add all edges e(i,j) of GI to the tree, with j > k and
w(j) = w(i)—1 and all edges e(z, j) of GT with w(j) = w(¢). We do this construction
for all vertices. (Of course an edge is added only once.) We have

{C . TC)=T}y={C: Tcccc(T) (3.39)
and we can write
Mz e = X #(0) (3.40)
ccgl .

C connected

= 3 #(T) > II p2(zi, z;)

I : tree C: e(z,7 7
gct'gg, T(C):T (vJ)GE(C)\E(T)

= > o7 II (Q+epalziz;)
T . tree e(i,7)€

Tcol E(CH(T)\B(T) .
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The expression (3.40) indicates how we can estimate @X(zy,...,z,). We estimate
the factor (e.g. using the stability of the potential)
II (4 ez zy)) (3.41)
B(i.j)E
E(cH(T)\B(T)

and then we must only consider a sum indexed by trees. This is the key point for
proving the convergence of the cluster expansion (see lemma 3.5). Notice that (3.41)
is particularly easy to estimate when —1 < p,(z;,z;) < 0, since we can replace the
factor (3.41) by one. In the case of a hard-core condition, where @y(z;,z;) = —1 or

0, as in (3.28), the product (3.41) is zero, except when C*(T) = T. In this case we
have

o (2q,...,2,) = > @(T) (3.42)
T tree CGL :
e (T)=T

We shall use this result in the example at the end of the chapter. However, this
identity is in general not very useful because we need to know the structure of G7
explicitely in order to write (3.42). Before stating lemma 3.4, which gives the tree-
graph bound, we recall that the incidence number d(i) of a vertex ¢ is the number
of edges of the graph which have the vertex 7 as endpoint.

Lemma 3.4

1) Let —1 < @a(z,y) < 0. Then

0< (1) (an,yz) < Y 1B(T)] (3.43)

T : tree
TCGT (z1,.0n)

2) If pa(z,y) =1 or 0, then
0< (=) tpl(2y,...,20) <n"2 (3.44)

8) The number T(n; d(1),...,d(n)) of trees with vertices 1,...,n and incidence
numbers d(1),...,d(n) is equal to

T(n; d(1),...,d(n)) = ( — 1?..M.,2d(n) i ) (3.45)
Proof.

The bound n™~? is simply the number of trees with n vertices. Statement 3) is
Cayley formula. For a proof see e.g. [B].



976 Pfister H.P.A.

3.3 Convergence of the cluster expansion.

We use lemma 3.4 in order to prove the convergence of the cluster expansion. Since
we need only to consider the case of a hard-core potential in these lectures, we
consider this case, and to be specific we consider the cluster expansion for the Ising
model at low temperature. Other situations are treated almost identically.

We first prove a lemma for the set ) of all contours on L*, the dual lattice. To each
v € Q we have a weight z(y) which can be complex. We suppose that there is an
upper bound

|2(7)] < w(v) (3.46)

such that w(y) = w(y') for any contour 4’ obtained by a translation of 4.The hard-
core condition is expressed by the function ¢,(7y,7') (see (3.28) and (3.32)). For any
7, there is a finite subset i(7y) such that

(v and 4" not disjoint) = (v’ Ni(y) # 0) (3.47)
For the 2-dim. Ising model i(y) is the set Z2 N+, and |i(v)| < |v].

Lemma 3.5

Under the above condition, if

C= Y wly)explfi(y)]) < oo (3.48)

AL

(where t* is any site of the dual lattice L*) then

3 e Zm (93000 5 Pl f_[w(vk) <(n—-1)C" (3.49)

Y1 39t* 72 k=1

Proof.

By lemma 3.4 we have

S e () f{ el < (3.50)

y13t* Y2 In
S T 11 et IGw)
TCOn m13t* M2 CIn e(1,7)eT k=1
The last sum in (3.50) is over all trees of the complete graph with n vertices 1,...,n.
Let T be a fixed tree with incidence numbers d(1),...,d(n). The summation is done

in the following order. We first sum over all 4%, kK > 2 such that d(y) = 1. Such
values of k correspond to extremities of the tree 7. Let 3__ denote the sum over
all ¥ which contain a fixed point t*. Since the upper bound on |z(¥)|, w(7), is
independent on the position of the contour ~,

S P fw(y)] (3.51)
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is independent on the fixed point ¢*. Let k > 2 be such that d(k) = 1 and let 7 be
the (unique) vertex which is connected to k in 7. We have v; N v # 0 and we get
by summing over <y a contribution which is smaller than

[i(9)l 207, wlme) = i) 37 ()" () (3.52)

We do the summation for all k¥ with d(k) = 1 and then delete from 7 all edges
containing such points. We get a new tree 7" and we sum over all 7; such that j > 2
and j is an extremity of 7’'. The summation over <; gives a contribution bounded

by
i(9)l 227, Ji5)1 D () (3.53)

where d(j) is the incidence number of j for the initial tree 7 and ¢ is the unique
vertex connected to j in the new tree 7'. Therefore,

2 2 2 el ) IH |2()| < (3.54)

Y1 It* ¥2 Yn
3o [l Pw HZ )| ()

The sum over the trees is easy since
(n —2)!

T(n,d(1),...,d(n)) = (d(1) = 1)+ (d(n) — 1)!

. (n — 1)!
= @A) = D+ (d(n) — 1)]

From (3.54) and (3.55), we get by summing over d(¢) the bound (n — 1)! C™ for
(3.50).

(3.55)

Theorem 3.1

Let A be a simply connected finite subset of Z2. Let A" be the dual of A (as cell
complex) and let the hypothesis of lemma 3.5 be satisfied,

> w(y)exp(i(y)]) < C (3.56)

R EL

with a constant C' < 1.
1) The partition function for the Ising model, with + b.c. is given by

N=1+L = ¥ - % I (3.57)

n>1 ‘YICA* T CA* k=1
n
= exp (Z S Y el m) I Z('rk))
n>1 'TICA YnCA* k=1

The series in the argument of the exponential function is absolutely convergent. It
is the cluster expansion of In Z*(A).
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2) If z(y) = z(v') for all 4" which are obtained by a translation of v, and if for
each p A, is a square, Apy1 D A,, such that eventually any finite subset A C 77 is
m A, then '

1
. L + .
pl}-tr{olo TGFE InZ7(A,) = (3.58)
1 n
— 2 2 en(my o) T 2(w)
n>1 Ty I3t 2 Yn k=1

and the series is absolutely convergent. If for each vy, z(y) is a function of some
parameter 8, 6 — z(v|6), which is analytic in 8 for 8 € D, some domain in D, then
the function defined by (3.58) is analytic in 6, § € D. In the above formula t* is
any point of the dual lattice.

Remark
Part 2) of Theorem 3.1 is still true if the sequence A, tends to Z? in the sense of
van Hove when p tends to infinity (see [Ru] p. 14).

Proof.

The condition

> exp(lim))z(7)] < 3 exp(i(y)w(y)] < 1 (3.59)

¥t ¥t

leads immediately to the absolute convergence of the cluster expansion. Indeed
from lemma 3.5, we see that condition (3.3) of lemma 3.1 is verified. Part 2) is a
consequence of the absolute convergence.

We finish the section by an example for the readers which are not familiar with the
cluster expansion. Let Z = 1 + 2. We can think of Z as the partition function of a
system of particles with hard-core interaction only, activity z, in a zero-dimensional
space ! Applying the results above, we have

1
1+ 2z=exp (Z 1—1—'(,05(1, . ,n)z”) (3.60)

szl e

for |z| sufficiently small. Here I (1,...,n) is given by

PI(L,..om) = ¥ () (3.61)

C:connected
n

with G,, the complete graph with n vertices. The function ¢(C) is
#(C) = (—1)FC) (3.62)

It 1s instructive to write down explicitely some terms of the cluster expansion. Al-
ready for n = 4, ¢T(1,2,3,4) is a sum of 38 terms. On the other hand, the number
of connected C, C C G4, which are trees is only 16. The condition C' < 1 is equivalent
to |z| -e = 1. Thus, from theorem 3.1, the cluster expansion converges for |z| < 1/e.
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However, since in (3.3) G, is the complete graph with n vertices, it is not difficult
to show that in the identity (3.42), only the trees which are chains starting at 1

contribute to ¢Z(1,...,n). Since there are (n — 1)! such chains we get
1 byt
> 2, m = 3 ET (3.63)
n>1

as it should be ! Notice that the convergence radius of the cluster expansion is one
since there is a "non-physical” singularity at z = —1. The physical values of z are
positive, and for those values Z is analytic.
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4 The phase of small contours.

In this section we study the Ising model at low temperature,with + b.c. and when
we take into account only the spin configurations in which all contours have a given
maximal size. The phase obtained in this way is called the phase of small contours.
When we restrict the size of the contours appearing in the positively magnetized
phase of the Ising model, then it is possible to continue analytically the correspond-
ing free energy in the magnetic field A up to some negative value —h* depending on
the maximal size of the allowed contours. On the other hand, we know that this
is not possible for the Ising model : the free energy has an essential singularity at
h =0 [I.1], [I.2]. The phase of small contours has a positive magnetization for neg-
ative values of the magnetic field A, —h* < h < 0. For these values of the magnetic
field this phase has been proposed as a possible metastable phase by Capocaccia,
Cassandro and Olivieri [C.C.0], and it is essentially the unstable phase introduced
by Zahradnik in its formulation of Pirogov-Sinai theory [Z]. Our main purpose here
is to get a precise estimation of A*. From such an information we get useful results
on large deviations of the magnetization in this phase at o = 0. This is the subject
of section 5.

4.1 Ising model with an inhomogeneous magnetic field.

We consider the model with coupling constant J and inhomogeneous magnetic field
k. The inverse temperature is not introduced explicitely. It is convenient to normal-
ize the Hamiltonian according to the boundary condition which is chosen. Let A be
some finite subset of Z® which is simply connected, and let us consider the + b.c.
for A,i.e. o(t) =1ift € A. We normalize the Hamiltonian so that the configuration
o(t) = 1 has energy zero,

=-J/2 Y (o(t)a(t) — 1) = S h(t)(o(t) - 1) (4.1)

tt" teA
dy (t,t')=1

If we have — b.c. we normalize the energy so that

Hy =-J/2 5 (o(t)o(t) — 1) — Sh(t)(o(t) + 1) (4.2)

.t teA
di(t,t)=1

The corresponding partition functions are Z*(A) and Z7(A).

Let v be a (low-temperature) contour and let o., be the configuration on 7Z? which
is specified by «, and the + b.c. At the end of section 2.1.2. we have defined int~y
and inty. We recall that inty is the set of all ¢ such that o.,(¢) = —1 and the volume
of 4, vol(7), is equal to the cardinality of inty . All spins at ¢ € inty\inty have the
same value in any configuration which has 4 as one of its contours. We say that v
is of type +, resp. type —, if the value of these spins is + 1, resp. — 1. The type of
a contour depends on the whole spin configuration and the choice of the boundary
condition. The pair, which is constituted by a closed contour and the type of the
contour, is a signed contour. We say that v is an outer contour if it is not contained
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in the interior of another contour. For outer signed contours the type depends only
on the b.c. If we have + b.c., resp. — b.c., then an outer signed contour is of type
—, resp. —+.

We define a function £(«y) for signed contour :

() = { exp 5—2le| ~ 2%,y (1)), 7 of type — s

exp (—2J|y| + 2%, . k(t)) v of type +

We can write

M) =14 o % flem) (4.4)

n>1 ' Yiyee¥nl Je=1
compatlble

respectively

7ZW=1+¥ = ¥ Il&mw (45)

n21 i cz;r;i;;’t’;’l':le k=1

All contours in (4.4) and (4.5) are signed contours and the notion of compatibility
is the A*-compatibility, resp. the A~-compatibility. Notice that the weight £(7)
depends explicitely on the type of the contour, and therefore we cannot apply directly
the method of the cluster expansion, since the notion of compatibility is not local.
The way to solve this difficulty has been indicated by Minlos and Sinai. In (4.4)
(or in (4.5)) we resum over all contours which are not outer contours. A simple
computation leads to the identity

ZFA) =143 = Z H £(7e) - Z™ (intye) (4.6)

HYnl
outer contours
compatible

and a similar expression holds for Z7(A). Since all contours are outer contours they
have the same type. We write the product in (4.6) as

. o Z 7 (inty) ;
270 - [ S48 5 w
and put
o) 1= ) ¢ 2 L) (48)
Z*(inty)

so that we get for (4.6)

Z*A) =1+ —1-1 > ﬁ - Z* (inty) (4.9)

n>1 * Y1y Ynt k=1
- outer contours
compatible
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Since Z*(int~) i1s the partition function of a system with + b.c. we can express it
in terms of outer contours inside int+, as in (4.9). Iterating this procedure we get

=1+ L Il (4.10)

nZl £ Y1 geeey Yn: k=1
contours of type-—
compatible

where in (4.10) only contours of type — occur and the compatibility condition is

purely geometrical and local. A similar expression holds for Z~(A).

The isoperimetric inequality on the lattice is

I > 16 - vol() (3-11)

Definition :

Let s be some positive number. A contour is s-small (or small if the
value of s is fixed) whenever vol(y) < s®. The class of s-small contours
is denoted by Q(s).

An important property of this definition is that a contour  is small if it is contained
in the interior of a small contour. Let 4 be a small contour. Let ReJ > 0 and
h* = sup |h(t)|. We have

€(1)] < exp(—2ReJ|y| + 2 h7vol(v)) (4.12)
< exp (—2ReJ (1 — "}}I—'ﬁ%!g—)) |‘y|)

exp (—2ReJ (1 - Eﬁi———?—)ﬁ) I’rl)

h*
< exp (—2ReJ (1 - 4Re?) |'7|)

IA

Theorem 4.1

Let J € C, ReJ > 0, be the coupling constant of the 2-dimensional Ising model. Let
h(t) € C be an inhomogeneous magnetic field and let (s), s € N, be the class of all
s -small contours v, i.e. vol(y) < s%. Let

h* s
4ReJ

=6 <1, h”=suplh(t). (4.13)
¢

If ReJ > Jo, Jo ts given in (4.22), then the cluster expansion for s-small contours
of one particular type,

n

)T SIED DI SINECREAY | PITS (4.14)

n>1 """ 4 €€Q(s) v2€0(s) T €Q(s) k=1
not*
is absolutely convergent. All contours are of type + (resp. — ) if we have — (resp.

+) boundary condition.
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Remarks.

1) If A is a simply connected finite subset and (A, s) is the set of all s- small
contours in A, then under the same hypothesis

ZT(A,s) = exp (Z;} 3, w3 905(71,---,%)ln_IZ('rk))(4-15)

n>1 """ y1€0(A,s) Yn€Q(A,s) k=1

where in (4.15) we sum over all small contours of type —.

2) We can still apply (4.15) in the following situation. Let A be a bounded
set. For each connected component of A we have either + b.c. or — b.c., and the
Hamiltonian is normalized so that the configuration with no contour has energy
zero. We suppose that

o there is a one-to-one correspondence between the set of all allowed configu-
rations in A compatible with the boundary condition on A and the set of all
families of A*-compatible s-small contours.

The corresponding parfition function is denoted by Z(A, s) and

Z(A,s) = exp (Z% )IEEETTIED ) @f(vl,---,7n)’}i[Z(7k)) (4.16)

n>1 " y1€N(As)  yu€R(A8)

3) The same theorem holds if we replace the definition of s-small contour by
the following one: a contour v is s-small if any connected component of inty has a
volume smaller than s?. This generalization is used in section 8.

Proof.

We apply the results of section 3. Let K > 0 be large enough so that

af(K):= 3 || exp(—=K]|y]) - exp(li(7)]) (4.17)
¥: YEQ(s)
v3t*

is convergent. Notice that

Iv/4 < ()| < I (4.18)

The function a(K ) behaves essentially like exp(—4K) for large K. We verify condi-
tion (3.48) of lemma 3.5 with a constant C' smaller than one, so that we can apply

theorem 3.1. It is sufficient to find a function w(7), invariant by translation, such
that

> w(v)expli(y) <1 (4.19)

v: vEQN(s)
v3t*

The proof of the existence of w(y) is done inductively. We say that v € §Q(s) is
of class one if its interior cannot contain any contour. We say that v is of class

983
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two when its interior can contain only contours of class one. Inductively we define
contours of class ¢q. Let K be large enough so that a(K) < 1 and A(K) < 1, with

oK)
MK) i= ———— 4.20
1K) 1—a(K) ( )
We choose Ky > K and so that
sh* 1 )
. = = 9* 421
el 1o ME) - TNy =¢ < )
We define
B S KO
= (4.22)

Lemma 4.1

Let J and h satisfy the conditions of theorem 4.1. Let~ be a contour of class smaller
or equal to q. We suppose that

S = el L 171 < 2hevol(y) (423)
with

hq s "

ey = (4.24)
so that

|2(y|R)| < exp(—Kolv) (4.25)

Then for all contours 4 of class (q+ 1) we have

#314)] < exp(—Kol3]) (4.20
and
2T = expl(318) (IR < Zhersvel(3) (127
with
Ryt = B* + M(Ko) - by (4.28)

and (4.24) holds with h,yy instead of h,.
Proof.

Let A be a bounded simply connected set and let Z(A[k) be the partition function
for contours of class < g with + boundary condition for A. All contours appearing
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in the expression of Z}(A|h) are of type —. Since a(Ky) < 1 the cluster expansion
of Z}(A|h) is absolutely convergent. We estimate the quotient

Zg(AlR)

ZI(AN) - et

exp Z Z © 3 Pr (e s ) (kf[zvklh fIZ(‘Yk|O))

1‘1>l Yn. k=1
class(q class<q
If z i1s a complex number, then

1
le* — 1| = |:cf e*dt| < |z|e®! (4.30)
0

We have by hypothesis (4.23) and the isoperimetric inequality

TT =Crel) = TT =(wlo)] = a1

k=1 k=1

hq ﬂ |2(7[0)] H 7i|? exp(2hqvol(7k))

k=1 k=1

By hypothesis (4.24) and the identity z(7%|0) = £(7#]0)

|2(7]0)| exp(2hqvol(7z)) < exp (—2ReJ (1w 4’;;) |’y|) (4.32)

< exp(~2ReJ(1 - 6)]y])
< exp(—Ko|7l)
and therefore we get (following the proof of lemma 3.5)
1 n n
o2 2 lenlr o m I 2(nlh) = TT 2(el0)f < (4:33)
n>1

W Tn k=1 k=1
class<q class<q

Sl X ) TT el 2(l0) exp(2hgvol(n) <

n)l mn Yn k=1
class<q class<q

hlA") T o Ko
n>1

bl A™|A(Ko)
Exactly the same result holds for the — b.c. Using the identiy
Z5(Al0) = Z, (Al0) (4.34)
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we can write for any contour v of class g + 1, say of type +,(since int(«y) is simply
connected)

Z*(int(y)|k)

€(y)] |Z+(int(‘r)|h) Z"(int(‘r)lo)'
Y11 Z% (nt(7)[0) Z-(int(7)[h)
< exp(~2ReJ || + 2(h" + hyM(Ko))vol(7))
Thus we have
hoy1 = h™ + hoA(Ko) (4.36)
and
sh* shaA(Ko) .
Red T Tamey S fONK0) (4:31)
_ 6 (Ko)
= U TINEY)
= ¢
Formula (4.26) follows since by hypothesis
2ReJ(1 —-6") > K, (4.38)

Theorem 4.1 can now be proved without difficulty. For contours of class 1 we have

lz(v)] = [€(7)| < exp(—2ReJ|y| + 2h™vol(7)) (4.39)
sh*
< exp(~2ReJh(1 - 7))

and the hypothesis of lemma 4.1 are fulfilled with h; = h. Thus for all contours of
class 2 the hypothesis of lemma 4.1 are fulfilled with

ha = h™(1 4+ AM(Ky)) > hy (4.40)
By induction the hypothesis of lemma 4.1 are fufilled for contours of class g+ 1 with
hgtr = R (1 + A(Ko) + -+ + (AM(Ko))?) > by (4.41)
and therefore the bound (4.25) holds for all small contours. The cluster expansion

is absolutely convergent.

4.2 Remarks on the phase of small contours.

In this section we always suppose that A is a finite set with the property

e there is a one-to-one correspondence between the set of all allowed configu-
rations in A compatible with the boundary condition on A and the set of all
families of A*-compatible s-small contours.
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The partition function of the phase of small contours is denoted by Z(A,s). Since
A is not necessarily a connected set we may have different boundary conditions on
the different connected components of A. However, these boundary conditions are
either + b.c. or — b.c. The set of small contours in A is denoted by 2(A, s). If the
hypothesis of theorem 4.1 are fulfilled, then we have a cluster expansion for Z(A)
(see remark 2 following theorem 4.1) :

Z("\,8)=exp(Z;;zl—1 )IEETTID Y wf(vl,---,vn)ﬁz(%)) (4.42)

n>1 " 4 €Q(A,9) mEN(A,s) k=1

where in (4.42) the type of the contours is +, resp. —, if the contour is contained in
a component of A with — b.c., resp. + b.c. The free energy of the phase, P,(A), is
given by the formula

exp(|A|Py(A)) := Z(A, 3) (4.43)

The statistical properties of the phase of small contours are described by the measure
{ +) (A, s) which is obtained by conditioning the Gibbs measure defined on A with
respect to the set of configurations which contain only s-small contours.

1. Let v be a small contour of type —.
Z~ (inty)
- Pl il & =) 4.44
1) =€) i (44

f V) exp (= Seeinss (1)) Z- (int)
-21\|J h . ==
\ ( h’l + tEi—f;%\int'y (t)) } exp (+ Zteint‘y h’(t)) Z+(int’7)
( \\ 5-
exp | -2 (J!ﬂ + > k()] ]- E—(—)
\ @

inty
t€inty\inty / ) (lnt”y )

exp

where Z- resp. Z* are the partition functions for the Hamiltonian

H=-J/2 Z (o(t)o(t') — 1) = Y h(t)o(t) (4.45)
dl(t.’:’)=1 t

with — b.c., resp. + b.c. A similar expression holds for contours of type +.

Lemma 4.2

Let J > 0, h real and K = 2J(1 — 6*). If the hypothesis of theorem 4.1 are fulfilled
and if K is so large such that

3 |p°|3re BN < (4.46)

p20

then there exists a function x, independent on the magnetic field h and of A, so that

RRCWIPNGS (4.47)
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For large K, we have
x(K) = O(exp(—4K)) (4.48)
Proof.

We compute for a contour of type —

dz

— = —2[nt7\inty[ - 2 + (4.49)
(tazm cr(t)>_ (inty|h) - z — <t€i§W a(t)>+ (inty|h) - 2
and
By 450)
;’,j ( 2[inty\inty| + ( eizma(t)y (inty|R) - <Z cr(t)>+ (inwah))
+Z Z( (8);0(t))” (inty|h) — (o(t); o(t)) " (inty|h))
where
(o(t); o (t) = (a(t) - o(t)) = (o(1)) - (o(t)) (4.51)
Therefore
| |<2| | - voly (4.52)
and
| dh,,l < 62|(voly)” < |2]}* (4.53)

The free energy P,(A) is given by the series in (4.42) divided by |A|. We may derive
it term by term since (4.46) holds. The lemma follows easily from the estimate
(4.25) of lemma 4.1 and (4.46).

2. We give an expression of the expectation value of the local observable o(A), when
the cluster expansion is convergent. We consider for example the state (- )* (A, s)

of the phase of small contours with + b.c. We use a simple trick, which we learn
from Kunz and Souillard. We define

-1 ift € inty
o(t) = { 1L g ey (4.54)

Let A be given. We introduce new weights for the (signed) contours,

£(y) = II o(t)é() (4.55)

teA
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with £(v) given by (4.3). We can write the numerator of {¢(A))* (A, s) as

1 n
Zi(A ) =1+3 5 3. €' (i) (4.56)
LI P Y k=1
compatibie

Notice that we have £(y) = £'(vy) if ANinty = 0. The weights are modified only
locally. We have also a convergent cluster expansion with the new weights. Therefore

(o(A))" (A,8) = (4.57)
exp (Z% S S i) (: Z'(m) - fI Z('rk)))
B el wgedl =1 k=1

In the expression (4.57) all terms cancel in the sum unless there is a +; such that
AnNinty # 0. From (4.57) we see immediately that in the phase of small contours
the expectation value {(o(A))* (A, s) is analytic in the magnetic field. When there is
no magnectic field we have a similar expression for (¢(A))* (A), but in this case we
do not need the restriction that the contours are small. It is very easy to compare
the ratio of the expectation values computed with or without this restriction, since
all terms in (4.57) appear in the analogous expression for (o(A))* (A).

Lemma 4.3

Let A be a simply connected set, and let A be a finite subset of A. If there is no
magnetic field and if J is large enough, then

[{o(A)T (A, 5) = (o(A))" (A)] < |AO (exp(~8JL*)) - (o(A))T (A) (4.58)

989
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5 An estimate of the large deviations of the mag-
netization in the phase of small contours.

We study the total magnetization in the phase of small contours for a system in a box
A. The results presented here are based on lemma 4.2. We show how Chebyshev’s
inequality allows to control the large deviations and leads to Bernstein’s inequality.

5.1 Chebyshev’s inequality and large deviations.

Let o(t) be a real-valued random variable indexed by t € A, A a finite set. The
expectation value for these random variables is denoted by E(:). The generating
function of the cumulants of the random variables is P(A|p),

exp (AIP(Alg) = E (expls 1) (5.1)

teA

In the rest of the paragraph we suppose that this function is well-defined and finite
in some interval containing g = 0 as interior point. For those values of y we can
define a new probability law for the random variables o(t), by setting for an event

A
_ E(Aexp(pTiena(t)))

E(Aln) := 5.2
(AR = " (explu e o(1)) 52
Of course E(-|p = 0) = E(-). By formal differentiation with respect to p, we get the
identities
d
Al P(Alg) = ECE o(t) 1) (5.3)
H teA
and

AL P (M) = E ((2 o(6) ~ ECT (0} m) >0 (5.4)

teA teA

which are the mean value and the variance of the random variables with respect to
the new probability law indexed by p.

Lemma 5.1

Let o(t), t € A, be a family of real-valued random variables indezed by the elements
of the finite set A. Let P(A|p) be defined on the interval I = (1, u2], which contains
the point p = 0. We suppose that P(A|u) is of class C*(I) and that

42
sup —P(Al|p) < C(A) < » (5.5)
el dp?
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Let M(A) = E(E e o(t)).

o Fz/(|A|C(A)) €1 and —z/(|A|C(A)) € 1, then

E ({150t - MOV 2 2}) < 26 (~ 573 ) (56)

teA

o If o/(JAIC(A)) €1 or z/(|A|C(A)) €1, then

€ (15 ot~ ) 2 ) < 2emp (-uz + G G?) (s)
with p* = min{|p1|, pa}
Proof.

We estimate

Q1 = Prob({d_o(t) — M(A) > z}) (5.8)

tel

If p > 0, then we get by Chebyshev’s inequality

9 < exp(—u(M(A) +2)) (exw}: ) (5.9)
teEA
— exp(—u(M(A) + =)+ |AIP(ALW)

We may write
P(AlK) = P(AI0) + Z-P(Alk =) (5.10)
+ 1/2iP(A|# = p') - p?
for some 4, 0 < p' < p. Here P(A[0) = 0 and |A| £ P(Alu = 0) = M(A). Thus

Q1 < exp(—pz + 1/2p*|A|C(A)) (5.11)
We look for the best choice of u. In the first case the best choice is p = z/(|A|C(A))

and in the second case the best choice is p;. Similarly we estimate

Q2 = Prob({d o(t)— M(A) < —z}) (5.12)

teA

< exp(-u(M() ~2) - (expu T o(0)) <0

teA

and we get

Q2 < exp(pz + 1/2u”|A|C(A)) (5.13)
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The best choice of y in the first case is —z/(|A|C(A)) and in the second case, u =
Ha-

We apply lemma 5.1 to the random variables o(t) of the Ising model when E(-) is the
expectation value corresponding to the probability measure of the phase of s-small
contours without magnetic field. We express the results by introducing explicitely
the inverse temperature 3 : We replace J by B which is equivalent to choose the
coupling constant of the two-body interaction equal to one. Let A be a subset of
Z%. For each connected component of A we have either + b.c. or — b.c. The only
hypothesis on A, as in section 4.2, is that there is a bijection between the set of
configurations of the model, compatible with the boundary conditions on A, and
the set of all A*- compatible families of small contours in A*. This hypothesis allows
to use the method of the cluster expansion and to apply lemma 4.2. The expectation
value E(-) 1s ( - ) (A, s) and the expectation value E(-|u) is ( - ) (A, s|g), which is the
expectation value in the phase of small contours with J = 3 and h = u. We estimate

Prob ({5 o(0) - (o(6) (8,1 2 A1} (5.1

teA

If B is large enough, then we can continue analytically the function P(A,u) from
p =0 up to |u| < p*, with

i’ = 4’69 0<f<1 (5.15)

where 6 is some fixed number. The constant C'(A) of lemma 5.1 is estimated using
lemma 4.2,

C(4) = X(8) 510
with
X(B) = O(exp(—8(1 — 6*)3)) (5.17)
For any ¢ we have
€|Al . €
AIC(A) ~ X(8) (5.18)

and the value of this quotient is smaller or greater than p*, depending on the value
of B. Notice that for large 3 it is always greater than p*

Theorem 5.1

Let A be a bounded set. For each connected component of A we have either + b.c. or
— b.c. and we suppose that there is a one-to-one correspondence between the set of
configurations of the model, compatible with the boundary condition for A, and the set
of all A*- compatible families of small contours in A*. Let (- ) (A, s) be the measure
of the phase of s-small contours at inverse temperature 3 and without magnetic field.
Let 8, 0 < 8 < 1 be given and let X(B) be the function of (5.17). There exists 3o,



Vol. 64, 1991 Pfister 993

independent on A and s, such that for B > 3y the following statements are true.

o If ¢/X(B) < 488/, then

Prob ({1 o(6) - (o(6)) (4,9)| 2 dAl}) < 2exp (~ 5 slAl)  (5:19)
o If ¢/X(B) > 480/s, then
il ({lga(t) — (o) (A, 9] 2 erAq}) < (5.20)

9 exp (ﬁ6§§£| Al (1 B Qﬁsz(sﬁ)e))

All probabilities are computed with the measure { - ) (A, s).

Remarks.
1) The same results hold if we choose the other definition of small contours
mentioned in remark 3 following theorem 4.1.

2) In the next sections we apply the second part of this theorem when |A| =
s = L% and e = Cy/L°, with ¢ = 1 — a. Let 6’ be some fixed number, 0 < ¢’ < 1. If
1 < ¢ < 1/2, then there exist 3y and Lo such that for all 3 > 3¢ and L > Lo,

Prob ({1 a(t) ~ (o(6) (A,6) 2 Co/L° A1) < (5.21)
teA
2exp (—4C,660'L)
If 1/2 < ¢ < 1, then there exist 8y and Lo(3) such that for all 3 > B and L > Lo(S),
Prob ({| > a(t) = (a(t)) (A, s)] > C1/L° - |A|}) < (5.22)

teA

Ct
e (*W'A')
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6 Surface tension.

The main topic of this section is the study of the surface tension for the 2- dim.
Ising model. The surface tension is a basic thermodynamical quantity when there
is coexistence of several phases. It determines in particular the shape of a macro-
scopic droplet of one phase in presence of the other phase. The surface tension
is non zero only in the coexistence region of the phase diagram. Consequently we
always suppose that there is no magnetic field in this and subsequent sections. We
introduce explicitely the inverse temperature 8 and choose J = 1 for the coupling
constant of the model. The main tools which we use are correlation inequalities and
duality. The notion of duality was introduced by Krammer and Wannier and used
to determine the critical temperature of the Ising model. In this form the duality
is the statement that some properties of the two-dimensional Ising model below the
critical temperature are related to other properties at high-temperature. Later on
Wegner [W] introduced the modern notion of duality for spin systems defined on
a cell-complex. In these lectures we need only Krammer-Wannier duality which is
defined in section 6.1. We define the surface tension in section 6.2 and proves its
existence in section 6.3. The last section 6.4 contains two estimates on probabilities
of events, which are expressed in terms of large contours. The estimates in 6.4.1
and 6.4.2 are basic estimates for sections 7 and 8.

6.1 Duality transformation.

Let A be some finite box with + b.c. We define Z*(A) as in section 4, by normalizing
the energy so that the configuration o(¢) = 1 has energy zero. The configurations
compatible with + b.c. are uniquely described by sets v of closed contours, which
are At-compatible (see section 2.1.2). Here we do not introduce the signed contours
because we have no magnetic field. The partition function is

Zt A= Y exp(-2) I (6.1)
i YEY
A+ —compatible B

Lemma 6.1

Let A be simply connected. Then any family of A*-compatible contours is A*-
compatible and vice-versa.

Proof.

Let v be a A"-compatible family. We first consider the outer contours of 7, say
T,---,7p- We construct a spin configuration &. Since A is simply connected inty; N
A = inty;, and we can define a configuration o which is compatible with the + b.c.
by setting o(t) = +1 ift inty;, i =1,...pand o(t) = —1if t € inty;, 2 = 1,...p.
The value of ¢ is 6(t) = o(t) for all ¢ € inty;, ¢ = 1,...p. Then we consider the
contours, if any, which are in the interior of ;. If there is no contour then the value
of the configuration & is 6(t) = o(¢) for t € inty;. If there are some contours in
inty;, say Ypt1,--.,7,, then we consider the outer contours among these contours,
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SAY Yp+1s- -+, Yr- We define 5(t) = o(t) for all ¢ € inty,\ U}_,,, inty; and we change
the sign of o(t) for all ¢ € U}__,,inty;. Iterating this procedure we finally get the
configuration 4.

Given A, we construct A* as in section 2.1.1. On this set we define the Ising model
with free boundary condition (f-b.c.) by

H{.=-1/2 Y o(t)o(t) (6.2)
t, t'eA”
di(t,t')=1

The inverse temperature of this model is 3*. The high-temperature erpansion for
the partition function of this model is equal to

> II exp(Bo(t)o(t)) = (6.3)
spin conf " E{:‘,::)}:l

3" T(cosh B~ + o(t)o(t) sinh B7) =
(cosh )€ 3" T[(1 + o(t)o (') tanh 57)

We expand the product in (6.3). Each term of the expansion is labelled by a set of
edges on A*, which we decompose into connected components v;,4z,.... If a term
is such that the corresponding components 7;,... have no boundary (see section
2.1.1), then each spin variable of the term occurs an even number of times. Since
o(t)? = 1, the contribution of this term to (6.3) is

(tanh 8)2: bl (6.4)

The summation over the configurations is trivial in this case and equal to 24" All
other terms do not contribute to the sum because at least one spin variable occurs
an odd number of times. Let us normalize the partition function

ZWE)= Y (tanhgr)el (6.5)
compatigi.e on A*

Here the notion of compatibility is the A*-compatibility. We can state the duality
theorem of Krammer-Wannier.

Theorem 6.1

Let A be a finite set of Z? which is simply connected. Let A be the dual set of A and
let Z*(A|B), resp. Zf(A*|B*), be the normalized partition functions defined above.
If B and B* are in duality i.e. of

tanh 8~ = 2P (6.6)
then
Z*(A) = ZH(AY) (6.7)

The theorem is a direct corollary of lemma 6.1.

995
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Figure 2: the n-boundary condition

6.2 Surface tension.

Physically the surface tension is the contribution to the free energy coming from
the coexistence of phases. We refer to the review [Pf.1] for more informations, in
particular on the relations between surface tension, structure of interfaces and non
translation invariant Gibbs states.

Let us consider a box A(L, M) on 7?2,

with a new kind of boundary condition : = - b.c., where n is a unit vector of R

Let I(n) be the straight line of R? passing through (1/2,1/2) and perpendicular to
n. The n - b.c. is

o(t) ={ +1 if t & A(L,M), t above or on [(n)

—1if t ¢ A(L, M), t below i(n) 6.9)

The idea behind this choice of boundary condition is simple. Let us suppose for
simplicity that [(n) passes through two points a and b of the dual lattice as in figure
2. We consider the ground states of the model in A(L, M). They are characterized
as follows. Let A be a line on Z? passing through a and b and of minimal length. All
spins above A have value + 1 and all spins below A have value — 1. If the energy
of the ground state for the + b.c. is zero, then the energy of the ground states
in A(L, M) for the n - b.c. is —2|A|. In general, there are several ground states,
because there are several lines A of minimal length. We expect that the typical
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configurations for the n - b.c. are locally those of the + phase or — phase with
some ” interface” separating these regions, as A separates the spins o(¢{) = 1 and
a(t) = —1in a ground-state configuration. It is easy to prove that all configurations
in A(L, M) with n - b.c. are in one-to-one correspondence with a set of disjoint
contours such that

e there is a unique contour, say A, which is not closed and going from a to b

e all other contours are closed.

Let

FY(L,M)=—1nZ*(A(L, M)) (6.10)
be the free energy of the model in A(L, M) with + b.c.. Then

FY*(L,M) = f-|A(L,M)| +g" - |OA(L, M)| + h* (L, M) (6.11)

where f is the bulk free energy which is independent on the choice of the boundary
condition, gt is a surface free energy which depends strongly on the choice of the
boundary condition, At is a correction term, and |#A(L, M)| is the length of the
boundary of A(L, M). The important fact is that

1

él“_%’o WW(L’M” = (6.12)
Similarly we have

F7(L,M) = f-|A(L, M)| + g™ - |[0A(L, M)| + A~ (L, M) (6.13)
However, by symmetry |

g =g and h (L, M) = h*(L, M) (6.14)

On the other hand if we choose the n-b.c.
F™(L, M) = £ - |A(L, M) +g" - |0A(L, M)| + K"(L, M) (6.15)

We do not expect that g™ is equal to gt or g~, but since gt = g~ we expect that
the difference between g™ and g% is due only to the presence of the interface which
is induced by the n - b.c. This is precisely what is called the surface tension, and
we define

1 . Z™A(L, M))

T(n|A(L, M)) := (@ b) In Z+ (AL, M) (6.16)
(dz is the Euclidean distance) and
T(n) = I!im 7(n|A(L, M)) (6.17)

M—oo

Notice that we do not divide (6.16) by 1/3. The limits L — oo and M — oo in
(6.17) can be taken in any order (see [F.P.1]). This is a non trivial fact because the
interface is not rigid in dimension two, but fluctuates.

997
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6.3 Existence of the surface tension.

In this paragraph we prove that 7(n) is well-defined. This is done via a basic identity
which relates 7(n) to the mass-gap of the two-point function of the model at the
dual temperature. For this reason, we consider more closely the two-point correlation
function and more generally even-point correlation functions of the model with free
boundary condition.

It is convenient to introduce a contour model. Let A be some (finite) subset of the
lattice and let A* be the dual set of A. A configuration of the model is a family of

disjoint contours ¥ = (71,...,7n), not necessarily closed. We put
YEY

if 7 is a configuration. The weight of a configuration is

w(y) = [J(tanh g*)M! (6.19)

YEY

Let 4’ be a configuration. We put

Z(A"y) = 3 w(y) (6.20)

1:61:@
YUy’ compatible
and Z(A*) = Z(A*|0). The notion of compatibility means here that the contours of
7 U~7" are disjoint two by two.

We study the even-correlation functions of the model with free boundary condition
defined on A*. Let A be a subset of sites of A*, |A| even. Let o(A4) = [[;c4 o(t). We
consider the numerator of (c:r(A)))c (A*),

3 o(A)exp|B7/2 Z a(t)o(t') (6.21)

spin conf. tt'eA*:
di(t,t")=1

Up to a constant factor, (cosh §*)Hedges) . ob(sites) (6 21) is equal to

2 w)Z(Ay) (6.22)
6')'1:"4

The proof of (6.22) is similar to the proof of (6.5). Notice that Zf(A*) = Z(A*).
Thus

(oA (A7) = Z(A)7F - 30 w(1)Z(A*]y) (6.23)

7
61:A

Remark. '

If |A| is odd, then (U(A))'f (A*) = 0 because the number of points of §v is always
even, so that there is no v with §y = A. If A* is not connected, and if in a connected
component of A* there is an odd number of points of A, then again (¢(A4))’ (A*) = 0.
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Lemma 6.2

Let A be a subset of Z? and let A* be its dual set. Let A C A™ be an even subset of
A*. Then the correlation function (o(A)) (A*) of the Ising model on A* with free
b.c. is expressed in the contour model by

(e(A) (M) = Z(A) " 32 w(n)Z(A"]y) (6.24)

1:
61=A

We introduce the notion of massgap a(m) for the two-point function. Let m be
some unit vector of R? and let [*(m) be the straight line passing through (1/2,1/2)
and of the direction m. We suppose that m is such that [*(m) contains at least two
points of the dual lattice. By Griffiths’ inequalities

Jim, (#(4)) (A7) = (o(4))! (6.25)

exists, because {o(A))’ (A*) is a monotonous function of A*,
(o(A) (A7) < (o(A)) (A7) AT C A3 ~ (6.26)
Let go be the point (1/2,1/2) and ¢ be another point of the dual lattice on I*(m).
The massgap a(m) is by definition
1

= 1 — n(o(qo)o f !
om) =  dm D () (6.27)

Let g; be a point of Z2 and of I*(m), which is at a minimal distance from go. We
can write ¢; = go + p; with p; € Z%. Let p, be the point obtained by multiplying
the coordinates of p; by the positive integer . We set ¢, = qo + p,. We have

_ . In{o(g)o(g))’
a(m) = lim — = Fruey (6.28)
= i, ,.G(r)

By Griffiths’ inequalities and translation invariance the function G is subadditive,
G(r1 4+ 72) < G(r1) + G(r2) (6.29)
Indeed,

(0(90)0(gritra)) = (0(20)0(r: )02 )0 (gratrs)) (6.30)
2 (0’(QQ)0'(q,.1 ))f ' <0’(q,.1)(7(q,,1+,.2))f

(7(90)0(9r,))” - (0(0)(grs))’

Therefore the mass-gap a(m) is well-defined,

il

lim ~G(r) = int “6(r) (6.31)

T—00 P
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and in particular for any r

a(m) < 1G(r) (6.32)

Lemma 6.3

Let n be some unit vector of R?, such that the line l(n) contains at least two points
of I2. Let n™ be a unit vector of R? such that I"(n*) = l(n). Then

7(n) = o(n”) (6.33)
For any p, q on the dual lattice

(o(p)o()) < exp(—da(p,q) - a(n;,)) (6.34)
where n; . is the unit vector giving the direction of the straight line passing through
p and q.
Proof.

We follow the proof of [B.L.P.1]. The definition of 7(n) is given in (6.17). Let us
suppose, that the points g, are defined as above and that q_, = —p, + go. We also
suppose that the points a and b in figure 2 are ¢_; and g;. We set

and
Ac={t:—rL<t; <rL,—rM < t, <rM} (6.36)

We prove that

. 1 Z7(A,)

o —dz(q_,,q,.) ln Z+(A1.) = a(n*) (637)

We can write, using lemma 6.2,

;((ﬁ)) = (7(g-+)o(g:)) (A7) (6.38)

By Griffiths’ inequalities

(o(g-r)o(g:))? (A}) < (o(g-r)o(g.))’ (6.39)
so that
1 Z"(A,)

lim inf — In
r—ee ‘f‘dz(Q—1,9‘1) Z+(Ar)

> a(n”) (6.40)
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On the other hand if s € N, we have

r f
(o(a-rm)o(gn))! (AL) = ( 10 a(q@-l),)a(q,-.)) (A%) (6.41)

i=—r41

= fI (U(Q(inl)s)a(qia)>f (A:r)

t=—r41

= exp(— Z G(i,7,8))
Thus, for any ' = sr +¢,0 < t < s,
~1In (o(q-r)o(g))’ (AL) < —In (o(g-r)o(g-rse))’ (A7) (6.42)
~1n (o(gn-)a(g))! (A2) + ¥ Gli,r, )

and

, 1 ;
T (@) Jolg))” (AL) < 4
b anp .,.,dz(q_lyql)ln(a(qw Jo(a:))” (An) < (6.43)

im L v GGrns)
r—co Ip imr1 dz(Q—Da qs)

Let € > 0 be given. Then from (6.26) there exists § > 0 such that
i !
| {o(gi0)o(qi-1)))” (AZ,) — {o(gia)or(gi-nys)) | <€ (6.44)
provided d3(gis, OA;,) > 6 and dy(g(i-1)s, 0A},) > 6. Since <0'(q,-,)0'(q(,-_1),)>f =

<cr(q0)cr(q(,,)>'f and (a(qo)cr(q(,)>f > 0 we get for small €

lim )
saip——m—m—m—m—m>mm>m™m™@™@
P Tdy(q_1,q1)

1
Tty (i (ela)e(@)’ +0(0)

In (o(q-r)o(g))’ (AD) < (6.45)

Since € is arbitrarily small we have proven the existence of 7(n) for a special sequence
of boxes. We do not prove here that the limits L — co and M — oo in (6.17) can
be done in any manner . The proof (for a similar case) is given in [F.P.1] and uses
again in an essential way Griffiths’ inequalities. The second statement of lemma 6.3
is simply (6.32).

Lemma 6.4

There ezists a constant Cy such that for any L, M, and unit vectors n, n’
7 (n|A(L, M)) = 7(n'|A(L, M))| < Cilp(n,n)| (6.46)

where p(n,n') is the interior angle between n and n'.
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Proof.

By inspection, the difference of energy of any spin configuration in A(L, M) com-
puted with the n- b.c. and the n'-b.c. is smaller than

Cilp(n,n)| - L (6.47)

with C{ independent on L, M and the configuration. From (6.47) the tesult follows
easily.

Lemma 6.5

For any unit vector n the limat

Lh'_r’r;c T(n|A(L,M)) = 7(n) (6.48)
M—oo

exists and is a continuous function of n.
If we extend T as a function defined on R? by setting

7(z) = |z|r(z/|2|) (6.49)
then 7 is a norm for 8 > 8.

Proof.

Lemma 6.4 allows to define 7(n) for any n by continuity using the fact that for a
dense set of n 7(n) exists (lemma 6.3) The second part of lemma 6.5 is a consequence
of Griffiths’ inequalities. Let z; and z, be two fixed vectors of R2. We have

(0(0)0(z1 +22)) 2 (o(0)o(21)) - (o(1)o (a1 +22)) (6.50)
= (0(0)o(21)) - (o(0)o(22))

Let r be some positive number. Then

(21 + z2) = r]}_.ngo —%ln (o(0)o(rz, + 'rwg))f < (6.51)

T—00

(1) + 7(22)

lim —%ln (a(0)o(ray))’ + Lim —%ln (a(0)o(rzy)) =

For the positivity of 7(z) see comment 3) below.

Comments.

1) The surface tension of the two-dimensional case is related to the behavior
of a random line. We can study by the same method the surface tension of the
three-dimensional model. Here the role of the contour model is played by the Z,-
gauge model which is a model of random surfaces. Such models are more difficult to
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analyze, however since Griffiths’ inequalities are still valid the proof of the existence
of the surface tension is essentially the same as the one given above [P1{.3].

2) If we want to study with more details the surface tension then we must analyze
the statistical properties of the random line A passing through a and b (see figure
2 ). When a and b are on the same horizontal line this analysis has been done by
Gallavotti [G] and extended in [B.L.P.2] and in [B.F]. When a and b are not on the
same horizontal or vertical line then a similar analysis can be done, but this is more
difficult. This analysis is part of the work of Dobrushin, Kotecky, Shlosman . In
section 7, we need one result of their analysis, which is quoted in lemma 7.1.

3) We mention that it can be proven that the surface tension 7(n) = 7(n|3) is
non negative and positive if and only if 3 > 3., where (. is the critical point of the
model which is given by the self-duality relation tanh 3. = exp(—28.). (See [L.P]
and the review [Pf.1]. The proof in [L.P] is given for a special case, but can be
extended to the general case using (6.51) and the monotonicity properties of the
two-point function.)

6.4 Two basic estimates.

We discuss two types of estimates, which play an essential role in the next sections

6.4.1.

We consider the following situation. Let 4* be some closed contour, which is fixed.
Let 4 be another closed contour which contains 4* as a connected subset. Any
contour v of this type can be uniquely decomposed into 4* and a family of closed
disjoint contours 7;,...,7m such that each 7; has at least one site in common with
7", but has no edge in common with 4*. Conversely v* and any family (71,...,7)
with the above properties define a contour -, which is the union of 4* and of the
contours 7. We denote by C(7*) the set of all such contours. We also denote by
C(7*|q) the subset of C(y*) with |n| < ¢ for all . We define

Prob(C(y*)) = Y. Probj(y) (6.52)

yeC(v*)

and similarly Prob}(C(v*|q)).

Lemma 6.6

Let A be a simply connected and finite set. Let C(y*) and C(y*|q) be as above. Then
for B large enough

Probf(C(y*)) = (6.53)
Prob}(C(v"|g)) - exp(ly7| Oy (7))
with the function Oy ,+(e=?P?) such that

1 |04+ (e7%9)| - €272 < Const (6.54)
Tt
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Proof.

Let v = (¥*,71,...,M%) be an element of C(v*). Then

Z(y)

Probj () = exp (~28(17"| + X 1) 7=

(6.55)

where Z(v) = Z(¥*;m,...,M) is the partition function obtained by summing over
the following subset of spin configurations which are conveniently described by con-
tours : each spin configuration is in one-to-one correspondence with the set of com-
patible families of contours (6y,...,#6,) such that (v,6y,...,8,) is still a compatible
family. If we take the union of these sets over all possible n = (n1,...,7), k arbi-
trary, then we get a set £(4~) of configurations which is in one-to-one correspondence
with the set of families of contours (71,...,7%,61,...,60,) such that

® 71,...,N are disjoint two by two.
e the union of ¥, ny,..., 7 is a single contour
o {v,61,...,6,} is a A*-compatible family of contours.

Notice that necessarily (7,...,7k,61,...,0,) is a A*-compatible family of closed
contours. The partition function which we get by summing over the configurations
of £(y*) is denoted by Z(y~). Similarly Z(v|q) is the partition function which
we get by summing over the configurations of £(y*) with all contours n such that
7] < ¢g. We have

* * 2 )
Prob}(C(y*)) = exp(—28|77]) - grr ) (6.56)
A
and we can apply a cluster expansion for Z(’y"),
ZA(‘)’* — Z e“zﬁirfll 7 'e“zﬁl"?kIZ(.-)/*; My-.. ,nk) = (6'57)

(ﬂl ----- nk)

2 : ! § yi - _
=0 ( n' e Z n()‘l,---,)\n)e 2.3'/\1|'..e 2B|An|)
n>1 ’

’ Alen('}") Aueﬂ(ﬂy*)

where Q(4~) is the family of possible contours appearing in the configurations of
E(7"). (A contour A is in Q(v*) if and only if the union of 4~ and X forms a single
contour or 4* and A are disjoint.) We have a similar expression for Z(y*|q). It is
easy to take the ratio of ZA(*)f") and Z(y*|q) : all terms in the arguments of the
exponential functions cancel except those which contain at least one n with |5| > q.

Thus

2(v)
Z(v*lq)

= exp(|77|O4 - (e7%9)) (6.58)
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Remark.

We can extend this result to a family of disjoint closed contours ~;,... Y, Let
C(7iy---,7;) be the set of all families of p compatible contours (7i,...,7,) such
that 4; D 4. Then

Prob} (C(7;, -, %)) = (6.59)

ProbF(C(o,- -, %1)) - exp((3 1 1)Onnz (7))

i=1

In this case the set {)(y*) appearing in (6.57) is replaced by Q(+7,...,7;). A contour
Aisin Q(v7,...,7;) if and only if X is disjoint from 77,...,7; or there exists a ;
so that the union of A and +; is a closed contour, which is disjoint from all contours
G, I F

6.4.2.

We introduce two notions.

1. Let X be an open contour and let A be a subset of the boundary of A\, A C §A.
We say that

e ) is reductible at A if we can decompose X into A, such that é\ = é), and a
closed contour 4 with the property that X’N~y C Aand XU~y = A. If X is not
reductible at A it is called irreductible at A.

Remark.
If each point of A has incidence number one, then ) is necessarily irreductible at A.

2. Let A be a contour with boundary 8§\ = {t;,t.}. We say that A has a decompo-

sition with cutting points ty,...,t,_; if the following conditions are verified:
e there are n open contours A;,..., A, with é\; = {¢;_;,t7} ,¢=1,...,n and all

points ¢; are distinct
° )\iﬂAH_l:{t;*} and A,ﬂ/\_;,:wlf|?,—]|>1
e A= U---U),

e J; is irreductible at t7_; forall i =2,... n.

Remark.

The last condition is important. It prevents to have overcounting problems in the
proof below.
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We also have a decomposition with cutting points for closed contours. The first three
conditions are the same, with the obvious modifications in order to take into account
that now to = t,. The last condition reads

e ); is irreductible at t7_, for all ¢ = 2,...,n — 1, and A, is irreductible at

{tn—l’ tn}

Notice that there is no irreductibility condition on A;. As in section 6.3. we define

Z(AN) = Y [ (tanhpr)M (6.60)
y:8y=0 €Y
IU)\ comp.

Lemma 6.7

Let t5,t7,...,t; be n + 1 distinct points and let A = (Aq,...,A,) be a decomposition
with cutting points t;,...,t>_, of the open contour A such that A = {tg,tn}. Then

(Z(A")) - > Z(A*|\)(tanh g < (6.61)
A sa={ts,tr}
ty,...ty_, cutting points

e f - * - * * f *

I {e(ti-)ot)” (47187 < T (o(tir)e () (8)

k=1 k=1
where in the last expression we have taken the thermodynamic limit. The same result
holds if X is closed, 1.e. t5 =t~.
Proof.

Let A = A(Aq,...,A,) be given. We suppose that A,,..., A, are kept fixed for the
moment. From (6.23) we have

S (tanh B )M Z (AN, .. A0) < (6.62)

ZH Az, -, M) (o(t5)o (1)) (A7 Nz, )

where Zf(A*()s,...,A,)) is the partition function of the Ising model with free b.c.
defined on the set A*(A2,...,A,), which is obtained (as set of sites) by removing all
sites of A,,...,A,, except the point t]. By Griffiths’ inequalities

(o(te)a(t)) (A"(Aa, ., A0)) < (a(tg)a(t])) (A7) (6.63)
< (o(ty)o(t]))’

Therefore, we can put forward in the sum the factor (a(t(‘;)cr(t;‘))jr (A*) which 1is
independent on Aj, ..., .. Let us sum over ),

ST ZH AT (X, ..., An))(tanh g7)%] (6.64)

Az
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Figure 3: Decomposition of X into four open contours Aj, Az, Az, Aq with cutting
pOiIltS t1,t2,t3,t4.
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when Az, ..., A, are fixed. Let (y1,...,7,) be a configuration of contours contribut-
ing to Zf(A*(Xs,...,\,)). All these contours are disjoint two by two and one of
them at most may touch only at t] the contour formed by the union of A,,...,A,.
For any A; occuring in (6.64) we can interpret the union of 74y,...,9, and A, as a
set of high-temperature contours contributing to

ZEA" (s, -, A0) (&) o)) (A"(Asy - .-, M) (6.65)

If one of the contours v touches A, we suppose that this is the contour ;. Thus we
have p — 1 closed contours, 7,,...,7, and one open contour A}, which is the union
of A2 and ;. In that case the open contour X, is reductible at ¢;. Therefore the
contour A, cannot occur in the sum (6.64), since all contours A, in this sum are

irreductible at ¢;. Thus we can bound (6.64) by (6.65),
ST ZH (A (X, - .., M) (tanh g7)Pel < (6.66)
Az

Z7 (A (a2 A)) (o (8)a(83)) (A™(Rs, -, An)) <
ZH (A s, -, ) (o (8])a(83)) (A7)

By repeating this argument we get the proof of the lemma. For the second part of
the lemma we have a similar proof, except that in the first step, and therefore in the
subsequent steps, A*(A,,...,A,) contains also the site t;. The presence of a spin at
to modifies the proof only in the last step when we sum over A,. This is why we
require that A, is irreductible at {¢,_1,%0}.

Remark.

Lemma 6.7 can of course easily be generalized to the case where we have several
disjoint contours, each having a decomposition with cutting points. In section 8 we
also have to consider the following situation: two (or more) closed contours have a
decomposition with cutting points, say A = (A1, Az, A3) with cutting points ¢}, ¢, t3,
and 0 = (64, 0,,603) with cutting points sj, s3, s; but they are not disjoint: A and 6
must go though a fixed common point p*. Then summing over all decompositions
(the cutting points are also fixed), we still get the upper bound

(o(s7)a(s3)) - (a(s3)a(s3)) - (o(s3)a(sh)) - (6.67)
(o(t])a(t3)) - (a(t5)a(ts) - (a(t3)a(t]))]

Indeed, we can sum first over the decompositions of A. The argument of the above
proof is valid. Then we must sum over the decompositions of f. Let us suppose that
p* 1s not one of the cutting point of §, and that p* belongs to §,. We sum over 6,
and then we sum over 6,,

> Z(A*(82,65))(tanh 57)! (6.68)
)

Since p* was a point of the contour A, the set A*(6,03) contains the point p*. Let
(71,-.-,7) be a configuration of contours contributing to Zf(A*(62,63)). All these
contours are disjoint two by two and one of them at most may touch 6, at p*, and
one of them at most may touch the contour 6, at s;. It is possible that the same
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contour touches the contour 6, at s; and at p*. For any 6§, we can interpret the
union of ¥1,...,7, and , as a set of high-temperature contours contributing to

Z'(A*(8s)) (o(s3)o(s3))" (A" (63,)) (6.69)

If one or two contours 74 touch 6, we suppose that these are the contours 4; or 7.
In this case we have p — 1 or p — 2 closed contours, vk,...,7p, k =2 or k = 3, and
one open contour 5, which is the union of #; and the contours v; or 4;. The open
contour @ is reductible at {s;,p*}. But, since the contours A, and 6, had the point
p" in common, the contour 6, is irreductible at p* and at s; by definition. Thus we
can apply the argument of the proof of lemma 6.7. If p* is one cutting point, say s,,
then we use the fact that 6, is necessarily irreductible at p*.
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7 Lower bound on the probability of a large
deviation of the magnetization.

We prove a lower bound for the probability of the event A(m) = A(m;c, co)
A(m;c,co) ={o:| Y o(t)—m|A| | < colA|- L7°} (7.1)

teA

where A is a square box, |A| = L%, with 4+ b.c. and m is some fixed number,

—m(8) < m < m*(8) (1.2)

(m*(B) is the spontaneous magnetization in the + phase). The parameter ¢ is such
that

0<e<1/2 (7.3)

The probability is computed with the measure (- )* (A). We introduce an inter-
mediate scale in the analysis, which allows to bound the probability of the event
A(m) in terms of the surface tension. This essential idea of Dobrushin, Kotecky and
Shlosman gives an improvement of the work of Minlos and Sinai. Notice that we
do not fix the total magnetization here. This is very natural from the point of view
of Physics and simplifies slightly the mathematical analysis. Let W, be the Wulff
crystal,

W,={zeR?: (nlz) = Zn,x, < 7(n)} (7.4)

i=1

The volume of W, (in R?) is |W,|. By a dilatation of W, we construct a Wulff
droplet W, (m) of total volume

*

m* —m

Vim) = " = a(m)lA (7.5)
The value of the Wulff functional for the Wulff droplet is 7 = T"(m) and is equal
to

(T*(m))* = 4|W,| - V(m) (7.6)
Remark.

We suppose that the Wulff droplet W, (m) can be put inside the square box of
volume |A|. It could happen that for small values of m satisfying (7.2) the Wulff
droplet could not be put inside the square box. In this case we could take a box
which has the Wulff shape and a volume L? in order that the results of this section
remain true. Indeed, if the square box cannot contain the Wulff droplet W.(m),
then the constant T*(m) must be modified in theorem 7.1 (the value of the constant
is larger). We do not consider this possibility in these lectures.
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Theorem 7.1

Let —m*(B) < m < m*(B), 0 < c < 1/2 and cg > 0. Let € be given, 0 < € < 1.
Then there exist B(e, co, ¢), L(e, co,c) such that for all B > B(e, co,¢), L > L(€, o, c)

Prob(A(m)) = (7.7)

Prob ({l Y o(t) — mIAl | < colAl - L}) >

teA

(1= €e)exp (~T*(m)(1+ O(co - L7%)))

where T™(m) is the value of the Wulff functional for a Wulff droplet of total volume
V(m) = (m* —m)/2m* - |A|.

Proof.

1. The rest of the section is devoted to the proof of the theorem. In a first step
we get a lower bound on Prob(A(m)) by choosing suitably a subset of A(m), and
by estimating its probability (see (7.22). Let I'(m) be the contour defined by the
configuration o(t) = —1if ¢t € intW,(m) and o(t) = 1 if ¢t & intW,(m). (We suppose
that W.(m) is "in the middle” of A). The contour I'(m) is a simple closed line on
A*. We approximate I'(m) by a convex polygon P(m) in R?, whose vertices are
sites of I'(m) and the Euclidean length of the edges of the polygon is éL'~¢ with
¢o < co. The value of é, is chosen later. The vertices of the polygon are denoted
by t1,...,tn. For each edge we construct a square box, whose sides are horizontal
and vertical, and which is divided by the edge in two parts of equal volume, the
extremities of the edge being on the sides of the box (see figure 4).

Let T’ be a closed contour passing through ¢;,...,f{xy and entirely inside the boxes
which we have constructed. We also suppose that there is some constant such that
the length of I' satisfies |I'| < const - L. (The value of the constant is specified later
on ). Let B(T') be the set of configurations which have the contour I' and such that
all other contours v have a volume smaller than L¥!~°) j.e. they are s-small with

s= L~
Prob(A(m)) > Y Prob(A(m)- B(T)) (7.8)
T
= Y Prob(A(m)|B(T')) - Prob(B(T))
r

where the sums are restricted to the contours I" above.

Prob(A(m)|B(T)) = (7.9)
1 Poob ({| o)~ mlA| |2 uld| - LHE(D))

The volume of T' is such that
|V(m) — vol(T)| < |T(m)|éoL'™¢ < 4LéoL'™ = 4éo|A|- L™° (7.10)
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k+1

A(k)

Figure 4: Part of the polygon P(m) and the square boxes.

Therefore, if T is fixed,

+
>_o(t) —mlA] = ():U(t)—<za(t)|3(1")> (A)) (7.11)

teA teA teA

+
+ (<§0(t)IB(I‘)> (A)—mIAI)

and

+
(Z a(t)|B(I‘)> (A) = m™(|A| = vol(T')) — m™vol(T') + O(L) (7.12)
teA

The term O(L) = O(1/L)|A| takes into account the boundary effects, which are of
order O(L) since |I'| < const - L, and the fact that all contours except I' are small,
which gives a correction of order O(exp(—88L'"¢)) (see section 4). From (7.10),
(7.11) and (7.12) we get for any configuration o ¢ A(m),

12 a(t) - <Z°’(t)IB(F)> (A) = (7.13)

teA teA

|A] (co/L° —8m™éy/L° — O(1/L)) > 1/2|Alco - L™¢

provided we choose ¢ small enough. Theorem 5.1 implies that

Prob ({I > a(t) — mlA| | > colAl - L_°|B(I‘)}) < (7.14)

teA

2exp(—1/2¢coB6" - L)
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for some fixed 6, 3 and L being large enough. Therefore
Prob(A(m)) > (1 — 1/2exp(—2cof8' - L)) Prob(B) (7.15)

where B = UrB(I'). We can replace in (7.15) the set B by a subset of B, which we
choose as follows. Let us consider the part of I'(m) inside one of the small boxes,
which we introduced above, say the box denoted by A(k), which contains the points
ti and tg41. Let ug, resp. vk, be the sites of T'(m) N A(k) which are at a distance L°
from g, resp. try1, 0 <8 < 1—c. We cut I'(m) at ux and v and remove the part
of I'(m) between u) and vg. Let 4, be an open contour, entirely inside A(k) and
such that 8y, = {us, vk}, and not touching the remaining part of I'(m). Moreover
we suppose that |yx| < const - L'=°. We glue together 74 and the remaining part
of I'(m) at ug and vk, and repeat this operation for each box. In this way we get
a closed contour, passing through ¢;,...,ty. The set of all closed contours passing
through t,,...,ty, which are constructed as above, is denoted by H. Then

Prob(B) > Y Prob(B(T)) (7.16)
FeH

and

Prob(B(T)) = (Z+(A))-1 e N exp (--25 5 w) (7.17)
n: all |n:| small neEn
(T',n) compatible

If we remove the constraint |n;| small, then we get Prob}(T'). Prob;(I') can be
written

Prob(T') = e T (n(T))* (A)(1 + O(e7P°Y) (7.18)

with

wI)= [ =), n(t):}z—(l—{—cr(t)) (7.19)

since for any subset Q, Z¥(Q) = Z~(Q) by symmetry. Therefore we divide and
multiply by

>, exp (—QﬂZ lnl) (7.20)

n: nen
(T',n) compatible

and we have
Prob(B(T')) > (7.21)
exp (~O(e_8‘3Ll"c)) - Prob}(T) >
(1 - O(exp(——SﬂLl_c))) e 2! (n(I‘))+ (A) =
(1 - Ofexp(~86L1))) € (n(T) " TT (mwe))*
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The first inequality is proven by using the cluster expansion and the last line is a
consequence of F.K.G. inequalities. In (7.21) T is the part of I'(m) which is common
toall T € H. Since T' = (T, 71,...,7n) we get

3" Prob(B(T')) > (1_O(exp(_spaLl-C)))e-miﬂ(n('f))+- (7.22)
T'eH
E o ¥ a=28|w ia

II (5, & tnla)*)

the index * means that we sum only over the allowed contours .

2. We must bound from below the sum
> e P n(y))* (7.23)

where v is a contour inside of a square box as in figure 4 , |y| < const - L'~¢. We
observe that the sum in (7.23), when we remove the constraint on the contours =,
is equal (essentially) to a two-point function of the dual model. Let Q be some big
square box containing . We consider

> e PPl n(y)* () (7.24)
and at the end of the estimation, we take the limit Q2 T Z2. We have
2(2 )
+ -

where the partition function of the numerator differs from Z(Q2*|y) of (6.20) by
the fact that some families of contours appearing in (6.20) do not appear here,
namely those families which contain an odd number of closed contours surrounding
7. However, the cluster expansion gives

Z(y) —BLt
i ol 1AL o .
Z(@ ) = exp ( O(e )) (7.26)
with O(e™P%'™") independent on € and . Thus
> e ¥ (n(y))* (@) > (7.27)
gLt~ « _apm Z(S0°]7)
_ BL ) 2B8|y| 2N 177
exp( O(e )) Z,,,e ! Z(§0)
and
2 Z(2|y)
28| - ;
Z-y & Z(Qx) (7 28)
—api Z (2 |7) —2p1 2 ()
e~ 281l _ e 281l —
= @) - = Z@)
throughu and v forbidden
F rees _201 Z (S |7)
(a(u)a(”)) (Q7) ng € Z(Q7)

forbidden
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where « and v are the extremities of 7.

3. The problem now is to get an upper bound of the following type

JERY () PN
2 Z) < ¢ o) (@) (7.29)
forbidden

with ¢ < 1, so that we can estimate (7.28) in terms of (a(u)o(v))? (@). The
forbidden contours 4 are divided into different classes and each class is estimated
separately. Among the forbidden contours 4 there are those which have a length
|v| > const - L'~¢. From lemma 6.3 we know that

(o(w)o(v)) () < exp(—7(u,v)) (7.30)

where 7(u,v) = dy(u,v)a(n},,) = BO(L'~°), n},, being the unit vector giving the
direction of the straight line through » and v. If the constant in |y| > const - L'~
is large enough then the contribution of these contours is negligible.

4. The other forbidden contours v have a length |y| < const - L'~° and must touch
the boundary of the small box, denoted by A, or must touch T. Let

B = {’y : |y] < const - L'7¢, §y = {u,v}} (7.31)

Let v € C and G(7) be the set of all shortest paths in 4 from u to v. Such paths
are simple and we choose one of them, denoted by g(y). We list all simple paths
7 € C. We define g(v) as the path of G(y) which is the first one in the list. Once
g(7) is chosen, we can describe uniquely the contour 4 by v = (g;71,...,m) where
M1,...,M are closed disjoint contours such that the union of g and any #; is a
connected set and g and 7; have no common edge. In other words the union of g
and the contours 7); is an open contour with boundary points u and v. This is the
type of decomposition considered in section 6.4.1. Conversely, given a simple open
contour g with endpoints « and v, and a family of closed contours 7, we say that
(gim,...,mk) is weakly-admaissible if the union of g and the contours 7 is an element
of C, and we say that (g;m1,...,m%) is strongly-admissible if the union of g and the
contours 7 is a contour 4’ € C such that g(v') = g.

5. We consider the contours ¥ = (g;71,...,m) which contain at least one contour
n such that |p| > In L. The estimation below is done in the spirit of section 6.4.1.
Let C* be the subset of C of all (g;ny,...,m) with || < InL, 7 =1,...,k. We
define a map © on C with values in C*. Let v = (g; 1, - ., Tk, M1, - - - 7g) € C with
|m| <InL,i=1,...,k,and |n;| >InL j =k +1,...,q. By definition

O(y) == (gm, .- -, M) (7.32)

In order that © be well-defined, we must verify that 4’, which is the union of ¢ and
M,...,Mk, has the decomposition (g;m,...,7). Since v is an element of C, 7' is
also an element of C, and thus (g; 71,...,7) is weakly- admissible. Moreover, since
we have removed some contours 7,

G(7) 2 G(v') (7.33)
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But g is an element of G() and also of G(v'). We must have g(y') = g and therefore
(g;m,--.,7%) is strongly admissible and © is well-defined. Let v* € C*. Then

3 - 281 (7.34)
YE@=(v*)\y* Z(Q*) B
_2p Z(]y)  Z(X]y7)
e~ 28 .
(nigni) 2()  2( )

o 2(]y7) _a8Y iy Z(87])
e~ 281200 1Y ) e 28y Il 27 117
Z() 2 Z(§[y)

IA

where in (7.34) we sum over all non empty families (7], ...,n;) with |5{| > In L, such
that the union of v* and #i,...,7n; is a contour v € ©~(y*)\v*. The last factor
in (7.34) is smaller than one since v* C 7. Therefore the last sum in (7.34) can be
estimated using the method of the cluster expansion,

So X exp(-28(mil 4+ D) = (7.35)

n>1 """ oo

comp,,|n!|>In L
connected to g

1 noo
= 3 er(ny, ... m) [Je ] -1 <

n21 N veeeitln At
[n{|>InL, conn. to g

exp (O(lg| - e7#™F)) — 1

exp

Since |g| < constL'~°, we get by combining (7.34), (7.35) and summing over v~

” Z(|v)
T -2 < (7.36)
e Z(0") |
e _aa1he Z (S |Y)
0 Ll e 28InL —-1). 281y NELES .
(e"P( ( ® )) ) ;EC‘C Z() —

(exp (O(L172 - e712E)) —1) - (s(w)o(v)) (27)

6. It remains to consider only the contours 4 € C* such that
o either the distance of g(+) to the boundary of A is less than In L
e or v touches T N A.

Let us examine with more details the structure of a contour v = (g;71,...,7) € C*.
The line g going from u to v is simple. We parametrize it with unit speed, s €
[0,]g|] — g(s). Let n be some closed contour in the decomposition of v. We define

e 5;(n): the smallest value of s such that g(s) is a point of 5
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® 3,(7) : the largest value of s such that g(s) is a point of 5

Since 7 is closed, there is a path on 7 going from s; to s, with length smaller than
1/21n L. Therefore we must have

|82 = 31| S 1/2111 L (737)

otherwise we could make the path g shorter. The next question which we consider
is the existence of cutting points for 4 (see section 6.4.2). If there is no # in the de-
composition of 4 such that s1(7) < s and s3(n) > s, then we can decompose 4 with a
cutting point at g(s). The next estimation is useful when we look for such a situation.
(Not all 4 € C* have cutting points.) This estimation is similar to the estimation
(7.36). Let I be some interval of [0, |g|]. Let ¥ = (g; 71, - M Me+1, - - - y7g) Where
we have distinguished in the notation the contours 5 such that s;(n) or s2(n) € I,
which are denoted by n+1, ..., 7. For each v we define ¥ = (g;71,...,7). We have

—2814 Z(27]7)
e 2ﬁ|‘Yl______ S (738)
w:ﬁr‘%ﬁf Z(5¥)
T 2pimil—20 Z(27)
e 23%"lle 2ﬁh’! S
nk-qf?-.ﬂq 7:=£-["1 Z(Q*)
_2p 27 _
T o (How™)

We have used the inequality
2@°) > 2@°h) (7.39)

and the cluster expansion for going from the second line to the third line.

7. We first consider the contours ¥ € C* such that ds(g(y),0A) < InL. The
estimation below is done using the reflection principle of the theory of random
walks and the results of section 6.4.2. Let A be the set of points of A which are at a
distance less than 21n L from the boundary of A. There exists for each 4 an interval
I of length In L, such that all points g(s), s € I, arein A. Let s’ be the middle point
of I and ¢ = g(s'). Let 7 be the contour constructed in the preceding paragraph
with the above interval I. Then ¢ is a cutting point for J. Let us suppose that ¢ is
as in figure 5. Let [ be the horizontal line through ¢. Let p and u* be the points of
figure 5 on the vertical line through u, such that dz(u*,p) = ds(p,u). Finally let @
be the point obtained by a symmetry of axis [. We have dp(%,u) > da(u*,u), and
the line through u* and v has a slope equal to one. By the results of section 6.4.2
we get

_ap Z(82° 1)
2 e Z()

"f:
t(F)=t

IA

(o(w)a(t) - (o(t)o(v))’ (7.40)

I
Y

IA

)
2 =
Q

—_

o)

S
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Figure 5: The point p is at a corner of the square passing through v and v. The
points u, v, v* and % are on the same vertical line, and d2(u,p) = da(p,u”). The

point @ is obtained from u by a reflection of axis .
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where we have used the symmetry properties of the two-point function in the ther-
modynamic limit and Griffiths’ inequality. The monotonicity properties of the cor-
relation functions (lemma 2.4) imply that

(r(we(@) 2 (o(u)o(v)) (7.41)
> (o(s)o(v))’

for all points s of the polygonal line [ of figure 5. Simon’s inequality and (7.41)
imply

(o(@e(v)) < 3 (o(@a(s)) - {o(s)a(v))! (7.42)
< Zj(u)a(v))f 2 (o(@o(s))’
Therefore N
gcj e—zﬁl*'%%%’)—)g (7.43)

d1(g(7),0A)<In L
O(L'°In L) - exp (O(e_zﬁ) In L) - exp (—BO(LE)) Ao(w)o(v))

since |A| = O(L*~*In L) and we can choose the line I so that da(s,@) < O(L?) for
each point s of the line [.

8. Finally we consider the case when 4 touches T N A . Let v = (g;71,...,7) and
let I be the part of T N A containing the point w. We order linearly the points of [,
starting with u. Let t(+) be the point of [, belonging to 4 and which is the first one
in I. We first suppose that #(v) is a point of g(y) = g, and we denote by F(7) the
part of g going from u to t(y). We decompose uniquely « into (71,72) where 7, is
the union of g and all contours n of v with g(s1(n)) € . The contour v, (as set of
edges) is y2 = v\71. We fix 7; and sum over 7,. We get

T e ml+n) Z(mUm) _ s
Yz Z(Q*)
t(v)=t
v 2ol Z10) | gy 2T 111 U o)
¥ai Z(Q*) Z(Q*"Yz)

t(y)=t

The last quotient is estimated using the cluster expansion,

Z( |1 U7z) —

(7.45)
Z (2 |y2)
1 e
€Xp | — Z ; Z ‘PT(/\lv"'7/\n)He 251l
n>1 """ EDYE 1=1

Ainy €0
exp (|m|0(e™*)) (7.46)
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Therefore we get (see (6.23)) the upper bound
(o(t)o(v))’ (@) - exp (=(28 = O(e™))Iml) < (7.47)
(o(w)o(v)’ (27) - exp (—(28 — O(e™))|nl)

since ¢ = t(-y) and -y, is an open contour with §(y2) = {t,v}. Then we sum over all
71 and all ¢(y). Thus we can bound (7.44) by

O(e™) - (o(u)o(v))’ (7.48)

The last case is when t = ¢(y) & g(v). In this case there exists a unique 7, say 7, of
¥ =(9,Mm,...,m) such that ¢(v) € ;. Let g(v) be a shortest path from ¢ to u in 7.
We choose this path as follows. Starting at ¢, this path is first in 5; until it reaches
a point of g, say t* , of parameter s*, g(s*) = t*. If there are several possibilities
we choose a path with s* minimal. From t* the path is given by the part of g going
from t* to u. If there are still several paths satisfying the above requirements then
we choose the first one in a list of all paths from ¢ to u. We define v; as the union
of g() and all contours 1 of 4 which are different from 7, and with s;(n) < s*. The
contour v, (as set of edges) is 2 = ¥\7y;. The contour 7 is uniquely decomposed
into (v1,72) and we can repeat the above argument. (See remark of 6.4.1.)

9. Let € > 0. Then there exist L(e) and B(¢), such that for L > L(e), B > B(e)

Prob(A(m)) > (1 = e)e M (n(T))” ] (o(ui)o(ws))’ (7.49)

k=1

By F.K.G. inequalities
(@) > T (a(e)* = exp (-[TIO()) (7.50)

e:edges of T

with n(e*) = n(t)n(t'), e = {t,t'} being the edge dual to e. Notice that || =
O(L**). We finish the proof of theorem 7.1 by using lemma 7.1.

Lemma 7.1 ([D.K.S])

For B high enough

(o(w)o(v))f = 0 (;) (7.51)

dg(u, 'U)lf,z

Summarizing all the results, we have

Prob(A(m)) > (7.52)

(1 —€)exp(— Z 7(uk, vi)) €Xp (—(2}3 + O(e™ ) - O(L°* )) (7.53)

2
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Since the points ¢, trs1, Uk, vx are on the same straight line

N N
T(P(m)) = ,,Z_: Ftrlhga) = \; 7(uk, vi) + BO(LH’) (7.54)
But |
|T" — 7(P(m))| < &O(L'™)B < c0O(L™°)B (7.55)

and we may choose § > 0, as small as we want, so that 1 —c > ¢+ §. This ends the
proof of theorem 7.1.

Remark.

Lemma 7.1 expresses the fact that the two-point function at high temperature has
an Ornstein-Zernicke behaviour. It would be sufficient for our purpose to have a
constant o instead of 1/2 in this lemma.
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8 Droplets.

The model is defined on A, a square of volume L? in Z?. We have + b.c. and
no magnetic field. This hypothesis holds for the whole section. Prob(E) is the
probability of the event E computed with the measure { - )™ (A). We distinguish
in each configuration between small contours and large contours. In section 8.1 we
define these notions and a set of configurations E such that

. m +
(E(Az‘lng ))l) > 10 (e00n) (8.1)

In the rest of the section we give another description of the set E, introducing
the notion of droplet. We partition the set E into subsets E(Si,...,Sk) indexed
by geometrical objects, called droplets. A droplet is defined at the scale L® with
¢ <b<1-c, it has a volume, and the length of its boundary is measured by the
Wulff functional. We estimate the probability of E(Sy,...,Sk) in terms of the Wulff
functional. The introduction of an intermediate scale is essential for this estimation.

8.1 A typical set of configurations for a large deviation of
the magnetization.

We define the notion of large contours. We proceed in several steps. We first
make concrete the idea that a "complicated” contour is not important because its
probability is small.

1. Let v be some arbitrary closed contour, and o., be the unique configuration which
has only this contour. The subset of R?, which is the union of all plaquettes p*(t),
t € Z?, such that o.(t) = —1, is bounded. The complement of this set in R? has a
unique connected component of infinite volume. The ezterior enveloppe e(y) of v is
the boundary of this infinite component. It is a connected subset of v. The exterior
enveloppe e(7y) divides the plane into several connected components. Each bounded
component has a boundary which is a simple closed contour, called cycle. We can
decompose e(y) into cycles e(y) = (e1(7), ..., ex(7)). The contours e;(y) and e;(7y),
as sets of edges, are disjoint. By definition Inte;(%y) is the bounded closed set of R?
whose boundary is the cycle e;(y), and

Inty := |J Intei(y) (8.2)

¢; cycles
of e(v)

Notice that Inty does not coincide with the set inty, but we have

Inty D iy , vol(Inty) > vol(y) and |e(y)| < 1 (8.3)

2. We decompose uniquely + into e,7;,...,7, and §;,...,€, where e = e(y) is the
exterior enveloppe and the contours 7 and ¢ are closed disjoint contours, which have
at least one point, but no edge, in common with e (see figure 6). This is the kind



Vol. 64, 1991 Pfister 1023

%//////////// / /) - ////;
7 7 ]/% .

/} 7777777777,

NN

AN

\

HA1A/A7Y,

fa

N

[ \\\\\\\\§I N
NN

NN

7

MONN

//////

L v % 7
%/7/////%
/ v

SN

\\\g\\<

NN

NN\

%

N

\

§\\\
o

i\\\\\\\\

|

Figure 6: Decomposition of v into the exterior enveloppe e and the contours 5 and
. The exterior enveloppe has three large cycles and ten small cycles. There are six
contours {. Compare with figure 7.
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of decomposition of section 6.4.1. By definition |n;| <In L and [£| > In L. We write
v="(e;m,.. ., Mp; &1, .., &). We define a map Fj, on the set of contours :

B lrples g « « 5w £ty w15 Ba) 350085 G o 5+ 9700 (8.4)

From lemma 6.6 and the remark following its proof we get

Lemma 8.1

For large 3,
Prob (Fi(y1) = 1, -, Fi(m) = %) < (8.5)

- ((gj G- O(I/LZ")) Prob(Fy(3r), .., Fy(5))

3. The intersection points of the exterior enveloppe ¢ and the closed contours 7 or
§ are necessarily corner points of ¢ and of 5 or £. This implies that the subsets Inty
and Int{ are disjoint two by two. Therefore if v = y(e;m,...,mp; &1, ..., &q), then

Inty = IntFy(7) (8.6)
because we do not modify the exterior enveloppe by the map Fj, but we have
intFy(v) O inty (8.7)
Indeed, intv, as set of R?, is composed of the closure of the set
Inty\ (U Intn; | J Intfj) (8.8)
i ¢

and of subsets of Inty; or Int{;. By the mapping F; we do not modify the structure
of v inside Intn; and if remove the sets Int{;, then we can only increase int+y.

4, We recall that the set A(m) is

A(m) = {o: | S o(t) = mIAl| < cofA] - L7 (8.9)

teA
with ¢ a parameter, 0 < ¢ < 1/2.
Definition:

A contour v is small if all connected components of intFi(y) have a
volume < [L?%, @ =1 — c. All other contours are large.
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In a configuration the small contours are denoted by =1, ..., ¥, and the large contours
by I'1,...,Tk. The isoperimetric inequality on the lattice is

16 - vol(v) < |y|* (8.10)

Therefore all large contours have a length larger or equal to 4L%. Notice that all
connected components of inty have a volume smaller than L?? when 7 is a small
contour. For small contours we can apply the results of sections 4 and 5.

We estimate the total length of the large contours.

Lemma 8.2

For 3 and L large enough,

Prob ({total length of the large contours is equal x}) < (8.11)
a(e) exp(—2(26 — In4))
where q(z) is the number of solutions of 1 < oy < -+ < ap < z, a; € N and

Efﬂ a; = z, k arbitrary. For large z

q(z) ~ 4\}:% exp (277\/.7%) (8.12)

Proof.

Let g(x, k) be the number of solutions of 1 < oy < -+- < a < 7, Y =1z, k

fixed. Let I'y,..., s, be the k large contours of a configuration. We have at most
z
kmax = 8.13
i (8.13)

large contours. The number of contours, which have a length |T'| and contain a fixed
point of L* is smaller than 3/Tl. Therefore

Prob ({Z IT| = w}) < Z q(x, k)eP=37(L?)* (8.14)
i k=1
S f Q(CL’, k)e—Zﬁwa(LZ)knmx
< q(z)exp(-z(268—1In3—1/2L7"-In L))
< g(z)exp(—=z(28 —1n4))

provided that L is large enough.

As a corollary of lemma 8.2 we have
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Theorem 8.1

Let § > 0 and c; = (a(m) - |[W,|)V/2 - 87 4+ §, with a(m) = (m* — m)/2m*. Then
for B and L large enough

Prob (Z ;| 2 c2L|A(m)) < exp(—B34L) (8.15)
Proof.

We recall that T is defined by

(T*)? = 4|W,| - V(m) (8.16)
and

V(m) = a(m)L? (8.17)
Therefore

T* = 2(a(m) - |W,|)*/°L (8.18)
We have

Prob (Z IT;| = m|A(m)) - (8.19)

prob (AGmI 1 = =) P S

But by theorem 7.1
Prob(A(m)) > (1 — €)exp(—=T"(1 4+ O(coL7°)) (8.20)

where 0 < € < 1, and € can be chosen as small as we want provided that 8 and L
are large enough. By lemma 8.2

Prob (Z T = :r;) < exp(—2z(8 —In b)) (8.21)

provided that B and L are large enough. The condition on the total length of large
contours implies

2Bz > 2¢,BL =T" + 2661 (8.22)

and hence the lemma is proved.

A small contour cannot surround a large contour, and the type of I'; is uniquely
determined by the collection of large contours of the configuration. Let T’ be the set
of all large contours of a configuration ¢. Then a(T) is defined by the identity

> wvol(Ti)— Y. vol(Ty) = o) - |A| (8.23)

T:type— [i:type+
el el

We estimate the probability that the random variable a(I') has a value different
from a(m).
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Lemma 8.3

LetT = (Tq,...,Tx) be fized and such that

Co + C3 1
2m*(B) L¢

(L) — a(m)| > (8.24)

with co and c the constants appearing in the definition of A(m) and c3 > 0. We also
suppose that 3 |T';| < ¢2L, c; being the constant given in theorem 8.1. Let B(L) be
the set of all configurations having the collection T of large contours. Let ' be a
constant, 0 < 6’ < 1. Then

Prob(A(m)|B(L')) < 2exp(—486'c;L) (8.25)
provided that 3 and L are large enough.
Proof.

Let A(L) be the set
A(L) = A\{t € A : dy(t, ;) < 1} (8.26)

Let o be the configuration in A compatible with the + b.c. and having exactly the
contours of I'. We choose the o b.c. for the set A('). Then

Prob(A(m)|B(L)) = (A(m))" (A(L)) (8.27)

The index * means that the configurations in A(L') have only small contours and
that the boundary condition is . Theorem 5.1 applies with s = L*. We have

S ott) ~miA] - (z o(t) - <z a(t)>* ) (5.28)
+ ((ga(t)fm(z))—mw)
On the other hand |
(teZAa(t))* (AD) = (6.20)

m”(B)(1A] = «L)|A[) — m™(B)a(D)|A| + O

m(B)IAI(1 - 2a(T)) + O(7)IA]

JIA] =

B =

The term O(1/L) takes into account the error we make when we replace (o (t))” (A(L))
by {o(t))" (infinite volume limit) and then (o(¢))" by m*(3). The error is of the or-
der of the length of the boundary of A(L'), which is O(L) since 3 |T';| < ¢, L. Notice

that we have

mlA| = m*(B)(1 - 2a(m))|A| (8.30)
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Consequently, for any o € A(m),

S o)~ (Tott)) (AD)

teA teA

> esL~|A| (8.31)

if L is large enough. The lemma follows from theorem 5.1.

We can now state the first main result on the typical configurations of a large
deviation of the magnetization in the Gibbs state ( - )*. This theorem is analogous
to the theorem of Minlos and Sinai p.365 in [M.S.1]. However, our definition of small
contours is different and we do not fix the exact value of the magnetization.

Theorem 8.2

Let m, —m*(B) < m < m*(3) be gwen. Let ['(0) = (I'1(v),...,Tk(o)) be the

collection of all large contours in a configuration o. Let

Alm) = { | T o(t) = mIAl < colA]- 577} (832)
and )
B ={r: ¥ [N(0)| < esL, [a(D) — am)| < il ™) (5.39)
The constant cy s t
c2 = (a(m) - [W,)"/?- B~ +6 (8.34)
and a(T) is defined in (8.23). If
a2 5 lam) - (WL (Br()) - (8.3)

with kK > 1, then for any ¢, 0 < 6’ <1 and ' - & > 1, there exist L(6'), B(0') such
that for all L > L(6'), B > B(¢')

Prob(E|A(m)) > 1 — exp(—B8L) — exp(—T"1/2(6'x — 1)) (8.36)

The probability in (8.36) is computed with the Gibbs measure { - )T (A) of an Ising
model in A, with + b.c., coupling constant J = 1, no magnetic field and at inverse
temperature 3. The constant T* = 2(a(m) - |W,|)/2. L.

Proof.

We estimate the complementary event E°,
Prob (E¢|A(m)) < (8.37)
Prob (3" |T| > e.L|A(m)) +
Prob (3" IT| < e2L, (L) — a(m)| > cal™*[A(m)) < .
exp(—B6L) + > Prob(B(L)|A(m))

LY IMil<e
la(L) =ex(m)[Zes L=
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Now

Prob(B(L)|A(m)) = Prob(A(m)|B(L)) g%g%% (8.38)
and

(c - %) .4B0'L - 2m” > T x! (8.39)

Therefore the theorem follows from lemma 8.3 and theorem 7.1.

8.2 Large contours and droplets.

We consider configurations of the set E of theorem 8.2. The total length of large
contours is bounded by ¢, - L and the total volume of large contours is at least

SovolTs) 2 a(I)Al (8.40)
> (a(m) — e~ L7)/A|

= vem) (1- eo5s)

We study the geometrical structure of the large contours of £ and define the notion
of droplet. We proceed in several steps.

1. We distinguish between small cycles and large cycles in the decomposition of a
large contour I' into an exterior enveloppe and closed contours. By definition a small
cycle e; is such that the volume of Inte; is smaller than L?® withec<b<a=1-c.
(We cannot choose b too small for entropy reasons.)

Lemma 8.4

In a configuration o € E the total volume of all small cycles s smaller than
L-LP(c/2+2L%/L) (8.41)
Proof.

We enumerate in some way all small cycles. We collect the cycles into families.
There is only one family if the total volume of the small cycles is less than 2L% .

Otherwise the first family contains all cycles e;, j = 1,...,m, such that
m—1
vol(Inte;) < L* (8.42)
=1
and
L® <3 vol(Inte;) < 2L% (8.43)

i=1
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Then we define a second family and so on. If there are more than one family, the
total sum of the lengths of the cycles in a family is larger than 4L% as a consequence
of the isoperimetric inequality (the last family may be an exception). Thus there
are at most (1/4 - ;L' + 1) families of small cycles, so that the total volume of
small cycles is smaller than

2L%(1/4 - ¢ L% + 2L% (8.44)

2. Up to this point we have described the contours from the "outside”, using as basic
geometrical object the exterior enveloppe. Now we describe the large contours from
the "inside”. This new description is done for the contours I' such that Fy(T') =T,
since F;(I') is the important part of the contour. We introduce the notions of inner
component and of inner boundary. Let I' = (e;n1,...,7), and let e; be one large
cycle of the exterior enveloppe e of I'. Let (e;;71,...,7,) be the part of I' which is
composed of the cycle e; and all contours  with a point in common with e;, i.e. all
contours 1 with n C Inte;. Since |p| <InL

vol(Intn) < (In L)? (8.45)
We have
(Intej\ 0 Intm) C intT (8.46)
i=1
and we decompose the set
Inte;\ 0 Inty; (8.47)
i=1

into connected components. A connected component is large (small) if its volume
is larger than L% (smaller than L?). The large components are denoted by D; =
D;(T'), and are called inner components. We extend this notion to an arbitrary large
contour and define an inner boundary.

e An inner component of I' is by definition an inner component of F;(TI').

e An inner boundary is the boundary of an inner component.

Lemma 8.5

In a configuration o € E the total volume of the inner components is greater than

Vim) (1~ 22 - 0] (3.43)
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Proof.

Let I'y,...,T'x be the large contours of the configuration & € E. We have

Svol(T) > a(D)IA| (8.49)
= V) (1= z9)

and

Intl'; = IntFy(T;) , vol(IntI';) > vol(T;) (8.50)
Therefore

Zvol IntFy(T;)) > Zvol i) > V(m) (1 - (m)L") (8.51)

The total volume of small components of a contour I'; = F;(I;) is estimated like the
total volume of small cycles, and is smaller than

L-LY-(c3/2+2L%/L) = V(m) L' + 2L7 (8.52)
% =ram 2La(m) L%a(m) '
The total volume of the sets Int7n is smaller than
1 1 c In L

L i s 1 R 2 = 2 . 853
Y ' InL 16 (In1)"=V(m) (lﬁa(m) L ) (8.53)

Thus, the total volume of the inner components is greater than

LbCZ 2L25

I(IntFy(T;)) — V 8.54
X val(IatF(T) ~ Vi) (s *+ T (8.54)

- Vi (55587

2 Vim )

Remark.

An inner component of a contour I' is a connected component of intF;(I'). Each
large contour has at least one inner component, since by definition intF(T') has a
connected component with a volume larger than L2°.

3. In this paragraph we give a more precise description of an inner boundary §D.
By definition 8D is the boundary of an inner component D, which is inside Inte,
where e is a large cycle of the exterior enveloppe. We consider e as a unit-speed
parametrized curve s’ € [0, |e|] — e(s’), where |e| is the length of e. The orientation
of the curve is counterclockwise so that each Intn C Inte are at the left of the curve.
We also consider §D as a unit-speed parametrized curve s € [0, |6D]|] — §D(s).
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Contrary to the cycle e, this curve may have points of multiplicity two. (A point ¢
has multiplicity two if there exist s; and s; # s; such that §D(s;) = §D(sz) = t.)
In order to specify the parametrization we always make a left turn at each point
of multiplicity two, and the orientation is counterclockwise. This implies that each
Intn, which is connected to the component D, is at the right of the curve §D. The
parametrization is uniquely fixed by choosing the starting point. The curve is not
a simple curve since points of multiplicity two may exist. (However such points are
never crossing points, and by a slight perturbation at those points we get a simple
curve.) The inner boundary is decomposed into maximal connected sets of edges
of the exterior enveloppe, and maximal connected sets of edges of the contours 7.
A maximal connected set of last type is necessarily a subset of a single contour 7,
since the contours 7 are disjoint. We always have at least one connected set of edges
of the exterior enveloppe, since |§D| > 4L® and |p| < In L. Let us suppose that
§D(0) = e(0). Let us also suppose that s; is the first time such that §D(s; + 1) is
not a point of e. Up to that time, both parametrized curves 6D and e are the same.
At that time we make a left turn if we follow 6§D, and a right turn if we follow e.
Let us follow 6D and let s, be the first time greater than s; such that §D(s;) is a
point of e, §D(s3) = e(s;). (We may have s; = s,.) All edges between s; and s, are
edges of a single contour 7, and the set Intzn is in the interior of the parametrized
curve which is given by the curve e(s’) with s} = s; < s’ < 55 and then by §.D(s)
with s, > ¢ > s;. (We go backward along §D.) From that it follows that two
components of the inner boundary which are composed of edges of contours 5 are
necessarily subsets of two different contours 5. In other words, the intersection of
the inner boundary and of a contour 7 is always a subset of the form

{6D(s)|s1 < s < 32} (8.55)

4, We describe the relative position of the inner components in a contour I'. Let
I' = (e;m1,...,m) with |n;| < In L. Let Dy,..., D, be the inner components of T.
We decompose (the set of R?)

IntI\ LpJ D; ) (8.56)

=1

into connected components. Let (By,..., By) be the closures of these components.
We add to this collection all points of the exterior enveloppe e which belong to two
different inner boundaries (see figure 7). The resulting collection is (B, ..., By),
q 2 q', and these sets are called blocks. We consider the intersections of these blocks
with the inner boundaries, and we decomposed these sets into maximal connected
sets, which we call gluing sets. We have two kinds of gluing sets. We have the gluing
sets, which are composed of a single point of the exterior enveloppe where two cycles
meet. We have gluing sets, which are intersections of inner boundaries and contours
1. Indeed, if a contour 7 has a nonempty intersection with a block B then

Intn C B (8.57)
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because

b
IntT\ | J D; 5 | JInty (8.58)

7= ]

and Intn is a connected subset of RZ. We construct a graph. The vertices of the graph
are in one-to-one correspondence with the inner components and the blocks. We
have edges between an inner component and a block, if the block has a nonempty
intersection with the inner boundary of the inner component. We draw between
these vertices as many edges as there are gluing sets in the intersection.

Lemma 8.6

The above graph is a tree

Proof.

We first prove that the graph is simple, i.e. there is at most one edge between two
vertices. Let us suppose the converse. Then there is an inner component, say D,
and a block, say B, such that B N §D has (at least) two gluing sets. Let u be a
point of one gluing set, and v be a point of the other gluing set. We can find in R?
a simple closed curve going from u to v inside the inner component, and then back
to w in the block. Let A be the bounded set encircled by this path. We go along the
inner boundary 6D from u to v by a path inside A. This path necessarily contains
an edge of the exterior enveloppe, since the gluing sets are disjoint. On the other
hand the set A is in Intl’. This a contradiction. The graph is a connected graph,
because I' is a connected set. Let us suppose that we have a cycle in the graph. Let
Pi,--.,Pn be the vertices which represent the blocks, and ¢, ..., g, be the vertices
which represent the inner components of this cycle. Going around the cycle we go
through q1,p1,92,P3,- -, @n, Pn and then to q;. All vertices of the cycle are different.
As above we construct in R? a closed simple curve entirely contained in the union
of the sets represented by the vertices of the cycle, and we get a contradiction since
this curve encircles an edge of the exterior enveloppe.

We call ezternal blocks the blocks which are represented by vertices of incidence
number one in the graph, and we call internal blocks the other blocks.

5. We now describe a large contour I' = F(I') by taking as basic geometrical objects
the inner boundaries of I'. The inner components of I' are Dy(T'),..., D.(T), and
the inner boundaries of I' are § D (T'),...,86D,(T'). We decompose the contour I' into
I' = (6D1(T),...,6D.(T'),A1,...,As). The contours Aq,..., A, are closed contours
and disjoint two by two. There are contours A, which are connected to a unique inner
boundary, and which we call ezternal contours. They are the parts of I' inside the
external blocks. There are contours A, which are connected to at least two disjoint
inner boundaries, and which we call internal contours. The internal contours are the
parts of I' which are inside the internal blocks. Since the external contours do not
play a special role, it is better to consider them together with the inner boundaries
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Figure 7: The inner boundaries and the tree associated with I'. There are s1X inner

components, five external blocks and three internal blocks. One internal block is
composed of a point of multiplicity two of the exterior enveloppe.
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to which they are connected.

Definition:

A bare droplet of a contour I' is a closed connected set of edges of L~
which is the union of an inner boundary §D of the contour Fi(T') and all
external closed contours A of F}(I') which are connected to §D. A bare

droplet is given by D = (§D; Aq,..., ).

6. We define the droplets. Let D = (6D; A,...,,) be a bare droplet. We make
a coarse graining description of D, following an idea of Dobrushin, Kotecky and
Shlosman. To each D we associate a unique sequence of points in the following way.
We introduce some total order for the sites of A*. Let us choose a parametrization
of 6D so that §D(0) is the first point, for the order in A~, with the property that
[6D(0),6D(1)] is an edge of the exterior enveloppe. Let to = §D(1) be the initial
point of the sequence which we are defining. The next point ¢, is chosen as follows.

Let c5 be some small fixed number. Let s’ be the first value of the parameter such
that

d2(6D(1),8D(s")) > L¥ - ¢s (8.59)

If (§D(s'),8D(s" + 1)] is an edge of the exterior enveloppe, then ¢; := § D(s'). If not,
we define ¢, := §D(s,), with s; the first value of the parameter which is greater than
s’ and such that [§D(s;),8D(s; + 1)] is an edge of the exterior enveloppe. Notice
that

esL’ —In L < dy(to,t1) < csL* +InL (8.60)

since for all contours 7, |p| < ln L. Then we define ¢, as above and so on. For any
6D we have a unique sequence S(§D) of points to,...,t,, with

csL® —In L < dy(ti tiyr) < csLP +InL (8.61)

fori =0,...,n—1. The distance between ¢, and t; may be smaller than csL®—In L.

We say that two bare droplets D and D' (of different configurations) are equivalent
if the sequences S(D) and S(D') are the same.

Definition:

A droplet is a sequence of points S such that there exists a configura-
tion of E having a bare droplet D with $(D) = § . An arrangement
of droplets is a family of sequences Si,..., S, such that there exists a
configuration of E with bare droplets Dy,..., D such that S(D;) = S;,
i=1,...,k.
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To each droplet we associate a closed polygonal line going from ¢y to ¢, from ¢,
to tp, ..., from t, to to. This closed polygonal line divides the plane into a finite
number of bounded connected sets and one unbounded connected set. The volume,
vol(S), of a droplet is the sum of the volume of these bounded connected sets of R?.
The boundary of a droplet S is the polygonal line defined above.

Theorem 8.3

Let E(S,...,Sk) be the set of configurations of E which are compatible with the ar-
rangement of droplets Sy,...,Sk. The set E can be partitioned into subsets E(S1,. .., Sk)
such that the total volume of an arrangement of droplets Si,..., Sk is bounded by

\;vol(s m) (1 - Lc:;m) —O( Lll_b )) (8.62)

Proof.

The total volume of an arrangement of droplets is greater than the total volume of
the large components minus

9 |6 D;]

> P -w(Ls +1In L)? < O(L') (8.63)
i=1 5 —

8.3 Estimation of the probability of an arrangement of
droplets.

Let I' = (I'y,...,T%) be the set of large contours in a configuration ¢ € E. We
define a map F»

Fy(L) = (Dr,..., Dy) (8.64)

where (D, ..., D,) is the arrangement of bare droplets in the configuration . Notice
that the bare droplets are closed contours, but they are not necessarily disjoint : it is
possible that they can meet at points of multiplicity two of the exterior enveloppes.
However, the union of all bare droplets forms a compatible family of closed contours,

which we still denote by (Dy,...,D,)

Lemma 8.7

Let ('151, e ,f?,,) be an admissible arrangement of bare droplets. Then, for B large
enough,

Prob ({L: Fa(L = (D1,...,Dy)}) < (8.65)
exp(q - O(In L)) - Prob ({’b}, 2k ,'ﬁq})

where Prob ({1‘51, 4 i ,qu}) is the probability of the family of closed contours whose
UnIon s ’ﬁl U ---Uf’q.
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Proof. Let o be a configuration, and (I'y(¢),...,Tx(c)) be the set of large contours
of 0. Let (I'f,...,T}) be a set of compatible large contours. The set (I'},...,T})
is mapped by Fi into (I'y”,...,['+”). By definition F»(I'}) = F»(I';”). Using lemma
8.1 we can write
Prob ({L: Fy(L) = (Dy,...,D,)}) = (8.66)
> > - > Prob(o) <
r L [(o)=L"
F(L")=(Dy,...0,) Fi(T')=LC frr=C
exp (c.L - O(1/L%)) - ) Prob(L”)

Each contour I';” is uniquely decomposed into a family of bare droplets and internal
closed contours, since Fy(I';”) = I;”. By definition all these internal closed contours
are subsets of the internal blocks. By lemma 8.6 there are at most ¢ internal blocks.
Indeed, if we remove from the tree all vertices which represent the external blocks,
then all vertices of incidence number one represent inner components. Since there
are ¢ inner components there are at most g internal blocks. All internal contours
are inside the internal blocks. They meet the inner boundaries at the gluing sets,
which have lengths < In L. Let us denote by I a gluing set. If we resum in (8.66)
over all internal contours which are connected to I, then we get a factor

exp(0(e ?P)|1|) < exp(O(e™*)In L) (8.67)
Therefore, we can bound (8.66) by

(L?937!2L) . exp (ch - O(l/LzB)) -exp(qO(e™*)In L) (8.68)

Prob (’Di, : e ,Dq)

the factor (L?3'™F)? giving a very rough bound on the number of possible choices of
the gluing sets of type L.

We can now estimate the probability of an arrangement of droplets. Let 5 =
(t1,...,tn) be a sequence of points defining a droplet. We define

n

7(S) =D (i tipa) - (8.69)

i=1

with ¢,y = t; and 7(¢t;,¢:41) as in (7.30).

Lemma 8.8

Let {S1,...,S,} be an admissible arrangement of droplets. If B is large enough, then

Prob ({S51,...,5p}) < (I_pI e_T(S‘)) -exp(p-O(ln L)) (8.70)
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Proof.

In any configuration compatible with the arrangement of droplets there are p bare
droplets, one for each S;. The lemma is proven using lemmas 8.7, and 6.7. We use
lemma 8.7 in order to reduce the estimation to the estimation of the probability of
the family of p bare droplets. Let us consider the case where we have a unique droplet
S = (to,...,tn—1). We can decompose any bare droplet D, S(D) = S, into n pieces
;,i=1,...,n, with cutting points t;,...,t, = to. Let D = (6D; Ay,...,Ax) and s;
be the value of the parameter s such that §D(s;) = t;. For ¢ = 2,...,n we define §;
as the open contour which is formed by the union of the part of the inner boundary
{6D(s) : s;_1 < s < s;} and all external contours A which are connected to that
part of the inner boundary except at the point ¢;_;. Since [6§D(s;-1),8D(s;-1 + 1)]
is an edge of the exterior enveloppe, the contour 8; is irreductible at ¢;_;, when
it =2,...,n— 1. The contour 8, is irreductible at {to,t,—;} since [§D(0),8D(1)] is
an also edge of the exterior enveloppe. The contour §; is defined as the union of
the part of the inner boundary {§D(s) : 1 < s < s;} and all external contours A
which are connected to that part of the inner boundary. Since all external contours
are inside external blocks it follows from the tree-graph structure of a large contour
that all other requirements for a decomposition with cutting points are satisfied.
Therefore we can apply lemma 6.7. When several bare droplets are present 1t is
possible that they are not disjoint. The only possibility is that they are joined by
an internal block consisting of a single point of the exterior enveloppe where two
large cycles meet. By the tree-graph structure of a large contour there are at most
p such points in a configuration of p bare droplets. Using the remark following the
proof of lemma 6.7, and the fact there are at most 27 - (L?)? different families of at
most p points, we get an extra factor to the estimate of lemma 6.7, which is

2P . (L*)? = exp(pO(In L)) (8.71)

Lemma 8.9

Let B be large enough. Then for any 6§, 0 < § < b, and L large enough
Prob (Z r(S:) > T) < exp (——T(l — O(l/ﬁLb_‘s))) (8.72)

2

Proof.

The proof is similar to the proof of lemma 8.2. Let S; be a droplet and n; = n(S;)
be the number of points of the sequence S;. Let us suppose that we have k droplets,
Si,-..,S and that ny <--- < npand ¥ n;, = N. Let T =¥ 7(5;). We have

Prob ({51,...,5:}) < (8.73)
exp(—T)exp(kO(ln L)) =
exp(—T + kL®)exp(—kL® + kO(In L))

Clearly & < N and N 1s such that

Neg—T !

e 2 o Y 7
S alitmi =~ &) (8:74)
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with 7% = max 7(n) = O(3). Therefore

Prob ({S1,...,Sk}) < (8.75)
exp (=T + O(L'~*)L*) - exp (~N(L* — O(In L)))

We estimate the number of droplets with n; + -+ + nx = N. There are at most
(L?)* choices for choosing the first points of the k droplets. If we have chosen the
first 7 points of a droplet, then there are at most 21n L(csL® + In L) choices for the
next point. The number of droplets with ny + -+ + ng = N is smaller than

S (N, k)« (2In L(es L +1n L))" - (L) < (8.76)
k

(N, k) - (2 L(es L + I L)L?)" =

k

exp(NO(In L))

Therefore, we have (for L large enough)

Prob (Z T(S;) > T) & (8.77)

exp (=T (1= 0(1/82"7))) - 3 exp (=N(2' - O(In L)) <
N>1

exp (-1 (1 - 0(1/8L"%))) _

Theorem 8.4

Let b be such that c < b < 1—c = a. Let £ be the event which is the intersection
of the set of configurations such that the sum of the lengths of the large contours s
smaller than c; - L and the set

b = {0' : Y vol(S) = V(m) (1 - a(::)Lc - O(%))} (8.78)

S;e8(a)

with O(L%/L) as in theorem 8.3. Let &, be the event

&y = {cr : Z 7(S;) < T*(m) (1 + 20(%’;))} (8.79)
5,€5(q)

with O(co/ L) the function appearing in the estimation of Prob(A(m)) in theorem
7.1. If B 1s large enough, then

Prob ({& N&|A(m)}) > 1—2exp (—1/2 T(m) 0(%’;)) (8.80)

= 1—2exp (__ﬁ . O(Ll—c))
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Proof.

By theorem 8.3 £; contains the subset of E, and therefore Prob(&5|A(m)) can be
estimated by theorem 8.2. We estimate the complementary event £ of £, under the
condition A(m).

¢ _ ey Prob(£7)
Prob(&|A(m)) = Prob(A(m)\Ez)Prob(A(m)) (8.81)
Prob(&3)
Prob(A(m))
By lemma 8.9 we have
Prob (Z r(8:) > T"(1+ 20(—2%))) = (8.82)
* Co 1 1
and by theorem 7.1 we have
Prob(A(m)) > (1 — €)exp (—T"(l 4 0(%))) (8.83)
We choose b, c < b < 1 — ¢, and § so that b — § > c. Therefore, if L is large enough
Prob(£5|A(m)) < exp (—1/2 - T*(m)()(%‘-})) (8.84)

We have (see theorem 8.2)

Prob((& N &;)°|A(m)) < Prob(&|A(m)) + Prob(&5|A(m)) (8.85)
< 2exp (—-1/2-T*(m)0(%))
Remark.

The factor 2 in (8.79) can be replaced by any factor strictly larger than 1. Then in
(8.80) the factor 1/2 is replaced by (v — 1)/2.
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9 Large deviations and phase separation.

We come to the last step of the analysis. From the above results we know a set
of typical configurations &£ N &, which is the union of subsets E(Si,..., Sk) where
Si,...,5, 1s an arrangement of droplets. We first prove that all arrangements of
droplets of configurations of £ N &, have only a single droplet of volume larger than
L% if 3 is large enough. This is a consequence of a lemma due to Minlos and Sinai.
The phase separation and the large deviations results follow then easily.

Lemma 9.1 ([M.S.1])

Letd;, v =1,...,r, be r positive numbers such that
Y di<l+e (9.1)
=1

and
Z df 2 1— €9 (92)
i=1

€1 and €, positive. Let dmay = max(d; i1 =1,...,7). If €1, €; are sufficiently small,

then there ewists a positive function, e3(eq,¢€;), such that e; tends to zero when €
and €, tend to zero, and such that

dmax 2 J == €3 , E di S €1 2 €3 (93)
di:)édmax

Proof.([M.S.1])

Let » = 2 and let us suppose that d; > d,. Thus dnax = d1 and we have

di+dy<14¢ , &+d>1—¢ (9-4)
Therefore

(di +d2)’ = di +dj +2d1d; < (14 1) (9-5)
and

2dydy €1+ €+ 2 — L+ ea =6 +2e + €3 (9.6)

We have from (9.4) that

_ 1/2
dy > (1 262) (9.7)

and from (9.6) and (9.7)

1 e§+261+62

dy < ﬁ . W = 64(617 €2)

(9.8)
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and
d =2l —a-—BPE L~ ) =] (9.9)

Let us consider the general case. We divide d,, ..., d, in two groups, d;,,...,d; and
d;,...,d;,, and set

dy=dyy +-+di, , dy=dj, +---+4dj, (9.10)
Clearly

di+dy<l+4e,d?+d>1—¢ (9.11)
Therefore dypay > 1 — €3, czmin < €4 and

|dy —dy| > 1 — €3 — €4 (9.12)

Let us consider the case where in one group we take only one element dp,., which we
label by d;. Let us prove that d.x = -min is impossible. Indeed, dy,ax < €4 implies
that d; < e, for all ¢ > 2. In this case we can always divide d;, ..., d, into two new
groups such that

|dy — da| < 2eq (9.13)

which is in contradiction with (9.12) if ¢; and ¢, are small enough. We have therefore
proven that

dlzdmale_ei’bv Zd‘iée4 (914)

i>2

We notice that

Zd,’IZdi—dl_<_€1+€3 (915)

i>2 i>1

Let us call large droplet any droplet whose volume is larger than LZ2°.

Theorem 9.1

Let & N &; be the set of theorem 8.4. If B is large enough then there is a single
large contour in any configurations o of & N &,. In all arrangements of droplets of
configurations o of £, N &, there is a single large droplet S(o) such that

Cq

Lt
vol(S) > V(m) (1 = O(—L—)) (9.16)

and

7(§) < T*(m) (1 % 20(%2)) (9.17)

c
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Proof.

From theorem 8.4 we know that a typical set of configurations, under the condition
A(m), is the set of all configurations which contain droplets Si,..., Sk such that

k

31 (S5) < T*(m) - ( +20(%)) (9.18)

-1
and

Lb

Zvol ) > V(m)- ( - o 0T )) (9.19)
For droplets the isoperimetric inequality is

T(8:)? > 4 - |W,| - vol(5;) (9.20)
and therefore we have

k k

()P = 4| WD vol(S:) (9.21)

i=1 1=1

Ca b
> 4. |W,|-V(m)- (1 ~ 0(—];))

But, the relation between T*(m) and V(m) is precisely

(T"(m))* = 4-|W,[- V(m) (9.22)
and
m* —m
V = = 9.2
(m) = a(m)lA] , a(m)="""_ (9.2)
Therefore, by putting d; = 7(5;)/T"(m) we get
k k
Zdif_l-i-el and Zd?Zl—‘Cg (9.24)
1=1 i5-—2 1
with
Co C4 Lt
—20(2 = et 9.25
61 O(Lc) ) 62 a(m)L°+O( L) ( )
and we may choose (see theorem 8.2)
= s 9.26
o = o+ Aa(m) W) k> 1 (9.26)
From the lemma 9.1, we know that there exists a large droplet, say Sy , such that
7(S51) 2 (1 — €3) - T"(m) (9.27)

and otherwise

>o7(8:) < (& + €5) - T"(m) (9.28)

i>2
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Let us examine this last inequality. We recall that 0 < c <1/2and c<b<1—c.
Therefore the dominant term in €, is the first term and we can neglect the second
term for large L. We set

]_ R 1/2 ].
- . . o L 9.29
= g e MW (0.29)
and we have
1 Co
— .2 9.30
G=ET 2m*a(m) Le (9:30)
We can choose ¢y as small as we want so that we have for ¢y very small
€2~ € and €3 ~ €;/2 ~ €/2 (9.31)

because |W,| = O((3?). Therefore

> vol(S5;) < ; 7(S5;)? < (9.32)

1>2 l
2
T (mf(s (1 (m) =
’{’2 ‘W I 2a
4(m> )2 Iﬁﬂz

When £ tends to infinity the Wulff crystal is a square of side 2, if we normalize the
surface tension by dividing by 8. In our case

W
Jim o = (9.33)
Thus, for large 3, the total volume of the droplets S,,..., S, is at most 1/4L%®
since m* ~ 1 and we can choose x > 1 as small as we want. This implies the
existence of a single large droplet. We have two possibilities: either there is only
one large contour, and each droplet is associated with this large contour, or there are
several large contours. This second possibility is excluded for large enough 3. The
total length of the boundaries of the droplets S;,i > 2 is at most of order O(L!~°).
Therefore the total number of the points of the sequences Ss,..., Sk 1s of order at
most O(L!=¢=?). The total volume of the droplets which are not linked to S; by the
same large contour is at least

L% < O J-0Y ©(9.34)

Indeed, each large contour has an inner component of volume larger than L?*. But
since c < b<1—c=awehavel —c+b< 2a, and we get a contradiction because
from (9.32) we know that the total volume of the droplets S,,...,Sk is at most
1/4L%* when 3 is large. We conclude that there is a unique large contour in any
configuration of the set & N &,.
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We recall the following definitions. Let 7(n) be the surface tension of an interface
perpendicular to the unit vector n of R%2. Let W, be the Wulff crystal,

W, = {z € R?: (n|z) < r(n)} (9.35)

where (- |-) is the Euclidean scalar product. The volume of W, is denoted by
|W.|. By a dilatation of the Wulff crystal we define a set W.(m) of volume V(m) =
a(m)|A|, with a(m) = (m* —m)/2m*. The value of the Wulff functional for this set
is T*(m), (T*(m))? = 4|W,| - V(m). Let A = A(L) be a square box of volume L?
and A(m) = A(m;c,co) be the set

A(m;c,co) = {0 :| > o(t) —m|A|| < colA|- L7} (9.36)

teA

with 0 < ¢ < 1/2, and ¢ not too large.

Theorem 9.2 (Phase separation)

Let —m* < m < 4+m*, m not too small (see remark below). Let E be the subset of
all configurations o such that

o there is a single large contour I' of length |T'| < coL
o the volume of T' is such that |vol(T') — V(m)| < cq|A|- L™°
The constants cy, ¢4 are defined in theorem 8.2. If B and L are large enough, then
Prob}(E|A(m)) > 1 - exp(~BO(L')) (9.37)
The conditional probability is computed with the finite Gibbs measure uj .

Theorem 9.3 (Phase separation)

Let —m* < m < +m*, m not too small (see remark below). Let S be a large droplet,
E(S) be the set of all configurations o having only one large droplet S, and £ be the
union of the sets E(S) such that

o the T-length of S is such that |7(S) — T*(m)| < T*(m)-O(L™°)
o the volume of S is such that |volS — V(m)| < |A] - O(L™°)
If 8 and L are large enough, then
Probi (E£]A(m)) > 1 — exp(—BO(L'™°)) (9.38)
The conditional probability is computed with the finite Gibbs measure uj .
Proof.

The lower bound on 7(§) is a consequence of the isoperimetric inequality and of the
lower bound on the volume of 7(5).
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Theorem 9.4 (Large deviations)

Let —m* < m < +m*, m not too small (see remark below). If B is large enough,
then

) 1
Lh_.n;o —Zln ProbK(L)(A(m;c, co)) = 2(|W;| - a(m))*/? (9.39)

The probability is computed with the finite Gibbs measure uj.

Remark.

The value of m must be such that the square box A contains a set isometric to
W.(m). If not, the results above are not correct. They remain correct if we choose
a box A which is obtained by a dilatation of the Wulff crystal.

Proof.

Theorem 7.1 gives an upper bound. For the other bound we may consider only the
case 0 < ¢ < 1/2. We have

Prob(A) = Prob(AN &)+ Prob(A N E°) (9.40)
— Prob(AN &) + Prob(£°|A)Prob(A)
< Prob(€) + Prob(£°|A)Prob(A)

But
Prob(€) < Prob({o : 7(S(e)) = T"(m)(1 + O(L™°)}) (9.41)

Where S(o) is the arrangement of droplets of the configuration ¢. The theorem
follows from lemma 8.9

Conclusion.

The single large contour I' of each configuration of the set ENE can be decomposed
into its inner boundary § D whose length is O(L) and a family of closed contours 6,
which are disjoint two by two and which have at least one side in common with T,
but no edge in common with I'. Let £ be the subset of configurations o of E N &
which are characterized by the fact that each small contour 7 has a length |y| < CL®
and each closed contour 8 of the decomposition of I' has a length || < C'L®. The
constant a satisfies 1/2 < a < 1. From the theorems on the phase separation, the
results of 6.41 and theorem 7.1 there exist 3y, Lo and a constant C such that for all
Bo > Bo and L > Ly,

e Prob}(£*|A(m)) > 1 — exp(—B0O(L?))

There is another picture of the typical configurations at a scale of order O(L?). Let
S be a droplet of £~ and E(S) be the subset of all configurations of £ associated
with the droplet S. Let A(A) be the set of all ¢ € A which are at a distance smaller
than C;L® from the boundary of A, and A(S) be the set of all ¢t € A which are at a
distance smaller than '} L® from a point ¢; of S. There exists a constant C; so that
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e the unique large contour I' of any configuration of E(S) is in A(S).

The set A\(A(A)UA(S)) has two connected components, A, (S) and A_(S), which
are serarated by A(S). Let A be a finite subset of Z?. By choosing the constant
C large enough we get the following results (see section 4 and also appendix A in

[B.L.P.2)):
o if Aisin Ay, then

[ {(o(A)IE(S))5 — (e(A)T | < O(exp(—BL*)) (o (A))*
o if Aisin A_, then

[{e(A)E(S)] — (o(A))7 | < Oexp(-BL°)) (o(A))”

Let W;(m) be the Wulff droplet of volume V(m), and A(m) be the subset
A(m) = {t € R? : dy(t, W,(m) < C, L5}
There exists a constant Cy so that

e any polygon constructed with the vertices of a droplet of £~ is covered by a
set isometric to A(m).

This statement is a consequence of the generalization of the classical geometric in-
equalities of Bonnesen to the case of the 7-length (see [D.K.S]). Let ¢ be a rectifiable
Jordan curve, which is the boundary of a region G of volume vol(c). Let

r(c) = sup{r:7-W,+z C G for some z € R?}
R(c) = inf{R:R W, +z D G for some z € R*}

where p- W, = {y = p-z : 2 € W.}. Bonnesen’s inequalities are

7(c) — y/7(c)? — 4|W, |vol(c) r(c) + /7(c)? — 4|W; |vol(c)
A <r(c) < R(c) < A
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10 A shorter proof of the main results.

It 1s possible to get a shorter proof of the main results, if another notion of contours
is introduced. Let A be a finite subset of 7%, and let o be a spin configuration in
A compatible with the + b.c. for A. The configuration is uniquely specified by a
family of A*-compatible contours (71,...,7,). We say that a point t* € 7% is a
crossing point of a contour 4 if there are four edges of 4 which contain the point ¢*.
We modify the family of contours as follows :

e at each crossing point we change the contours according to rule a) of figure 8
¢ we round off the corners of the contours according to rules b), ¢) of figure 8.

After these transformations we get a family of closed simple disjoint lines, v;,...,7..,
which we call simple contours. We define for the simple contours the notions of inty’,
inty’, A*-compatibility and At-compatibility as before. We also use an equivalent
description, which is more convenient for the duality. We introduce some order for
the points of the dual lattice and we orient each simple contour so that the interior
of the simple contour is at the left-hand side. We deform the simple contours so that
they are again drawn on the dual lattice and we consider these new lines as unit-
speed parametrized curves, the origin of the curve being the first point of the curve
for the order of the dual lattice. We call these lines parametrized contours. We still
denote the parametrized contours by 41, ...,7,,. The length of ' is by definition the
length of the parametrized contour 4'. A simple contour, or a parametrized contour

1s,

o smallif voly' < L?*, 1/2 < a < 1,
e large if voly' > L**.

The great advantage of the simple contours is that their geometry is trivial. There-
fore we can avoid a large part of the discussion of section 8. The main steps of the
analysis are summarized in remark 3 of the introduction. The first three steps are
proven in essentially the same way when we adopt the new definition of contours.
The proof of theorem 7.1 is in fact simpler, since we do not need the discussion of
points 4, 5 and 6 of the previous proof (see below). We concentrate the discussion
on the changes which occur in section 8. We prove a lemma replacing lemma 8.8.
Once this lemma is established, then theorem 8.4 is proved as before, and hence also

theorems 9.2, 9.3 and 9.4.

As in section 6.4.2 we use the duality and correlation inequalities. It is therefore
convenient to work with parametrized contours. Let IV be a large parametrized con-
tour. We define the notion of droplet. (This is essentially the skeleton of [D.K.5].)
A droplet is specified by an ordered sequence of points of I'. The first point of
the sequence is the origin of IV, ¢; = I'(s = 0). The next point, ¢;, is I''(s’) so
that s’ is the first value of the parameter s € N such that d,(I(0),T"(s)) > L.
As before ¢ < b < a = 1 — c. The next point is defined similarly and so on. In
this way we can associate with each large parametrized contour a sequence of points

96
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RULE A

RULE B RULE C
—e —ie

Figure 8: Modification rules for the contours.

S(I") = {t1,...,tn}, which we call a droplet. (It is possible that we have t; = ¢;
for ¢ # j since the parametrized contours may have points of multiplicity two). An
arrangement of droplets S, ..., Sk is defined as in section 8 and E(S, ..., Sk) is the
set of all configurations associated with the arrangement of droplets Sy, ..., Sk. (It
is possible that the same point ¢ of the dual lattice occurs in two different droplets
since the parametrized contours are not disjoint.) For any droplet S = {t1,...,ta}
we define its r-length, »

T(S) = ZT(tj’tj+1) 3 tn+1 = tl (101)

i=1

Here 7(t;,t;41) is defined as in (7.30). We prove a lemma replacing lemma 8.8.

Lemma 10.1

Let A be a simply connected finite set of Z2. Let Sy,...,Sk be an arrangement of k
droplets, the droplet S; having n; points. If B is large enough, then

Prob(E(Sy,...,S:)) < ﬁ exp (n,-O(e‘zﬁ)) ﬁ e 7(5i) (10.2)

j=1

The probability is computed with the Gibbs measure puj .
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Proof.

To simplify the notations we consider the case &k = 1 of a single droplet S5 =
{t1,...,t,}. Let I be a large contour such that S(I'') = S. We decompose the
parametrized contour I'V into n open parametrized contours, A;,...,A,. By defini-
tion

A= {T"(s)]si < s < sipa} (10.3)

where s; is defined by ; = I''(s;). We must estimate

Prob(E(S)) = Z Prob(T (10.4)
S(l"’) §
n i ZAT O, - A0)
e tanh Al
(2, Altenh) 2(h)
§xi={t; tiy1}

where the partition function Z(A*(Aq,...,),)) is the partition function of an Ising
model with free boundary condition, at inverse temperature 3*, in a finite box
A*(A1,...,An). This box contains all spins of A* which are not on the parametrized
contours Ay, ..., A, and all spins on these parametrized contours which are at corners
which are modified by rules b) and ¢). We remove all coupling constants of the model
between two spins which are on these parametrized curves. The partition functions
are normalized as in (6.5), see also (6.23). We fix for the moment },,..., A, and sum
over A;. Let Z(A*(Az,...,A,)) be the partition function of an Ising model with free
boundary condition, at inverse temperature 3, in the finite box A*(Az, ..., A,). This
box contains all spins of A* which are not on the parametrized contours A,,..., A,
and all spins on these parametrized contours which are at corners which are modified
by rules b) and c), as well as the spins t; and ¢; which are on the boundary of the
union of these parametrized contours. Again, we remove all coupling constants
between two spins which are on these parametrized contours. We can interpret

2o ZAT O, )
Z(A" (-0 An))

(10.5)

as a contribution to the expectation value (O’(tl)d(tg))f (A*(Az,...,A)). Therefore
by Griffiths’inequalities we can bound the sum over A; by (a(t)o(t2))’. We get

s sl Z(A(Az, .., A0))
> Hta h B! 70 < (o(tr)o(ta)) - (10.6)

Al,...,A",: :
Shi={t; tiq1}
S enhpry 28000 20) Z0 U, o0 20))
Movdni k=2 Z(A* (A3, 5 An)) Z(A¥)
SAi={titis1}
We sum over A; when the other parametrized contours are fixed. Let 7y,...,7m

be m compatible closed parametrized contours of a configuration contributing to
Z(A*(A2,...,2)). Then the family of parametrized of contours Az, 71,...,7%m is
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EX. 1 EX. 2

Figure 9: Examples of rule a) for an open contour.

a compatible family of parametrized contours contributing to the numerator of
(a(t)o(ts))! (A"(Qs, . .., An))- If one of the parametrized contours 7; touches A, at
t2, then we suppose, without restricting the generality, that this is the parametrized
contour 7;. The union of A, and #; is denoted by A;. It may happen that A} must
be considered as a single parametrized contour. Indeed, we must extend the rule a)
to the case of an open contour when three edges have a common point. Examples
of this situation are given in figure 9. Whenever this situation occurs we may get
the same family of compatible parametrized contours in two different ways : either
it is the family A}, 72,.:.,9m or it is the family A3, 7%1,7%2,...,%m- In figure 9 this
is the case for the third example. To avoid this problem we multiply and divide
by the partition function Z(A'(Az,.. .»An)) which is the partition function for an
Ising model defined on A*(A,...,An)\{t2}. (As before we have no coupling constant
between two spins on the parametrized contours Az, ..., A,.) We have

I)‘2| Z(A*(Az, eey Aﬂ))

- f
%:(tanhﬁ ) Z(h 0 0w) < (o(t2)o(ts)) (10.7)
and by the cluster expansion
20 e %)) < erp (0() (103)

Z(A*(Ag,- ., 20)) ~

By repeating this argument we prove lemma 10.1.

Remark.

The bound of lemma 8.8 is better than the bound of lemma 10.1. However, the
extra factor is of an order comparable with the entropy estimate of a collection of
droplets and therefore the proofs of lemma 8.9 and theorem 8.4 remain the same.
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